Citation: Wang Yiqing, Shen Shaohua. Progress and Prospects of Non-Metal Doped Graphitic Carbon Nitride for Improved Photocatalytic Performances[J]. Acta Physico-Chimica Sinica, ;2020, 36(3): 190508. doi: 10.3866/PKU.WHXB201905080 shu

Progress and Prospects of Non-Metal Doped Graphitic Carbon Nitride for Improved Photocatalytic Performances


  • Author Bio:
    Shaohua Shen is currently a full professor at Xi'an Jiaotong University, China. He obtained his Ph.D. degree in thermal engineering in 2010 from Xi'an Jiaotong University. During 2008–2009 and 2011–2012, he worked as a guest researcher at Lawrence Berkeley National Laboratory and a postdoctoral researcher at the University of California at Berkeley. His research interests include photocatalytic and photoelectrochemical solar energy conversion
  • Corresponding author: Shen Shaohua, shshen_xjtu@mail.xjtu.edu.cn
  • Received Date: 28 May 2019
    Revised Date: 15 July 2019
    Accepted Date: 15 July 2019
    Available Online: 19 March 2019

    Fund Project: the National Natural Science Foundation of China 21875183the National Natural Science Foundation of China 51672210The project was supported by the National Natural Science Foundation of China (21875183, 51672210, 51888103)the National Natural Science Foundation of China 51888103

  • Since Fujishima and Honda demonstrated the photoelectrochemical water splitting on TiO2 photoanode and Pt counter electrode, photocatalysis has been considered as one of the most promising technologies for solving both the problems of environmental pollution and energy shortage. This process can effectively use solar energy, the most abundant energy resource on the earth, to drive various catalytic reactions, such as water splitting, CO2 reduction, organic pollutant degradation, and organic synthesis, for energy generation and environmental purification. Except for the various metal-based semiconductors, such as metal oxides, metal sulfides, and metal oxynitrides, developed for photocatalysis, graphitic carbon nitride (g-C3N4) has attracted significant attention in the recent years because of its earth abundancy, non-toxicity, good stability, and relatively narrow band gap (2.7 eV) for visible light response. However, g-C3N4 suffers from insufficient absorption of visible light in the solar spectrum and rapid recombination of photogenerated electrons and holes, thus resulting in low photocatalytic activity. Until now, various strategies have been developed to enhance the photocatalytic activity of g-C3N4, including element doping, nanostructure and heterostructure design, and co-catalyst decoration. Among these methods, element doping has been found to be very effective for adjusting the unique electronic and molecular structures of g-C3N4, which could significantly expand the range of photoresponse under visible light and improve the charge separation. Especially, non-metal doping has been well investigated frequently to improve the photocatalytic activity of g-C3N4. The non-metal dopants commonly used for the doping of g-C3N4 include oxygen (O), phosphorus (P), sulfur (S), boron (B), and halogen (F, Cl, Br, I) and also carbon (C) and nitrogen (N) (for self-doping), as they are easily accessible and can be introduced into the g-C3N4 framework through different physical and chemical synthetic methods. In this review article, the structural and optical properties of g-C3N4 is introduced first, followed by a brief introduction to the modification of g-C3N4 as photocatalysts. Then, the progress in the non-metal doped g-C3N4 with improved photocatalytic activity is reviewed in detail, with the photocatalytic mechanisms presented for easy understanding of the fundamentals of photocatalysis and for guiding in the design of novel g-C3N4 photocatalysts. Finally, the prospects of the modification of g-C3N4 for further advances in photocatalysis is presented.
  • 加载中
    1. [1]

      Fujishima, A.; Honda, K. Nature 1972, 238 (5358), 37. doi: 10.1038/238037a0  doi: 10.1038/238037a0

    2. [2]

      Su, F.; Mathew, S. C.; Lipner, G.; Fu, X.; Antonietti, M.; Blechert, S.; Wang, X. J. Am. Chem. Soc. 2010, 132 (46), 16299. doi: 10.1021/ja102866p  doi: 10.1021/ja102866p

    3. [3]

      Cui, Y.; Wang, X. Phys. Chem. Chem. Phys. 2012, 14 (4), 1455. doi: 10.1039/C1CP22820J  doi: 10.1039/C1CP22820J

    4. [4]

      Kai, D.; Lu, L. U.; Liang, C.; Liu, Q. I.; Zhu, G. Appl. Catal. B 2014, 156–157 (9), 331. doi: 10.1016/j.apcatb.2014.03.039  doi: 10.1016/j.apcatb.2014.03.039

    5. [5]

      Song, G.; Chu. Z. Y.; Jin, W. Q.; Sun, H. Q. Chin. J. Chem. Eng. 2015, 23 (8), 1326. doi: 10.1016/j.cjche.2015.05.003  doi: 10.1016/j.cjche.2015.05.003

    6. [6]

      Yuan, X.; Zhou, C.; Jin, Y.; Jing, Q.; Yang, Y.; Shen, X.; Tang, Q.; Mu, Y.; Du, A. K. J. Colloid Interface Sci. 2016, 468 (15), 211. doi: 10.1016/j.jcis.2016.01.048  doi: 10.1016/j.jcis.2016.01.048

    7. [7]

      Kibria, M. G.; Qiao, R.; Yang, W.; Boukahil, I.; Kong, X.; Chowdhury, F. A.; Trudeau, M. L.; Ji, W.; Guo, H.; Himpsel, F. J.; et al. Adv. Mater. 2016, 28 (38), 8388. doi: 10.1002/adma.201602274  doi: 10.1002/adma.201602274

    8. [8]

      Zhao, H.; Jiang, P.; Cai, W. Chem. Asian J. 2016, 12 (3), 361. doi: 10.1002/asia.201601543  doi: 10.1002/asia.201601543

    9. [9]

      Shen, S.; Lindley, S. A.; Chen, X.; Zhang, J. Z. Energy Environ. Sci. 2016, 9 (9), 2744. doi: 10.1039/C6EE01845A  doi: 10.1039/C6EE01845A

    10. [10]

