Citation: He Yucheng, Xie Kefeng, Wang Youhao, Zhou Dongshan, Hu Wenbing. Characterization of Polymer Crystallization Kinetics via Fast-Scanning Chip-Calorimetry[J]. Acta Physico-Chimica Sinica, ;2020, 36(6): 190508. doi: 10.3866/PKU.WHXB201905081 shu

Characterization of Polymer Crystallization Kinetics via Fast-Scanning Chip-Calorimetry

  • Corresponding author: Hu Wenbing, wbhu@nju.edu.cn
  • Received Date: 29 May 2019
    Revised Date: 2 August 2019
    Accepted Date: 2 August 2019
    Available Online: 16 June 2019

    Fund Project: Program for Changjiang Scholars and Innovative Research Team in University IRT1252the National Natural Science Foundation of China 21734005The project was supported by the National Natural Science Foundation of China (21474050, 21734005), Program for Changjiang Scholars and Innovative Research Team in University (IRT1252), and CAS Interdisciplinary Team, Chinathe National Natural Science Foundation of China 21474050

  • Biological systems can be regarded as complex and open thermodynamic systems. All processes involved in biological growth and metabolism are accompanied by material and energy exchange. During metabolism, energy in the organisms is released in the form of heat, i.e., metabolic heat, which is the basis for development in the field of biothermochemistry. The calorimetric method considers the thermal effects produced by the various forms of action as the research object, to reveal the law of energy change and quantitative energy conversion. Studying the thermodynamic processes of complex biological systems and related reactions through microcalorimetry and thermodynamic methods reflects the intrinsic laws of life-related processes macroscopically and intrinsically. With the tremendous development and progress in microcalorimetry in terms of the temperature measurement accuracy, stability of temperature control, automation, and multi-functionalization, calorimetry has been widely used in life sciences. It can be used to describe macroscopic processes such as ecosystems and biological evolution, observe organismal and cell growth, examine mitochondrial metabolism, and study problems at the molecular level, including enzymatic reactions and interactions between small molecules and biomacromolecules. Herein, the application of biomass calorimetry in the life sciences is reviewed. The status and progress of biomass calorimetry at different biological and structural levels, such as the ecosystem, biological, organ, cellular, subcellular, and molecular levels are introduced. For example, soil microbial metabolic activity is a universal index for evaluating soil quality. The growth and metabolism of organisms as well as the physical and chemical processes of substances in soil are often accompanied by heat release, which is usually a non-selective signal. The use of isothermal microcalorimetry to nonspecifically monitor and record soil microbial metabolic characteristics has promoted the study of microbial metabolism in complex soil systems. The application of calorimetry to the study of tissues and organs mainly involves the calorimetric study of isolated animal and plant tissues and organs. Calorimetry of animal and microbial cells is considered the most common application of calorimetry in life sciences research. It mainly involves the classification and identification of bacteria, their growth and metabolism, inhibition mechanisms of drugs on microbial growth, principles of kinetics, and the thermodynamic characteristics of microbial growth and metabolism. However, owing to the lack of specificity of biomass calorimetry and the lack of direct access to information at the molecular level, more applications of calorimetry combined with other analytical techniques (especially in biology, medicine, and pharmacy) are needed in the future.
  • 加载中
    1. [1]

      Hu W., Principles of Polymer Crystallization; Chemical Industry Press: Beijing, China, 2013.

    2. [2]

      Wunderlich B., Thermal Analysis of Polymeric Materials; Springer: Berlin, Germany, 2005.

    3. [3]

      Wunderlich B., Prog. in Polym. Sci. 2003, 28(3), 383. doi: 10.1016/S0079-6700(02)00085-0  doi: 10.1016/S0079-6700(02)00085-0

    4. [4]

      Schick C., Anal. Bioanal. Chem. 2009, 395(6), 1589. doi: 10.1007/s00216-009-3169-y  doi: 10.1007/s00216-009-3169-y

    5. [5]

      Kamal M. R., Chu E., Polym. Eng. Sci. 1983, 23(1), 27. doi: 10.1002/pen.760230107  doi: 10.1002/pen.760230107

    6. [6]

      Toda A., Androsch R., Schick C., Polymer 2016, 91, 239. doi: 10.1016/j.polymer.2016.03.038  doi: 10.1016/j.polymer.2016.03.038

    7. [7]

      Li Z., Zhou D., Hu W., Acta Polym. Sin. 2016, 9, 1179.  doi: 10.11777/j.issn1000-3304.2016.16058

    8. [8]

      Di Lorenzo M. L., Androsch R., Rhoades A. M., Righetti M. C., Analysis of Polymer Crystallization by Calorimetry. In Handbook of Thermal Analysis and Calorimetry, Vyazovkin S., Koga N., Schick C., Eds.; Elsevier Science B.V.: Amsterdam, Netherlands, 2018; Vol. 6, p. 253.

