Citation: Wang Yimeng, Zhang Shenping, Ge Yu, Wang Chenhui, Hu Jun, Liu Honglai. Highly Efficient Photocatalytic Degradation of Tetracycline Using a Bimetallic Oxide/Carbon Photocatalyst[J]. Acta Physico-Chimica Sinica, ;2020, 36(8): 190508. doi: 10.3866/PKU.WHXB201905083 shu

Highly Efficient Photocatalytic Degradation of Tetracycline Using a Bimetallic Oxide/Carbon Photocatalyst

  • Corresponding author: Hu Jun, junhu@ecust.edu.cn
  • Received Date: 30 May 2019
    Revised Date: 8 July 2019
    Accepted Date: 9 July 2019
    Available Online: 18 July 2019

    Fund Project: The project was supported by the National Natural Science Foundation of China (91834301, 21676080, 21878076)The project was supported by the National Natural Science Foundation of China 21878076The project was supported by the National Natural Science Foundation of China 91834301The project was supported by the National Natural Science Foundation of China 21676080

  • Recently, MOF-derived metal oxides have been demonstrated as excellent semiconductor materials. Their derivatives can retain the high porosity and high specific surface area of the parent MOFs, effectively improving the adsorption capacity and mass transfer rate of reactive substances. Herein, UiO-67 was selected as the substrate due to its high hydrothermal stability and high specific surface area. Through the in situ growth of TiO2 nanoparticles, a series of double metal composite catalysts (ZrxTi/C) were produced after calcination at 400 ℃. The X-ray diffraction (XRD) patterns showed that the UiO-67 crystal structure of collapsed after calcination, forming a Zr-O-C/TiO2 heterojunction. Energy-dispersive spectrometry (EDS) mapping images showed that Ti, Zr, and O were evenly distributed throughout the materials without obvious aggregation. Compared to conventional inorganic semiconductor materials, ZrxTi/C heterojunction catalysts provided much higher BET surface area (317 m2·g-1) for the effective enrichment of contaminants on the catalyst surface. Tetracycline was selected as a representative antibiotic to study photodegradation performance under a 300 W Xenon lamp. Among the obtained catalysts, the Zr0.3Ti/C heterojunction catalyst exhibited the best photocatalytic efficiency, achieving 98% degradation within 30 min in a 10 mg·L-1 tetracycline solution. Fluorescence spectra, electrochemical impedance spectroscopy, and transient photocurrent responses showed that the Zr0.3Ti/C heterojunction catalyst exhibited the fastest charge-hole separation rate and a maximum photocurrent density of 8.75 μA·cm-2, which was 2.64 and 3.71 times those of UiO-67 and UiO-670.3/TiO2, respectively. The mechanism of tetracycline photodegradation was determined by UV-visible diffuse-reflectance absorption spectroscopy, Mott-Schottky plots, and electron spin resonance technology. A direct Z-scheme charge separation path was formed by the transfer and recombination of photoexcited e- in the conduction band (CB) of Zr-O-C with h+ in the valence band (VB) of TiO2, which effectively reduced the combination rate of e- and h+ in Zr-O-C and TiO2. The photodegradation rate constant of Zr0.3Ti/C was 16 and 3.7 times those of TiO2 and Zr-O-C, respectively, due to its large specific surface area and excellent tetracycline adsorption performance. Furthermore, the Zr-O-C/TiO2 heterostructure exhibiting suitable energy level matching and containing highly conductive carbon material improved the separation and migration of electron-hole pairs. Mechanistic studies revealed that the three types of radicals, superoxide radicals (O2•-), hydroxyl radicals (•OH), and a small amount of holes (h+) simultaneously promoted tetracycline photodegradation. After five recycling tests, Zr0.3Ti/C heterojunction catalyst maintained 91.2% removal efficiency for tetracycline, indicating good cycle stability. Combining the synergistic effects of adsorption and photodegradation, using bimetallic heterojunction composites with high specific surface area is promising for the photodegradation of environmental pollutants.
  • 加载中
    1. [1]

      Zhang, Q.; Xin, Q.; Zhu, J. M.; Cheng, J. P. Environ. Chem. 2014, 33, 1075.  doi: 10.7524/j.issn.0254-6108.2014.07.001

    2. [2]

      Hirsch, R.; Ternes, T.; Haberer, K.; Kratz, K. L. Sci. Total Environ. 1999, 225, 109. doi: 10.1016/S0048-9697(98)00337-4  doi: 10.1016/S0048-9697(98)00337-4