      Qi, K.; Xie, Y.; Wang, R.; Liu, S.; Zhao, Z. Appl. Surf. Sci. 2019, 466 (1), 847. doi: 10.1016/j.apsusc.2018.10.037  doi: 10.1016/j.apsusc.2018.10.037

    11. [11]

      Xu, J.; Fujitsuka, M.; Kim, S.; Wang, Z.; Majima, T. Appl. Catal. B 2019, 241 (37), 141. doi:10.1021/jacs.7b08416  doi: 10.1021/jacs.7b08416

    12. [12]

      Zhu, S.; Wang, Q.; Qin, X.; Gu, M.; Tao, R.; Lee, B. P.; Zhang, L.; Yao, Y.; Li, T.; Shao, M. Adv. Energy Mater. 2018, 8 (1). doi: 10.1002/aenm.201802238  doi: 10.1002/aenm.201802238

    13. [13]

      Zhao, L.; Ye, F.; Wang, D.; Cai, X.; Meng, C.; Xie, H.; Zhang, J.; Bai, S. ChemSusChem 2018, 11 (19), 3524. doi: 10.1002/cssc.201801294  doi: 10.1002/cssc.201801294

    14. [14]

      Wu, H.; Song, J.; Xie, C.; Hu, Y.; Ma, J.; Qian, Q.; Han, B. Green Chem. 2018, 20, 1765. doi: 10.1039/C8GC02457J  doi: 10.1039/C8GC02457J

    15. [15]

      Hu, S.; Qu, X.; Bai, J.; Li, P.; Li, Q.; Wang, F.; Song, L. ACS Sustainable Chem. Eng. 2017, 5 (8), 6863. doi: 10.1021/acssuschemeng.7b01089  doi: 10.1021/acssuschemeng.7b01089

    16. [16]

      Miranda, C.; Mansilla, H.; Yá ez, J.; Obregón, S.; Colón, G. J. Photochem. Photobiol. A. 2013, 253 (2), 16. doi: 10.1016/j.jphotochem.2012.12.014  doi: 10.1016/j.jphotochem.2012.12.014

    17. [17]

      Chang, F.; Xie, Y.; Li, C.; Chen, J.; Luo, J.; Hu, X.; Shen, J. Appl. Surf. Sci. 2013, 280 (8), 967. doi: 10.1016/j.apsusc.2013.05.127  doi: 10.1016/j.apsusc.2013.05.127

    18. [18]

      Li, X. H.; Wang, X.; Antonietti, M. ACS Catal. 2012, 2 (10), 2082. doi: 10.1021/cs300413x  doi: 10.1021/cs300413x

    19. [19]

      Gul, F. IEEE Electr. Device Lett. 2019, 40 (1), 643. doi: 10.1109/LED.2019.2899889  doi: 10.1109/LED.2019.2899889

    20. [20]

      Chen, G.; Zhong, W.; Li, Y.; Deng, Q.; Ou, X.; Pan, Q.; Wang, X.; Xiong, X.; Yang, C.; Liu, M. ACS Appl. Mater. Interface 2019, 11 (5), 5055. doi: 10.1021/acsami.8b19501  doi: 10.1021/acsami.8b19501

    21. [21]

      Guo, Y.; Chen, L.; Wu, J.; Hua, J.; Yang, L.; Wang, Q.; Zhang, W.; Lee, J. S.; Zhou, B.; Guo, Y. Sci. Total Environ. 2019, 650 (1), 557. doi: 10.1016/j.scitotenv.2018.09.007  doi: 10.1016/j.scitotenv.2018.09.007

    22. [22]

      Guo, P.; Jiang, J.; Shen, S.; Guo, L. Int. J. Hydrog. Energy 2013, 38 (29), 13097. doi: 10.1016/jijhydene.2013.01.184  doi: 10.1016/jijhydene.2013.01.184

    23. [23]

      Li, C.; Ren, F.; Wang, M.; Cai, G.; Chen, Y.; Liu, Y.; Shen, S.; Guo, L. Int. J. Hydrog. Energy 2015, 40 (3), 1394. doi: 10.1016/j.ijhydene.2014.11.114  doi: 10.1016/j.ijhydene.2014.11.114

    24. [24]

      Mohamed, W. S.; Abu-Dief, A. M. J. Phys. Chem. Solids 2018, 116 (1), 375. doi: 10.1016/j.jpcs.2018.02.008  doi: 10.1016/j.jpcs.2018.02.008

    25. [25]

      Guo, Y.; Fu, Y.; Liu, Y.; Shen, S. RSC Adv. 2014, 4 (70), 36967. doi: 10.1039/C4RA05289G  doi: 10.1039/C4RA05289G

    26. [26]

      Lippens, P. E.; Lannoo, M. Phys. Rev. B Condens. 1989, 39 (15), 10935. doi: 10.1103/physrevb.39.10935  doi: 10.1103/physrevb.39.10935

    27. [27]

      Peng, X.; Schlamp, M. C.; And, A. V. K.; Alivisatos, A. P. J. Am. Chem. Soc. 1997, 119 (30), 7019. doi: 10.1021/ja970754m  doi: 10.1021/ja970754m

    28. [28]

      Dabbousi, B. O.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G.; Dabbousi, B. O.; Mikulec, F. V.; Heine, J. R. J. Phys. Chem. B 1997, 101 (46), 9463. doi: 10.1021/jp971091y  doi: 10.1021/jp971091y

    29. [29]

      Chen, Y.; Rosenzweig, Z. Anal. Chem. 2002, 74 (19), 5132. doi: 10.1021/ac0258251  doi: 10.1021/ac0258251

    30. [30]

      Kirchner, C.; Liedl, T.; Kudera, S.; Pellegrino, T.; Muñoz, J. A.; Gaub, H. E.; St lzle, S.; Fertig, N.; Parak, W. J. Nano Lett. 2005, 5 (2), 331. doi: 10.1021/nl047996m  doi: 10.1021/nl047996m

    31. [31]

      Ingrid, R.; Contreras, M. A.; Brian, E.; Clay, D.; John, S.; Perkins, C. L.; Bobby, T. O.; Rommel, N. Prog. Photovolt. Res. Appl. 2008, 16 (3), 235. doi: 10.1002/pip.822  doi: 10.1002/pip.822