    9. [9]

      Gao Y., Zhao B., Vlassak J. J., Schick C., Prog. Mater. Sci. 2019, 104, 53. doi: 10.1016/j.pmatsci.2019.04.001  doi: 10.1016/j.pmatsci.2019.04.001

    10. [10]

      Mathot V. B. F., Polym. Int. 2019, 68(2), 179. doi: 10.1002/pi.5671  doi: 10.1002/pi.5671

    11. [11]

      Santos de Souza F., Gomes Barreto A. P., Macêdo R. O., J. Therm. Anal. Calorim. 2001, 64(2), 739. doi: 10.1023/A:1011548512655  doi: 10.1023/A:1011548512655

    12. [12]

      Becker R., Döring W., Ann. Phys. 1935, 416(8), 719. doi: 10.1002/andp.19354160806  doi: 10.1002/andp.19354160806

    13. [13]

      Umemoto S., Kobayashi N., Okui N., J. Macromol. Sci. Phys. 2002, B41(4–6), 923. doi: 10.1081/mb-120013074  doi: 10.1081/mb-120013074

    14. [14]

      Denlinger D. W., Abarra E. N., Allen K., Rooney P. W., Messer M. T., Watson S. K., Hellman F., Rev.Sci. Instrum. 1994, 65(4), 946. doi: 10.1063/1.1144925  doi: 10.1063/1.1144925

    15. [15]

      Allen L. H., Ramanath G., Lai S. L., Ma Z., Lee S., Allman D. D. J., Fuchs K. P., Appl. Phys. Lett. 1994, 64(4), 417. doi: 10.1063/1.111116  doi: 10.1063/1.111116

    16. [16]

      Lai S. L., Ramanath G., Allen L. H., Infante P., Ma Z., Appl. Phys. Lett. 1995, 67(9), 1229. doi: 10.1063/1.115016  doi: 10.1063/1.115016

    17. [17]

      Lai S. L., Guo J. Y., Petrova V., Ramanath G., Allen L. H., Phys. Rev. Lett. 1996, 77(1), 99. doi: 10.1103/PhysRevLett.77.99  doi: 10.1103/PhysRevLett.77.99

    18. [18]

      Efremov M. Y., Schiettekatte F., Zhang M., Olson E. A., Kwan A. T., Berry R. S., Allen L. H., Phys. Rev. Lett. 2000, 85(17), 3560. doi: 10.1103/PhysRevLett.85.3560  doi: 10.1103/PhysRevLett.85.3560

    19. [19]

      Efremov M. Y., Olson E. A., Zhang M., Lai S. L., Schiettekatte F., Zhang Z. S., Allen L. H., Thermochim. Acta 2004, 412(1), 13. doi: 10.1016/j.tca.2003.08.019  doi: 10.1016/j.tca.2003.08.019

    20. [20]

      Efremov M. Y., Olson E. A., Zhang M., Schiettekatte F., Zhang Z., Allen L. H., Rev. Sci. Instrum. 2004, 75(1), 179. doi: 10.1063/1.1633000  doi: 10.1063/1.1633000

    21. [21]

      de la Rama L. P., Hu L., Ye Z., Efremov M. Y., Allen L. H., J. Am. Chem. Soc. 2013, 135(38), 14286. doi: 10.1021/ja4059958  doi: 10.1021/ja4059958

    22. [22]

      Lopeandia A. F., Cerdo L. I., Clavaguera-Mora M. T., Arana L. R., Jensen K. F., Munoz F. J., Rodriguez-Viejo J., Rev. Sci. Instru. 2005, 76(6), 3959. doi: 10.1063/1.1921567  doi: 10.1063/1.1921567

    23. [23]

      Adamovsky S. A., Minakov A. A., Schick C., Thermochim. Acta 2003, 403(1), 55. doi: 10.1016/S0040-6031(03)00182-5  doi: 10.1016/S0040-6031(03)00182-5

    24. [24]