    3. [3]

      Li, X. W.; Wang, B.; Yin, W. X.; Di, J.; Xia, J. X.; Zhu, W. S.; Li, H. M. Acta Phys. -Chim. Sin. 2020, 36, 1902001.  doi: 10.3866/PKU.WHXB201902001

    4. [4]

      Selvam, N. C. S.; Manikandan, A.; Kennedy, L. J.; Vijaya, J. J. J. Colloid Interface Sci. 2013, 389, 91. doi: 10.1016/j.jcis.2012.09.014  doi: 10.1016/j.jcis.2012.09.014

    5. [5]

      Tao, J.; Gong, Z.; Yao, G.; Cheng, Y.; Zhang, M.; Lv, J.; Shi, S.; He, G.; Jiang, X.; Chen, X. J. Alloys Compd. 2016, 688, 605. doi: 10.1016/j.jallcom.2016.07.074  doi: 10.1016/j.jallcom.2016.07.074

    6. [6]

      Liu, J.; Ke, J.; Li, Y.; Liu, B.; Wang, L.; Xiao, H.; Wang, S. Appl. Catal. B: Environ. 2018, 236, 396. doi: 10.1016/j.apcatb.2018.05.042  doi: 10.1016/j.apcatb.2018.05.042

    7. [7]

      Zhang, L.; Qin, M.; Yu, W.; Zhang, Q.; Xie, H.; Sun, Z.; Shao, Q.; Guo, X.; Hao, L.; Zheng, Y.; et al. J. Electrochem. Soc. 2017, 164, H1086. doi: 10.1149/2.0881714jes  doi: 10.1149/2.0881714jes

    8. [8]

      Yuan, L.; Lu, K. Q.; Zhang, F.; Fu, X.; Xu, Y. J. Appl. Catal. B: Environ. 2018, 237, 424. doi: 10.1016/j.apcatb.2018.06.019  doi: 10.1016/j.apcatb.2018.06.019

    9. [9]

      Issarapanacheewin, S.; Wetchakun, K.; Phanichphant, S.; Kangwansupamonkon, W.; Wetchakun, N. Catal. Today 2016, 278, 280. doi: 10.1016/j.cattod.2015.12.028  doi: 10.1016/j.cattod.2015.12.028

    10. [10]

      Wang, M.; Hu, Y.; Han, J.; Guo, R.; Xiong, H.; Yin, Y. J. Mater. Chem. A 2015, 3, 20727. doi: 10.1039/C5TA05839B  doi: 10.1039/C5TA05839B

    11. [11]

      Yang, L.; Luo, S.; Li, Y.; Xiao, Y.; Kang, Q.; Cai, Q. Environ. Sci. Technol. 2010, 44, 7641. doi: 10.1021/es101711k  doi: 10.1021/es101711k

    12. [12]

      Zhang, N.; Yang, M. Q.; Liu, S.; Sun, Y.; Xu, Y. J. Chem. Rev. 2015, 115, 10307. doi: 10.1021/acs.chemrev.5b00267  doi: 10.1021/acs.chemrev.5b00267

    13. [13]

      Zhang, N.; Xu, Y. J. CrystEngComm 2016, 18, 24. doi: 10.1039/C5CE01712B  doi: 10.1039/C5CE01712B

    14. [14]

      Zhang, N.; Zhang, Y.; Xu, Y. J. Nanoscale 2012, 4, 5792. doi: 10.1039/C2NR31480K  doi: 10.1039/C2NR31480K

    15. [15]

      Lu, K. Q.; Xin, X.; Zhang, N.; Tang, Z. R.; Xu, Y. J. J. Mater. Chem. A 2018, 6, 4590. doi: 10.1039/C8TA00728D  doi: 10.1039/C8TA00728D

    16. [16]

      Han, C.; Zhang, N.; Xu, Y. J. Nano Today 2016, 11, 351. doi: 10.1016/j.nantod.2016.05.008  doi: 10.1016/j.nantod.2016.05.008

    17. [17]

      Zhang, T.; Lin, W. Chem. Soc. Rev. 2014, 43, 5982. doi: 10.1039/C4CS00103F  doi: 10.1039/C4CS00103F

    18. [18]