    32. [32]

      Duda, A. Prog. Photovolt. Res. Appl. 2010, 11 (4), 225. doi: 10.1002/pip.494  doi: 10.1002/pip.494

    33. [33]

      Niu, F.; Shen, S.; Zhang, N.; Chen, J.; Guo, L. Appl. Catal. B 2016, 199 (15), 134. doi: 10.1016/j.apcatb.2016.06.029  doi: 10.1016/j.apcatb.2016.06.029

    34. [34]

      Wolff, C. M.; Frischmann, P. D.; Schulze, M.; Bohn, B. J.; Wein, R.; Livadas, P.; Carlson, M. T.; Jäckel, F.; Feldmann, J.; Würthner, F.; et al. Nat. Energy 2018, 3 (1), 862. doi: 10.1038/s41560-018-0229-6  doi: 10.1038/s41560-018-0229-6

    35. [35]

      Fang, X.; Zhai, T.; Gautam, U. K.; Liang, L.; Wu, L.; Bando, Y.; Golberg, D. Prog. Mater. Sci. 2011, 56 (2), 175. doi: 10.1016/j.pmatsci.2010.10.001  doi: 10.1016/j.pmatsci.2010.10.001

    36. [36]

      Higashi, M.; Domen, K.; Abe, R. Energy Environ. Sci. 2011, 4 (10), 4138. doi: 10.1039/C1EE01878G  doi: 10.1039/C1EE01878G

    37. [37]

      Li, Y.; Takata, T.; Cha, D.; Takanabe, K.; Minegishi, T.; Kubota, J.; Domen, K. Adv. Mater. 2013, 25 (1), 125. doi: 10.1002/adma.201202582  doi: 10.1002/adma.201202582

    38. [38]

      Hara, M.; Takata, T.; Kondo, J. N.; Domen, K. Catal. Today 2004, 89 (3), 313. doi: 10.1016/j.cattod.2004.04.040  doi: 10.1016/j.cattod.2004.04.040

    39. [39]

      Higashi, M.; Domen, K.; Abe, R. J. Am. Chem. Soc. 2012, 134 (16), 6968. doi: 10.1021/ja302059g  doi: 10.1021/ja302059g

    40. [40]

      Kim, E.S.; Nishimura, N.; Magesh, G.; Kim, J. Y.; Jang, J. W.; Jun, H.; Kubota, J.; Domen, K.; Lee, J. S. J. Am. Chem. Soc. 2013, 135 (14), 5375. doi: 10.1021/ja308723w  doi: 10.1021/ja308723w

    41. [41]

      Wang, X., Maeda, K., Thomas, A. Nat. Mater. 2009, 8 (1), 76. doi: 10.1038/nmat2317  doi: 10.1038/nmat2317

    42. [42]

      Li, Y. R.; Kong, T. T.; Shen, S. H. Small 2019, 1900772. doi: 10.1002/smll.201900772  doi: 10.1002/smll.201900772

    43. [43]

      Wang, B.; Cai, H.R.; Shen, S. H. Small Methods 2019, 1800447. doi: 10.1002/smtd.201800447  doi: 10.1002/smtd.201800447

    44. [44]

      Lowther, J. E. Phys. Rev. B 1999, 59 (18), 11683. doi: 10.1103/PhysRevB.59.11683  doi: 10.1103/PhysRevB.59.11683

    45. [45]

      Alves, I.; Demazeau, G.; Tanguy, B.; Weill, F. Solid State Commun. 1999, 109 (11), 697. doi: 10.1016/S0038-1098(98)00631-0  doi: 10.1016/S0038-1098(98)00631-0

    46. [46]

      Xu, Y.; Gao, S. Int. J. Hydrog. Energy 2012, 37 (15), 11072. doi: 10.1016/j.ijhydene.2012.04.138  doi: 10.1016/j.ijhydene.2012.04.138

    47. [47]

      Guo, Q.; Xie, Y.; Wang, X.; Lv, S.; Hou, T.; Liu, X. Chem. Phys. Lett. 2003, 380 (1), 84. doi: 10.1016/j.cplett.2003.09.009  doi: 10.1016/j.cplett.2003.09.009

    48. [48]

      Montigaud, H.; Tanguy, B.; Demazeau, G.; Alves, I.; Courjault, S. J. Mater. Sci. 2000, 35 (10), 2547. doi: 10.1023/a:1004798509417  doi: 10.1023/a:1004798509417

    49. [49]

      Li, Y.; Zhang, J.; Wang, Q.; Jin, Y.; Huang, D.; Cui, Q.; Zou, G. J. Phys. Chem. B 2010, 114 (29), 9429. doi:10.1021/jp103729c  doi: 10.1021/jp103729c

    50. [50]

      Niu, C.; Lu, Y. Z.; Lieber, C. M. Science 1993, 261 (5119), 334. doi: 10.1126/science.261.5119.334  doi: 10.1126/science.261.5119.334

    51. [51]

      Bian, J.; Qian, L.; Chao, H.; Li, J.; Yao, G.; Zaw, M.; Zhang, R. Q. Nano Energy 2015, 15 (1), 353. doi: 10.1016/j.nanoen.2015.04.012  doi: 10.1016/j.nanoen.2015.04.012

    52. [52]

      Bian, J.; Li, J.; Kalytchuk, S.; Wang, Y.; Li, Q.; Lau, T. C.; Niehaus, T. A.; Rogach, A. L.; Zhang, R. Q. ChemPhysChem 2015, 16 (5), 954. doi: 10.1002/cphc.201402898  doi: 10.1002/cphc.201402898

    53. [53]

      Dong, F.; Wang, Z.; Sun, Y.; Ho, W. K.; Zhang, H. J. Colloid Interface Sci. 2013, 401 (8), 70. doi: 10.1016/j.jcis.2013.03.034  doi: 10.1016/j.jcis.2013.03.034

    54. [54]

      Groenewolt, M.; Antonietti, M. Adv. Mater. 2005, 17 (14), 1789. doi: 10.1002/adma.200401756  doi: 10.1002/adma.200401756

    55. [55]