      Adamovsky S., Schick C., Thermochim. Acta 2004, 415(1), 1. doi: 10.1016/j.tca.2003.07.015  doi: 10.1016/j.tca.2003.07.015

    25. [25]

      Yu J., Tang Z., Zhang F., Wei G., Wang L., Chin. Phy. Lett. 2005, 22(9), 2429. doi: 10.1088/0256-307x/22/9/080  doi: 10.1088/0256-307X/22/9/080

    26. [26]

      Chen M., Du M., Jiang J., Li D., Jiang W., Zhuravlev E., Zhou D., Schick C., Xue G., Thermochim. Acta 2011, 526(1), 58. doi: 10.1016/j.tca.2011.08.020

    27. [27]

      Jiang J., Zhuravlev E., Huang Z., Wei L., Xu Q., Shan M., Xue G., Zhou D., Schick C., Jiang W., Soft Matter 2013, 9(5), 1488. doi: 10.1039/C2SM27012A  doi: 10.1039/C2SM27012A

    28. [28]

      Wei L., Jiang J., Shan M., Chen W., Deng Y., Xue G., Zhou D., Rev. Sci. Instrum. 2014, 85(7), 074901. doi: 10.1063/1.4889882  doi: 10.1063/1.4889882

    29. [29]

      Jiang J., Wei L., Zhou D., Integration of Fast Scanning Calorimetry(FSC) with Microstructural Analysis Techniques. In Fast Scanning Calorimetry, Schick C., Mathot V., Eds.; Springer International Publishing: Cham, Switzerland, 2016; p. 361.

    30. [30]

      van Herwaardena S., Procedia Eng. 2010, 5, 464. doi: 10.1016/j.proeng.2010.09.147  doi: 10.1016/j.proeng.2010.09.147

    31. [31]

      Iervolino E., van Herwaarden A. W., van Herwaarden F. G., van de Kerkhof E., van Grinsven P. P. W., Leenaers A. C. H. I., Mathot V. B. F., Sarro P. M., Thermochim. Acta 2011, 522(1), 53. doi: 10.1016/j.tca.2011.01.023  doi: 10.1016/j.tca.2011.01.023

    32. [32]

      Mathot V., Pyda M., Pijpers T., Vanden Poel G., van de Kerkhof E., van Herwaarden S., van Herwaarden F., Leenaers A., Thermochim. Acta 2011, 522(1), 36. doi: 10.1016/j.tca.2011.02.031  doi: 10.1016/j.tca.2011.02.031

    33. [33]

      van Herwaarden S., Iervolino E., van Herwaarden F., Wijffels T., Leenaers A., Mathot V., Thermochim. Acta 2011, 522(1), 46. doi: 10.1016/j.tca.2011.05.025  doi: 10.1016/j.tca.2011.05.025

    34. [34]

      De Santis F., Adamovsky S., Titomanlio G., Schick C., Macromolecules 2006, 39(7), 2562. doi: 10.1021/ma052525n  doi: 10.1021/ma052525n

    35. [35]

      De Santis F., Adamovsky S., Titomanlio G., Schick C., Macromolecules 2007, 40(25), 9026. doi: 10.1021/ma071491b  doi: 10.1021/ma071491b

    36. [36]

      Kalapat D., Tang Q., Zhang X., Hu W., J. Therm. Anal. Calorim. 2017, 128(3), 1859. doi: 10.1007/s10973-017-6095-9  doi: 10.1007/s10973-017-6095-9

    37. [37]

      Zhuravlev E., Schmelzer J. W. P., Wunderlich B., Schick C., Polymer 2011, 52(9), 1983. doi: 10.1016/j.polymer.2011.03.013  doi: 10.1016/j.polymer.2011.03.013

    38. [38]

      Wang J., Li Z., Perez R. A., Mueller A. J., Zhang B., Grayson S. M., Hu W., Polymer 2015, 63, 34. doi: 10.1016/j.polymer.2015.02.039  doi: 10.1016/j.polymer.2015.02.039

    39. [39]

      Androsch R., Schick C., Di Lorenzo M. L., Kinetics of Nucleation and Growth of Crystals of Poly(L-lactic acid). In Advances in Polymer Science, Springer: New York, USA, 2017; Vol. 279, p. 235.

    40. [40]

      Schawe J. E. K., Pogatscher S., Material Characterization by Fast Scanning Calorimetry: Practice and Applications. In Fast Scanning Calorimetry; Schick C., Mathot V., Eds.; Springer International Publishing: Cham, Switzerland, 2016; p. 3.