      Zeng, X.; Huang, L.; Wang, C.; Wang, J.; Li, J.; Luo, X. ACS Appl. Mater. Inter. 2016, 8, 20274. doi: 10.1021/acsami.6b05746  doi: 10.1021/acsami.6b05746

    19. [19]

      Li, X.; Pi, Y.; Hou, Q.; Yu, H.; Li, Z.; Li, Y.; Xiao, J. Chem. Commun. 2018, 54, 1917. doi: 10.1039/C7CC09072B  doi: 10.1039/C7CC09072B

    20. [20]

      Wong-Foy, A. G.; Matzger, A. J.; Yaghi, O. M. J. Am. Chem. Soc. 2006, 128, 3494. doi: 10.1021/ja058213h  doi: 10.1021/ja058213h

    21. [21]

      Bux, H.; Chmelik, C.; Krishna, R.; Caro, J. J. Membr. Sci. 2011, 369, 284. doi: 10.1016/j.memsci.2010.12.001  doi: 10.1016/j.memsci.2010.12.001

    22. [22]

      Montoro, C.; Linares, F.; Quartapelle Procopio, E.; Senkovska, I.; Kaskel, S.; Galli, S.; Masciocchi, N.; Barea, E.; Navarro, J. A. J. Am. Chem. Soc. 2011, 133, 11888. doi: 10.1021/ja2042113  doi: 10.1021/ja2042113

    23. [23]

      Chen, Y. Z.; Zhang, R.; Jiao, L.; Jiang, H. L. Coordin. Chem. Rev. 2018, 362, 1. doi: 10.1016/j.ccr.2018.02.008  doi: 10.1016/j.ccr.2018.02.008

    24. [24]

      Bala, S.; Mondal, I.; Goswami, A.; Pal, U.; Mondal, R. J. Mater. Chem. A 2015, 3, 20288. doi: 10.1039/C5TA05210F  doi: 10.1039/C5TA05210F

    25. [25]

      Su, Y.; Ao, D.; Liu, H.; Wang, Y. J. Mater. Chem. A 2017, 5, 8680. doi: 10.1039/C7TA00855D  doi: 10.1039/C7TA00855D

    26. [26]

      Pan, L.; Muhammad, T.; Ma, L.; Huang, Z. F.; Wang, S.; Wang, L.; Zou, J. J.; Zhang, X. Appl. Catal. B: Environ. 2016, 189, 181. doi: 10.1016/j.apcatb.2016.02.066  doi: 10.1016/j.apcatb.2016.02.066

    27. [27]

      Zhang, Y. F.; Qiu, L. G.; Yuan, Y. P.; Zhu, Y. J.; Jiang, X.; Xiao, J. D. Appl. Catal. B: Environ. 2014, 144, 863. doi: 10.1016/j.apcatb.2013.08.019  doi: 10.1016/j.apcatb.2013.08.019

    28. [28]

      Guo, Z.; Cheng, J. K.; Hu, Z.; Zhang, M.; Xu, Q.; Kang, Z.; Zhao, D. RSC Adv. 2014, 4, 34221. doi: 10.1039/C4RA05429F  doi: 10.1039/C4RA05429F

    29. [29]

      Dekrafft, K. E.; Wang, C.; Lin, W. Adv. Mater. 2012, 24, 2014. doi: 10.1002/adma.201200330  doi: 10.1002/adma.201200330

    30. [30]

      Nickerl, G.; Leistner, M.; Helten, S.; Bon, V.; Senkovska, I.; Kaskel, S. Inorg. Chem. Front. 2014, 1, 325. doi: 10.1039/C3QI00093A  doi: 10.1039/C3QI00093A

    31. [31]

      Yan, S.; Ouyang, S.; Xu, H.; Zhao, M.; Zhang, X.; Ye, J. J. Mater. Chem. A 2016, 4, 15126. doi: 10.1039/C6TA04620G  doi: 10.1039/C6TA04620G

    32. [32]

      Liu, L.; Zhang, F.; Zhang, J.; Tan, X.; Zhang, B.; Shi, J.; Shao, D.; Tan, D.; Han, B.; Yang, G. Soft Matter 2017, 13, 9174. doi: 10.1039/C7SM02007D  doi: 10.1039/C7SM02007D

    33. [33]

      Liang, Y.; Cui, Z.; Zhu, S.; Li, Z.; Yang, X.; Chen, Y.; Ma, J. Nanoscale 2013, 5, 10916. doi: 10.1039/C3NR03616B  doi: 10.1039/C3NR03616B