      Holst, J. R.; Gillan, E. G. J. Am. Chem Soc. 2008, 130 (23), 7373. doi: 10.1021/ja709992s  doi: 10.1021/ja709992s

    56. [56]

      Li, X.; Jian, Z.; Shen, L.; Ma, Y.; Lei, W.; Cui, Q.; Zou, G. Appl. Phys. A 2009, 94 (2), 387. doi: 10.1007/s00339-008-4816-4  doi: 10.1007/s00339-008-4816-4

    57. [57]

      Fan, D.; Wu, L.; Sun, Y.; Min, F.; Wu, Z.; Lee, S. C. J. Mater. Chem. 2011, 21 (39), 15171. doi: 10.1039/c1jm12844b  doi: 10.1039/c1jm12844b

    58. [58]

      Chao, L.; Cao, C.; Zhu, H. Chin. Sci. Bull. 2003, 48 (16), 1737. doi: 10.1360/03wb0011  doi: 10.1360/03wb0011

    59. [59]

      Yan, S. C.; Li, Z. S.; Zou, Z. G. Langmuir 2009, 25 (17), 10397. doi: 10.1021/la900923z  doi: 10.1021/la900923z

    60. [60]

      Zhong, Y.; Wang, Z.; Feng, J.; Yan, S.; Zhang, H.; Zhao, L. I.; Zou, Z. Appl. Surf. Sci. 2014, 295 (10), 253. doi: 10.1016/j.apsusc.2014.01.008  doi: 10.1016/j.apsusc.2014.01.008

    61. [61]

      Komatsu, T. J. Mater Chem. 2001, 11 (3), 802. doi: 10.1039/B007165J  doi: 10.1039/B007165J

    62. [62]

      Kroke, E.; Schwarz, M.; Horath-Bordon, E.; Kroll, P.; Noll, B.; Norman, A. D. New J. Chem. 2002, 26 (5), 508. doi: 10.1039/b111062b  doi: 10.1039/b111062b

    63. [63]

      Gu, Y.; Chen, L.; Liang, S.; Ma, J.; Yang, Z.; Qian, Y. Carbon 2003, 41 (13), 2674. doi: 10.1016/S0008-6223(03)00357-9  doi: 10.1016/S0008-6223(03)00357-9

    64. [64]

      Bai, X.; Jie, L.; Cao, C. Appl. Surf. Sci. 2010, 256 (8), 2327. doi: 10.1016/j.apsusc.2009.10.061  doi: 10.1016/j.apsusc.2009.10.061

    65. [65]

      Liu, J.; Zhang, T.; Wang, Z.; Dawson, G.; Wei, C. J. Mater Chem. 2011, 21 (38), 14398. doi: 10.1039/C1JM12620B  doi: 10.1039/C1JM12620B

    66. [66]

      Sekine, T.; Kanda, H.; Bando, Y.; Yokoyama, M.; Hojou, K. J. Mater. Sci. Lett. 1990, 9 (12), 1376. doi: 10.1007/bf00721588  doi: 10.1007/bf00721588

    67. [67]

      Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Mueller, J. O.; Schloegl, R.; Carlsson, J. M. J. Mater. Chem. 2008, 18 (41), 4893. doi: 10.1039/b800274f  doi: 10.1039/b800274f

    68. [68]

      Goettmann, F.; Fischer, A.; Antonietti, M.; Thomas, A. Angew. Chem. Int. Ed. 2010, 45 (27), 4467. doi: 10.1002/anie.200600412  doi: 10.1002/anie.200600412

    69. [69]

      Zhou, Y.; Zhang, L.; Liu, J.; Fan, X.; Wang, B.; Wang, M.; Ren, W.; Wang, J.; Li, M.; Shi, J. J. Mater Chem. A 2015, 3 (7), 3862. doi: 10.1039/C4TA05292G  doi: 10.1039/C4TA05292G

    70. [70]

      Sheng, C.; Ying, W.; Yong, G.; Feng, J.; Wang, C.; Luo, W.; Fan, X.; Zou, Z. ACS Catal. 2013, 3 (5), 912. doi:10.1021/cs4000624  doi: 10.1021/cs4000624

    71. [71]

      Zesheng, L. I.; Yang, S.; Zhou, J.; Dehao, L. I.; Zhou, X.; Chunyu, G. E.; Fang, Y. Chem. Eng. J. 2014, 241 (4), 344. doi: 10.1016/j.cej.2013.10.076  doi: 10.1016/j.cej.2013.10.076

    72. [72]

      Wang, Y. N.; Zhang, Y.; Zhang, W. S.; Xu, Z. R. Sens. Actuat. B. 2018, 260 (1), 400. doi: 10.1016/j.snb.2017.12.173  doi: 10.1016/j.snb.2017.12.173

    73. [73]

      Kim, D. J.; Jo, W. K. Chemosphere 2018, 202 (1), 184. doi: 10.1016/j.chemosphere.2018.03.089  doi: 10.1016/j.chemosphere.2018.03.089

    74. [74]

      Jing, L. Xu, Y.; Chen, Z.; He, M.; Meng, X.; Jie, L.; Hui, X.; Huang, S.; Li, H. ACS Sustainable Chem. Eng. 2018, 6 (4), 5132. doi: 10.1021/acssuschemeng.7b04792  doi: 10.1021/acssuschemeng.7b04792

    75. [75]

      Qiao, Q.; Huang, W. Q.; Li, Y. Y.; Bo, L.; Hu, W.; Wei, P.; Fan, X.; Huang, G. F. J. Mater. Sci. 2018, 53 (23), 1. doi: 10.1007/s10853-018-2762-x  doi: 10.1007/s10853-018-2762-x

    76. [76]

      Zhang, X.; Veder, J. P.; He, S.; Jiang, S. P. Chem. Commun. 2019, 55 (9), 1233. doi: 10.1039/C8CC09633C  doi: 10.1039/C8CC09633C

    77. [77]

      Talukdar, M.; Behera, S. K.; Bhattacharya, K. Appl. Surf. Sci. 2019, 473 (15), 275. doi: 10.13140/RG.2.2.13639.60323  doi: 10.13140/RG.2.2.13639.60323