    41. [41]

      Gaur U., Wunderlich B., Advanced Thermal Analysis System(ATHAS) Polymer Heat Capacity Data Bank. In Computer Applications in Applied Polymer Science, American Chemical Society: New York, USA, 1982; Vol. 197, p. 355.

    42. [42]

      He Y., Luo R., Li Z., Lv R., Zhou D., Lim S., Ren X., Gao H., Hu W., Macromol. Chem. Phys. 2018, 219(3), 1700385. doi: 10.1002/macp.201700385  doi: 10.1002/macp.201700385

    43. [43]

      Androsch R., Schick C., Adv. Polym. Sci. 2015, 276, 257. doi: 10.1007/12_2015_325.  doi: 10.1007/12_2015_325

    44. [44]

      Jiang X., Reiter G., Hu W., J. Phys. Chem. B 2016, 120(3), 566. doi: 10.1021/acs.jpcb.5b09324  doi: 10.1021/acs.jpcb.5b09324

    45. [45]

      Schick C., Androsch R., New Insights into Polymer Crystallization by Fast Scanning Chip Calorimetry. In Fast Scanning Calorimetry, Springer International Publishing: Cham, Switzerland, 2016; pp. 463–535.

    46. [46]

      Androsch R., Schick C., Crystal Nucleation of Polymers at High Supercooling of the Melt. In Advances in Polymer Science, Springer: New York, USA, 2017; Vol. 276, p. 257.

    47. [47]

      Schick C., Androsch R., Schmelzer J. W. P., J. Phys. Condens. Matter 2017, 29(35), 453002. doi: 10.1088/1361-648X/aa7fe0,  doi: 10.1088/1361-648X/aa7fe0

    48. [48]

      Pyda M., Nowak-Pyda E., Heeg J., Huth H., Minakov A. A., Di Lorenzo M. L., Schick C., Wunderlich B., J. Polym. Sci. Part B: Polym. Phys. 2006, 44(9), 1364. doi: 10.1002/polb.20789  doi: 10.1002/polb.20789

    49. [49]

      Schawe J. E. K., J. Therm. Anal. Calorim. 2014, 116(3), 1165. doi: 10.1007/s10973-013-3563-8  doi: 10.1007/s10973-013-3563-8

    50. [50]

      Androsch R., Rhoades A. M., Stolte I., Schick C., Eur. Polym. J. 2015, 66, 180. doi: 10.1016/j.eurpolymj.2015.02.013  doi: 10.1016/j.eurpolymj.2015.02.013

    51. [51]

      Van Drongelen M., Meijer-Vissers T., Cavallo D., Portale G., Poel G. V., Androsch R., Thermochim. Acta 2013, 563, 33. doi: 10.1016/j.tca.2013.04.007  doi: 10.1016/j.tca.2013.04.007

    52. [52]

      Rhoades A. M., Williams J. L., Androsch R., Thermochim. Acta 2015, 603, 103. doi: 10.1016/j.tca.2014.10.020  doi: 10.1016/j.tca.2014.10.020

    53. [53]

      Cavallo D., Gardella L., Alfonso G. C., Mileva D., Androsch R., Polymer 2012, 53(20), 4429. doi: 10.1016/j.polymer.2012.08.001  doi: 10.1016/j.polymer.2012.08.001

    54. [54]

      Mileva D., Androsch R., Cavallo D., Alfonso G. C., Eur. Polym. J. 2012, 48(6), 1082. doi: 10.1016/j.eurpolymj.2012.03.009  doi: 10.1016/j.eurpolymj.2012.03.009

    55. [55]

      Cai J., Luo R., Lv R., He Y., Zhou D., Hu W., Eur. Polym. J. 2017, 96, 79. doi: 10.1016/j.eurpolymj.2017.09.003  doi: 10.1016/j.eurpolymj.2017.09.003

    56. [56]

      Chen Y., Chen X., Zhou D., Shen Q., -D.; Hu W., Polymer 2016, 84, 319. doi: 10.1016/j.polymer.2016.01.003  doi: 10.1016/j.polymer.2016.01.003

    57. [57]

      Gradys A., Sajkiewicz P., Zhuravlev E., Schick C., Polymer 2016, 82, 40. doi: 10.1016/j.polymer.2015.11.020  doi: 10.1016/j.polymer.2015.11.020

    58. [58]

      Chen Y., Shen Q., -D.; Hu W., Polym. Int. 2016, 65(4), 387. doi: 10.1002/pi.5066  doi: 10.1002/pi.5066

    59. [59]

      Wunderlich B., Crystal Nucleation, Growth, Annealing. in Macromolecular Physics. Academic Press: New York, NY, USA, 1976; Vol. 2.