    34. [34]

      Zhang, H.; Guo, L. H.; Wang, D.; Zhao, L.; Wan, B. ACS Appl. Mater. Inter. 2015, 7, 1816. doi: 10.1021/am507483q  doi: 10.1021/am507483q

    35. [35]

      Yu, J. H.; Fan, M. G.; Li, B.; Dong, L. H.; Zhang, F. Y. Acta Phys. -Chim. Sin. 2015, 31, 519.  doi: 10.3866/PKU.WHXB201412291

    36. [36]

      Zheng, D. Y.; Zhou, X. M.; Mutyala, S.; Huang, X. C. Chem.: Eur. J. 2018, 24, 19141. doi: 10.1002/chem.201803900  doi: 10.1002/chem.201803900

    37. [37]

      Wang, A.; Zhou, Y.; Wang, Z.; Chen, M.; Sun, L.; Liu, X. RSC Adv. 2016, 6, 3671. doi: 10.1039/C5RA24135A  doi: 10.1039/C5RA24135A

    38. [38]

      Hong, Y.; Jiang, Y.; Li, C.; Fan, W.; Yan, X.; Yan, M.; Shi, W. Appl. Catal. B: Environ. 2016, 180, 663. doi: 10.1016/j.apcatb.2015.06.057  doi: 10.1016/j.apcatb.2015.06.057

    39. [39]

      Di, J.; Xia, J.; Ge, Y.; Li, H.; Ji, H.; Xu, H.; Zhang, Q.; Li, H.; Li, M. Appl. Catal. B: Environ. 2015, 168, 51. doi: 10.1016/j.apcatb.2014.11.057  doi: 10.1016/j.apcatb.2014.11.057

    40. [40]

      Du, X. Y.; Li, Y.; Yin, H.; Xiang, Q. J. Acta Phys. -Chim. Sin. 2018, 34, 414.  doi: 10.3866/PKU.WHXB201708283

    41. [41]

      Fang, W. H.; Zhang, L.; Zhang, J. Acta Phys. -Chim. Sin. 2018, 34, 781.  doi: 10.3866/PKU.WHXB201711131

    42. [42]

      Ma, X.; Xiang, Q.; Liao, Y.; Wen, T.; Zhang, H. Appl. Surf. Sci. 2018, 457, 846. doi: 10.1016/j.apsusc.2018.07.003  doi: 10.1016/j.apsusc.2018.07.003

    43. [43]

      Yan, Y.; Zhou, X.; Lan, J.; Li, Z.; Zheng, T.; Cao, W.; Zhu, N.; Liu, W. J. Photochem. Photobiol. 2018, 367, 355. doi: 10.1016/j.jphotochem.2018.08.045  doi: 10.1016/j.jphotochem.2018.08.045

    44. [44]

      Villamena, F. A.; Hadad, C. M.; Zweier, J. L. J. Am. Chem. Soc. 2004, 126, 1816. doi: 10.1021/ja038838k  doi: 10.1021/ja038838k

    45. [45]

      Clément, J. L.; Ferré, N.; Siri, D.; Karoui, H.; Rockenbauer, A.; Tordo, P. J. Org. Chem. 2005, 70, 1198. doi: 10.1021/jo048518z  doi: 10.1021/jo048518z

    46. [46]

      Li, H.; Zhai, F.; Gui, D.; Wang, X.; Wu, C.; Zhang, D.; Dai, X.; Deng, H.; Su, X.; Diwu, J.; et al. Appl. Catal. B: Environ. 2019, 254, 47. doi: 10.1016/j.apcatb.2019.04.087  doi: 10.1016/j.apcatb.2019.04.087

    47. [47]

      Rawal, S. B.; Kang, H. J.; Won, D. I.; Lee, W. I. Appl. Catal. B: Environ. 2019, 256, 117856. doi: 10.1016/j.apcatb.2019.117856  doi: 10.1016/j.apcatb.2019.117856

  • 加载中
    1. [1]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    2. [2]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    3. [3]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    4. [4]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    5. [5]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    6. [6]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    7. [7]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    8. [8]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    9. [9]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    10. [10]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    11. [11]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    12. [12]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    13. [13]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    14. [14]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    15. [15]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    16. [16]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    17. [17]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    18. [18]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    19. [19]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    20. [20]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

Metrics
  • PDF Downloads(15)
  • Abstract views(1874)
  • HTML views(508)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return