    78. [78]

      Asadzadeh-Khaneghah, S.; Habibi-Yangjeh, A.; Yubuta, K. J. Am. Ceram. Soc. 2019, 102 (3), 1435. doi: 10.1111/jace.15959  doi: 10.1111/jace.15959

    79. [79]

      Rather, R. A.; Khan, M.; Lo, I. M. C. J. Catal. 2018, 341 (1), 248. doi: 10.1016/j.cej.2018.02.042  doi: 10.1016/j.cej.2018.02.042

    80. [80]

      Feng, C.; Deng, Y.; Tang, L.; Zeng, G.; Wang, J.; Yu, J.; Liu, Y.; Peng, B.; Feng, H.; Wang, J. Appl. Catal. B. 2018, 239 (1), 525. doi: 10.1016/j.apcatb.2018.08.049  doi: 10.1016/j.apcatb.2018.08.049

    81. [81]

      Wang, P.; Zong, L.; Guan, Z.; Li, Q.; Yang, J. Nanoscale Res. Lett. 2018, 13 (1), 33. doi: 10.1186/s11671-018-2448-y  doi: 10.1186/s11671-018-2448-y

    82. [82]

      He, K.; Xie, J.; Li, M.; Xin, L. Appl. Surf. Sci. 2018, 430 (1), 208. doi: 10.1016/j.apsusc.2017.08.191  doi: 10.1016/j.apsusc.2017.08.191

    83. [83]

      Fu, J.; Bie, C.; Bei, C.; Jiang, C.; Yu, J. ACS Sustainable Chem. Eng. 2018, 6 (2), 2767. doi: 10.1021/acssuschemeng.7b04461  doi: 10.1021/acssuschemeng.7b04461

    84. [84]

      Zhao, N.; Kong, L.; Dong, Y.; Wang, G. L.; Wu, X.; Jiang, P. ACS Appl. Mater. Inter. 2018, 10 (11), 9522. doi: 10.1021/acsami.8b01590  doi: 10.1021/acsami.8b01590

    85. [85]

      Zhao, D.; Chen, J.; Dong, C.; Zhou, W.; Huang, Y.; Mao, S. S.; Guo, L.; Shen, S. J. Catal. 2017, 352 (1), 491. doi: 10.1016/j.jcat.2017.06.020  doi: 10.1016/j.jcat.2017.06.020

    86. [86]

      Chen, J.; Shen, S.; Guo, P.; Meng, W.; Wu, P.; Wang, X.; Guo, L. Appl. Catal., B. 2014, 152–153 (12), 335. doi: 10.1016/j.apcatb.2014.01.047  doi: 10.1016/j.apcatb.2014.01.047

    87. [87]

      Chen, J.; Shen, S.; Wu, P.; Guo, L. Green Chem. 2015, 17 (1), 509. doi: 10.1039/c4gc01683a  doi: 10.1039/c4gc01683a

    88. [88]

      Chen, J.; Dong, C.; Zhao, D.; Huang, Y.; Wang, X.; Samad, L.; Dang, L.; Shearer, M.; Shen, S.; Guo, L. Adv. Mater. 2017, 29 (21), 1606198. doi: 10.1002/adma.201606198  doi: 10.1002/adma.201606198

    89. [89]

      Chen, J.; Zhao, D.; Diao, Z.; Wang, M.; Shen, S. Sci Bull. 2016, 61 (4), 292. doi: 10.1007/s11434-016-0995-0  doi: 10.1007/s11434-016-0995-0

    90. [90]

      Chen, J.; Zhao, D.; Diao, Z.; Wang, M.; Guo, L.; Shen, S. ACS Appl. Mater. Interface 2015, 7 (33), 18843. doi: 10.1021/acsami.5b05714  doi: 10.1021/acsami.5b05714

    91. [91]

      Chen, X.; Zhang, J.; Fu, X.; Antonietti, M.; Wang, X. J. Am. Ceramic Soc. 2009, 131 (33), 11658. doi: 10.1021/ja903923s  doi: 10.1021/ja903923s

    92. [92]

      Ye, X.; Cui, Y.; Qiu, X.; Wang, X. Appl. Catal. B 2014, 152–153 (1), 383. doi: 10.1016/j.apcatb.2014.01.050  doi: 10.1016/j.apcatb.2014.01.050

    93. [93]

      Wang, Y.; Wang, Y.; Li, Y.; Shi, H.; Xu, Y.; Qin, H.; Li, X.; Zuo, Y.; Kang, S.; Cui, L. Catal. Commun. 2015, 72 (1), 24. doi: 10.1016/j.catcom.2015.08.022  doi: 10.1016/j.catcom.2015.08.022

    94. [94]

      Le, S.; Jiang, T.; Zhao, Q.; Liu, X.; Li, Y.; Fang, B.; Gong, M. RSC Adv. 2016, 6 (45), 38811. doi: 10.1039/C6RA03982K  doi: 10.1039/C6RA03982K

    95. [95]

      Li, Z.; Kong, C.; Lu, G. J. Phys. Chem. C 2016, 120 (1), 56. doi: 10.1021/acs.jpcc.5b09469  doi: 10.1021/acs.jpcc.5b09469

    96. [96]

      Wang, Y.; Xu, Y.; Wang, Y.; Qin, H.; Li, X.; Zuo, Y.; Karig, S.; Cui, L. Catal. Commun. 2016, 74 (1), 75. doi: 10.1016/j.catcom.2015.10.029  doi: 10.1016/j.catcom.2015.10.029

    97. [97]

      Wang, Y.; Zeng, Y.; Li, B.; Li, A.; Yang, P.; Yang, L.; Wang, G.; Chen, J.; Wang, R. J. Energy Chem. 2016, 25 (4), 594. doi: 10.1016/j.jechem.2016.03.018  doi: 10.1016/j.jechem.2016.03.018

    98. [98]

      Fu, J.; Zhu, B.; Jiang, C.; Cheng, B.; You, W.; Yu, J. Small 2017, 13 (15), 1603938. doi: 10.1002/smll.201603938  doi: 10.1002/smll.201603938

    99. [99]