    60. [60]

      Long Y., Shanks R. A., Stachurski Z. H., Prog. Polym. Sci. 1995, 20(4), 651. doi: 10.1016/0079-6700(95)00002-W  doi: 10.1016/0079-6700(95)00002-W

    61. [61]

      Tammann G., Z. Phys. Chem. 1898, 25(3), 441.

    62. [62]

      Zhuravlev E., Schmelzer J. W. P., Abyzov A. S., Fokin V. M., Androsch R., Schick C., Cryst. Growth Des. 2015, 15(2), 786. doi: 10.1021/cg501600s  doi: 10.1021/cg501600s

    63. [63]

      Androsch R., Schick C., Rhoades A. M., Macromolecules 2015, 48(22), 8082. doi: 10.1021/acs.macromol.5b01912  doi: 10.1021/acs.macromol.5b01912

    64. [64]

      Okamoto N., Oguni M., Solid State Commun. 1996, 99(1), 53. doi: 10.1016/0038-1098(96)00139-1  doi: 10.1016/0038-1098(96)00139-1

    65. [65]

      Wurm A., Zhuravlev E., Eckstein K., Jehnichen D., Pospiech D., Androsch R., Wunderlich B., Schick C., Macromolecules 2012, 45(9), 3816. doi: 10.1021/ma300363b  doi: 10.1021/ma300363b

    66. [66]

      Sánchez M. S., Mathot V. B. F., Poel G. V., Ribelles J. L. G., Macromolecules 2007, 40(22), 7989. doi: 10.1021/ma0712706  doi: 10.1021/ma0712706

    67. [67]

      Androsch R., Zhuravlev E., Schmelzer J. W. P., Schick C., Eur. Polym. J. 2018, 102, 195. doi: 10.1016/j.eurpolymj.2018.03.026  doi: 10.1016/j.eurpolymj.2018.03.026

    68. [68]

      Schmelzer J. W. P., Glass: Selected Properties and Crystallization. Walter de Gruyter: Berlin, Germany, 2014; p. 1.

    69. [69]

      Androsch R., Schick C., Schmelzer J. W. P., Eur.Polym. J.2014, 53(1), 100. doi: 10.1016/j.eurpolymj.2014.01.012  doi: 10.1016/j.eurpolymj.2014.01.012

    70. [70]

      Stolte I., Androsch R., Di Lorenzo M. L., Schick C., J. Phys. Chem. B 2013, 117(48), 15196. doi: 10.1021/jp4093404  doi: 10.1021/jp4093404

    71. [71]

      Hoffman J. D., Davis G. T., Lauritzen J. I., The Rate of Crystallization of Linear Polymers with Chain Folding. In Treatise on Solid State Chemistry: Volume 3 Crystalline and Noncrystalline Solids, Hannay N. B., Ed.; Springer US: Boston, MA, USA, 1976; p. 497.

    72. [72]

      Donth E., J. Non. Cryst. Solids 1982, 53(3), 325. doi: 10.1016/0022-3093(82)90089-8  doi: 10.1016/0022-3093(82)90089-8

    73. [73]

      Donth E., The Glass Transition: Relaxation Dynamics in Liquids and Disordered Materials; Springer Science & Business Media: Berlin, Germany, 2013; Vol.48.

    74. [74]

      Chua Y. Z., Zorn R., Holderer O., Schmelzer J. W. P., Schick C., Donth E., J. Chem. Phys. 2017, 146(10), 104501. doi: 10.1063/1.4977737  doi: 10.1063/1.4977737

    75. [75]

      Rhoades A. M., Williams J. L., Wonderling N., Androsch R., Guo J., J. Therm. Anal. Calorim. 2017, 127(1), 939. doi: 10.1007/s10973-016-5793-z  doi: 10.1007/s10973-016-5793-z

    76. [76]

      Rhoades A. M., Wonderling N., Schick C., Androsch R., Polymer 2016, 106, 29. doi: 10.1016/j.polymer.2016.10.050  doi: 10.1016/j.polymer.2016.10.050

    77. [77]

      Baeten D., Cavallo D., Portale G., Androsch R., Mathot V., Goderis B., Combining Fast Scanning Chip Calorimetry with Structural and Morphological Characterization Techniques. In Fast Scanning Calorimetry, Schick C., Mathot V., Eds.; Springer International Publishing: Cham, Switzerland, 2016; p. 327.