      Sun, S.; Li, J.; Cui, J.; Gou, X.; Yang, Q.; Liang, S.; Yang, Z.; Zhang, J. Inorg. Chem. Front. 2018, 5 (7), 1721. doi: 10.1039/c8qi00242h  doi: 10.1039/c8qi00242h

    100. [100]

      Tian, W.; Li, N.; Zhou, J. Appl. Surf. Sci. 2016, 361 (1), 251. doi: 10.1016/j.apsusc.2015.11.157  doi: 10.1016/j.apsusc.2015.11.157

    101. [101]

      Feng, J.; Zhang, D.; Zhou, H.; Pi, M.; Wang, X.; Chen, S. ACS Sustainable Chem. Eng. 2018, 6 (5), 6342. doi: 10.1021/acssuschemeng.8b00140  doi: 10.1021/acssuschemeng.8b00140

    102. [102]

      Bellardita, M.; García-López, E. I.; Marcì, G.; Krivtsov, I.; García, J. R.; Palmisano, L. Appl. Catal. B. 2018, 220 (1), 222. doi: 10.1016/j.apcatb.2017.08.033  doi: 10.1016/j.apcatb.2017.08.033

    103. [103]

      Raziq, F.; Humayun, M.; Ali, A.; Wang, T.; Khan, A.; Fu, Q.; Luo, W.; Zeng, H.; Zheng, Z.; Khan, B.; et al. Appl. Catal. B 2018, 237 (1), 1082. doi: 10.1016/j.apcatb.2018.06.009  doi: 10.1016/j.apcatb.2018.06.009

    104. [104]

      Bai, J.; Lv, W.; Ni, Z.; Wang, Z.; Chen, G.; Xu, H.; Qin, H.; Zheng, Z.; Li, X. J. Alloy. Compd. 2018, 768 (1), 766. doi: 10.1016/j.jallcom.2018.07.286  doi: 10.1016/j.jallcom.2018.07.286

    105. [105]

      Jourshabani, M.; Shariatinia, Z.; Badiei, A. J. Mater. Sci. Technol. 2018, 34 (9), 1511. doi: 10.1016/j.jmst.2017.12.020  doi: 10.1016/j.jmst.2017.12.020

    106. [106]

      Li, X.; Xing, J.; Zhang, C.; Han, B.; Zhang, Y.; Wen, T.; Leng, R.; Jiang, Z.; Ai, Y.; Wang, X. ACS Sustainable Chem. Eng. 2018, 6 (8), 10606. doi: 10.1021/acssuschemeng.8b01934`  doi: 10.1021/acssuschemeng.8b01934`

    107. [107]

      Wang, Y.; Tian, Y.; Lang, Z.; Guan, W.; Yan, L. J. Mater Chem. A 2018, 6 (1), 21056. doi: 10.1039/C8TA07352J  doi: 10.1039/C8TA07352J

    108. [108]

      Yu, H.; Jiang, X.; Shao, Z.; Feng, J.; Yang, X.; Liu, Y. Nanoscale Res. Lett. 2018, 13 (1), 57. doi: 10.1186/s11671-018-2473-x  doi: 10.1186/s11671-018-2473-x

    109. [109]

      Luo, Y.; Wang, J.; Yu, S.; Cao, Y.; Ma, K.; Pu, Y.; Zou, W.; Tang, C.; Gao, F.; Dong, L. J. Mater Res. 2018, 33 (9), 1268. doi: 10.1557/jmr.2017.472  doi: 10.1557/jmr.2017.472

    110. [110]

      Kong, W.; Zhang, X.; Chang, B.; Zhou, Y.; Zhang, S.; He, G.; Yang, B.; Li, J. Electrochim. Acta 2018, 282 (1), 767. doi: 10.1016/j.electacta.2018.06.090  doi: 10.1016/j.electacta.2018.06.090

    111. [111]

      Cazelles, R.; Liu, J.; Antonietti, M. ChemElectroChem 2015, 2 (3), 333. doi: 10.1002/celc.201402421  doi: 10.1002/celc.201402421

    112. [112]

      Ding, K.; Wen, L.; Huang, M.; Zhang, Y.; Lu, Y.; Chen, Z. Phys. Chem. Chem. Phys. 2016, 18 (28), 19217. doi: 10.1039/c6cp02169g  doi: 10.1039/c6cp02169g

    113. [113]

      Zhu, B.; Zhang, J.; Jiang, C.; Bei, C.; Yu, J. Appl. Catal. B. 2017, 207 (1), 27. doi: 10.1016/j.apcatb.2017.02.020  doi: 10.1016/j.apcatb.2017.02.020

    114. [114]

      Dong, G.; Zhao, K.; Zhang, L. Chem. Commun. 2012, 48 (49), 6178. doi: 10.1039/c2cc32181e  doi: 10.1039/c2cc32181e

    115. [115]

      Ruan, L. W.; Qiu, L. G.; Zhu, Y. J.; Lu, Y. X. Acta Phys. -Chim. Sin. 2014, 30 (1), 43. doi: 10.3866/PKU.WHXB201311082  doi: 10.3866/PKU.WHXB201311082

    116. [116]

      Hong, X.; Kang, X.; Liu, G.; Cheng, H. Imaging Sci. Photo. Chem. 2015, 5 (1), 434. doi: 10.7517/j.issn.1674-0475.2015.05.434  doi: 10.7517/j.issn.1674-0475.2015.05.434

    117. [117]

      Su, F. Y.; Xu, C. Q.; Yu, Y. X. ChemCatChem 2016, 8 (22), 3527. doi: 10.1002/cctc.201600928  doi: 10.1002/cctc.201600928

    118. [118]

      Li, D.; Zhu, M. RSC. Adv. 2016, 6 (31), 25670. doi: 10.1039/C5RA27895C  doi: 10.1039/C5RA27895C

    119. [119]

      Shi, R.; Li, Z.; Yu, H.; Shang, L.; Zhou, C.; Waterhouse, G. I. N.; Wu, L. Z.; Zhang, T. ChemSusChem 2017, 10 (22), 4650. doi: 10.1002/cssc.201700943  doi: 10.1002/cssc.201700943

    120. [120]

      Zhang, L.; Chen, X.; Guan, J.; Jiang, Y.; Hou, T.; Mu, X. Mater. Res. Bull. 2013, 48 (9), 3485. doi: 10.1016/j.materresbull.2013.05.040  doi: 10.1016/j.materresbull.2013.05.040

    121. [121]

      Hu, S.; Ma, L.; You, J.; Li, F.; Fan, Z.; Wang, F.; Liu, D.; Gui, J. RSC Adv. 2014, 4 (41), 21657. doi: 10.1039/c4ra02284j  doi: 10.1039/c4ra02284j

    122. [122]

      Zhu, Y.; Ren, T.; Yuan, Z. ACS Appl. Mater. Appl. Interfaces 2015, 7 (30), 16850. doi: 10.1021/acsami.5b04947  doi: 10.1021/acsami.5b04947

    123. [123]

      Han, Q.; Hu, C.; Zhao, F.; Zhang, Z.; Chen, N.; Qu, L. J. Mater. Chem. A 2015, 3 (8), 4612. doi: 10.1039/C4TA06093H  doi: 10.1039/C4TA06093H

    124. [124]

      Zhang, P.; Li, X.; Shao, C.; Liu, Y. J. Mater. Chem. A 2015, 3 (7), 3281. doi: 10.1039/C5TA00202H  doi: 10.1039/C5TA00202H

    125. [125]

      Guo, S.; Deng, Z.; Li, M.; Jiang, B.; Tian, C.; Pan, Q.; Fu, H. Angew. Chem. Int. Ed. 2016, 55 (5), 1830. doi:10.1002/ange.201508505  doi: 10.1002/ange.201508505

    126. [126]

      Guo, S.; Zhu, Y.; Yan, Y.; Min, Y.; Fan, J.; Xu, Q. Appl. Catal. B 2016, 185 (1), 315. doi: 10.1016/j.apcatb.2015.11.030  doi: 10.1016/j.apcatb.2015.11.030

    127. [127]

      She, X.; Liu, L.; Ji, H.; Mo, Z.; Li, Y.; Huang, L.; Du, D.; Xu, H.; Li, H. Appl. Catal. B. 2016, 187 (1), 144. doi: 10.1016/j.apcatb.2015.12.046  doi: 10.1016/j.apcatb.2015.12.046

    128. [128]

      Li, J.; Shen, B.; Hong, Z.; Lin, B.; Gao, B.; Chen, Y. Chem Commun. 2012, 48 (98), 12017. doi:10.1039/c2cc35862j  doi: 10.1039/c2cc35862j

    129. [129]

      Liu, G.; Niu, P.; Sun, C.; Smith, S. C.; Chen, Z.; Lu, G. Q.; Cheng, H. M. J. Am. Chem. Soc. 2010, 132 (33), 11642. doi:10.1021/ja103798k  doi: 10.1021/ja103798k

    130. [130]

      Feng, L. L.; Zou, Y.; Li, C.; Shuang, G.; Zhou, L. J.; Sun, Q.; Fan, M.; Wang, H.; Wang, D.; Li, G. D. Int. J. Hydrog. Energy 2014, 39 (28), 15373. doi: 10.1016/ j.ijhydene.2014.07.160  doi: 10.1016/j.ijhydene.2014.07.160

    131. [131]

      Lin, S.; Ye, X.; Gao, X.; Jing, H. J. Mole. Catal. A-Chem. 2015, 406 (1), 137. doi: 10.1016/j.molcata.2015.05.018  doi: 10.1016/j.molcata.2015.05.018

    132. [132]

      Huang, Z. F.; Song, J.; Lun, P.; Wang, Z.; Zhang, X.; Zou, J. J.; Mi, W.; Zhang, X.; Li, W. Nano Energy 2015, 12 (1), 646. doi: 10.1016/j.nanoen.2015.01.043  doi: 10.1016/j.nanoen.2015.01.043

    133. [133]

      Fan, Q.; Liu, J.; Yu, Y.; Zuo, S.; Li, B. Appl. Surf. Sci. 2017, 391 (1), 360. doi: 10.1016/j.apsusc.2016.04.055  doi: 10.1016/j.apsusc.2016.04.055

    134. [134]

      Wang, K.; Li, Q.; Liu, B.; Cheng, B.; Ho, W.; Yu, J. Appl. Catal. B 2015, 176–177 (1), 44. doi: 10.1016/j.apcatb.2015.03.045  doi: 10.1016/j.apcatb.2015.03.045

    135. [135]

      Wang, Y.; Tian, Y.; Yan, L.; Su, Z. J. Phys. Chem. C 2018, 122 (14), 7712. doi:10.1039/C8TA07352J  doi: 10.1039/C8TA07352J

    136. [136]

      Rong, X.; Qiu, F.; Rong, J.; Zhu, X.; Yan, J.; Yang, D. Mater. Lett. 2016, 164 (1), 127. doi: 10.1016/j.matlet.2015.10.131  doi: 10.1016/j.matlet.2015.10.131

    137. [137]

      Zhang, Y.; Mori, T.; Ye, J.; Antonietti, M. J. Am. Chem. Soc. 2010, 132 (18), 6294. doi: 10.1021/ja101749y  doi: 10.1021/ja101749y

    138. [138]

      Wang, Y.; Di, Y.; Antonietti, M.; Li, H.; Chen, X.; Wang, X. Chem. Mater. 2010, 22 (18), 5119. doi: 10.1021/cm1019102  doi: 10.1021/cm1019102

    139. [139]

      Zhang, G.; Zhang, M.; Ye, X.; Qiu, X.; Lin, S.; Wang, X. Adv. Mater. 2014, 26 (5), 805. doi: 10.1002/adma.201303611  doi: 10.1002/adma.201303611

    140. [140]

      Lan, Z.; Zhang, G.; Wang, X. Appl. Catal. B 2016, 192 (1), 116. doi: 10.1016/j.apcatb.2016.03.062  doi: 10.1016/j.apcatb.2016.03.062

    141. [141]

      Yan, S. C.; Li, Z. S.; Zou, Z. G. Langmuir 2010, 26 (6), 3894. doi: 10.1021/la904023j  doi: 10.1021/la904023j