    78. [78]

      Mollova A., Androsch R., Mileva D., Schick C., Benhamida A., Macromolecules 2013, 46(3), 828. doi: 10.1021/ma302238r  doi: 10.1021/ma302238r

    79. [79]

      Mileva D., Androsch R., Zhuravlev E., Schick C., Polymer 2012, 53(18), 3994. doi: 10.1016/j.polymer.2012.06.045  doi: 10.1016/j.polymer.2012.06.045

    80. [80]

      Lv R., He Y., Wang J., Wang J., Hu J., Zhang J., Hu W., Polymer 2019, 174, 123. doi:10.1016/j.polymer.2019.04.061  doi: 10.1016/j.polymer.2019.04.061

    81. [81]

      Androsch R., Di Lorenzo M. L., Schick, C. Macromol. Chem. Phys. 2017, 219(3), 1700479. doi: 10.1002/macp.201700479  doi: 10.1002/macp.201700479

    82. [82]

      Schick C., Androsch R., Polym. Cryst. 2018, 1(4), e10036. doi: 10.1002/pcr2.10036  doi: 10.1002/pcr2.10036

    83. [83]

      Janssens V., Block C., Van Assche G., Van Mele B., Van Puyvelde P., J. Therm. Anal. Calorim. 2009, 98(3), 675. doi: 10.1007/s10973-009-0518-1  doi: 10.1007/s10973-009-0518-1

    84. [84]

      Roozemond P. C., van Drongelen M., Verbelen L., Van Puyvelde P., Peters G. W. M., Rheol. Acta 2015, 54(1), 1. doi: 10.1007/s00397-014-0820ol-0  doi: 10.1007/s00397-014-0820-0

    85. [85]

      Rhoades A. M., Gohn A. M., Seo J., Androsch R., Colby R. H., Macromolecules 2018, 51(8), 2785. doi: 10.1021/acs.macromol.8b00195  doi: 10.1021/acs.macromol.8b00195

    86. [86]

      Cebe P., Hu X., Kaplan D. L., Zhuravlev E., Wurm A., Arbeiter D., Schick C., Sci. Rep. 2013, 3, 1130. doi: 10.1038/srep01130  doi: 10.1038/srep01130

    87. [87]

      Gao H., Wang J., Schick C., Toda A., Zhou D., Hu W., Polymer 2014, 55(16), 4307. doi: 10.1016/j.polymer.2014.06.048  doi: 10.1016/j.polymer.2014.06.048

    88. [88]

      Jiang X., Li Z., Wang J., Gao H., Zhou D., Tang Y., Hu W., Thermochim. Acta 2015, 603, 79. doi: 10.1016/j.tca.2014.04.002  doi: 10.1016/j.tca.2014.04.002

    89. [89]

      Jiang X., Li Z., Gao H., Hu W., Combining Fast-Scan Chip Calorimetry with Molecular Simulations to Investigate Polymer Crystal Melting. In Fast Scanning Calorimetry, Schick C., Mathot V., Eds.; Springer International Publishing: Cham, Switzerland, 2016; p. 379.

  • 加载中
    1. [1]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    2. [2]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    3. [3]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    4. [4]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    5. [5]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    6. [6]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    7. [7]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    8. [8]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    9. [9]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    10. [10]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    11. [11]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    12. [12]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    13. [13]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    14. [14]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    15. [15]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    16. [16]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    17. [17]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    18. [18]

      Feng CuiFangman ChenXiaochun XieChenyang GuoKai XiaoZiping WuYinglu ChenJunna LuFeixia RuanChuanxu ChengChao YangDan Shao . Scalable production of mesoporous titanium nanoparticles through sequential flash nanocomplexation. Chinese Chemical Letters, 2024, 35(4): 108681-. doi: 10.1016/j.cclet.2023.108681

    19. [19]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    20. [20]

      Yan Xiao Shuling Li Yifan Li Jianing Fan Linlin Shi . Discovering the Beauty of Life: Adding Some “Ingredients” to Crystals. University Chemistry, 2024, 39(6): 366-372. doi: 10.3866/PKU.DXHX202312025

Metrics
  • PDF Downloads(31)
  • Abstract views(2004)
  • HTML views(671)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return