    142. [142]

      Sagara, N.; Kamimura, S.; Tsubota, T.; Ohno, T. Appl. Catal. B 2016, 192 (1), 193. doi: 10.1016/j.apcatb.2016.03.055  doi: 10.1016/j.apcatb.2016.03.055

    143. [143]

      Raziq, F.; Yang, Q.; Zhang, X.; Humayun, M.; Jing, L. J. Phys. Chem. C 2016, 48 (2), 31. doi: 10.1021/acs.jpcc.5b10313  doi: 10.1021/acs.jpcc.5b10313

    144. [144]

      Zhu, Z.; Pan, H.; Murugananthan, M.; Gong, J.; Zhang, Y. Appl. Catal. B 2018, 232 (15), 19. doi: 10.1016/j.apcatb.2018.03.035  doi: 10.1016/j.apcatb.2018.03.035

    145. [145]

      Fang, J.; Fan, H.; Li, M.; Long, C. J. Mater. Chem. A 2015, 3 (26), 13819. doi: 10.1039/C5TA02257F  doi: 10.1039/C5TA02257F

    146. [146]

      Yu, H.; Shang, L.; Bian, T.; Shi, R.; Waterhouse, G. I.; Zhao, Y.; Adv. Mater. 2016, 28 (25), 5140. doi: 10.1002/adma.201670178  doi: 10.1002/adma.201670178

    147. [147]

      Zhao, Z.; Sun, Y.; Dong, F.; Zhang, Y.; Zhao, H. RSC. Adv. 2015, 5 (49), 39549. doi: 10.1021/acsnano.5b05924  doi: 10.1021/acsnano.5b05924

    148. [148]

      Bao, N., Hu, X., Zhang, Q., Miao, X., Jie, X. Zhou, S. Appl. Surf. Sci. 2017, 403 (1), 682. doi: 10.1016/j.apsusc.2017.01.256  doi: 10.1016/j.apsusc.2017.01.256

    149. [149]

      Jiang, L.; Yuan, X.; Pan, Y.; Liang, J.; Zeng, G.; Wu, Z.; Wang, H. Appl. Catal. B 2017, 217 (1), 388. doi: 10.1016/j.apcatb.2017.06.003  doi: 10.1016/j.apcatb.2017.06.003

    150. [150]

      Yang, D.; Tao, J.; Wu, T.; Peng, Z.; Han, H.; Han, B. Catal. Sci. Technol. 2015, 6 (1), 193. doi: 10.1039/C5CY01177A  doi: 10.1039/C5CY01177A

    151. [151]

      Hu, S.; Ma, L.; Xie, Y.; Li, F.; Fan, Z.; Wang, F.; Wang, Q.; Wang, Y.; Kang, X.; Wu, G. Dalton Trans. 2015, 44 (48), 20889. doi: 10.1039/C5DT04035C  doi: 10.1039/C5DT04035C

    152. [152]

      Chang, Q.; Yang, S.; Li, L.; Xue, C.; Li, Y.; Wang, Y.; Hu, S.; Yang, J.; Zhang, F. Dalton Trans. 2018, 47 (18), 6435. doi: 10.1039/C8DT00735G  doi: 10.1039/C8DT00735G

    153. [153]

      Han, Z.; Zhao, Z.; Hou, Y.; Tang, Y.; Dong, Y.; Shuang, W.; Hu, X.; Zhang, Z.; Wang, X.; Qiu, J. J. Mater. Chem. A 2018, 6 (16), 10. doi: 10.1039/C8TA00529J  doi: 10.1039/C8TA00529J

    154. [154]

      Jiang, B.; Huang, Y.; Yan, Q.; Yan, H.; Tang, Y.; Chen, S.; Yu, Z.; Tian, C. ChemCatcChem 2017, 9 (21), 4083. doi: 10.1002/cctc.201700786  doi: 10.1002/cctc.201700786

    155. [155]

      Hu, C.; Hung, W.; Wang, M.; Lu, P. Carbon 2018, 127 (1), 374. doi: 10.1016/j.carbon.2017.11.019  doi: 10.1016/j.carbon.2017.11.019

    156. [156]

      Cui, Y.; Wang, H.; Yang, C.; Li, M.; Zhao, Y.; Chen, F. Appl. Surf. Sci. 2018, 441 (1), 621. doi: 10.1016/j.apsusc.2018.02.073  doi: 10.1016/j.apsusc.2018.02.073

  • 加载中
    1. [1]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    2. [2]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    3. [3]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    4. [4]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    5. [5]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    6. [6]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    7. [7]

      Fabrice Nelly HabarugiraDucheng YaoWei MiaoChengcheng ChuZhong ChenShun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886

    8. [8]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    9. [9]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    10. [10]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    11. [11]

      Wengao ZengYuchen DongXiaoyuan YeZiying ZhangTuo ZhangXiangjiu GuanLiejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252

    12. [12]

      Lihua MaSong GuoZhi-Ming ZhangJin-Zhong WangTong-Bu LuXian-Shun Zeng . Sensitizing photoactive metal–organic frameworks via chromophore for significantly boosting photosynthesis. Chinese Chemical Letters, 2024, 35(5): 108661-. doi: 10.1016/j.cclet.2023.108661

    13. [13]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

    14. [14]

      Xiao-Ya YuanCong-Cong WangBing Yu . Recent advances in FeCl3-photocatalyzed organic reactions via hydrogen-atom transfer. Chinese Chemical Letters, 2024, 35(9): 109517-. doi: 10.1016/j.cclet.2024.109517

    15. [15]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    16. [16]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    17. [17]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    18. [18]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    19. [19]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    20. [20]

      Jing-Jing ZhangLujun LouRui LvJiahui ChenYinlong LiGuangwei WuLingchao CaiSteven H. LiangZhen Chen . Recent advances in photochemistry for positron emission tomography imaging. Chinese Chemical Letters, 2024, 35(8): 109342-. doi: 10.1016/j.cclet.2023.109342

Metrics
  • PDF Downloads(19)
  • Abstract views(691)
  • HTML views(101)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return