Citation: Zhan Jinxiu, Feng Feng, Xu Ming, Yao Li, Ge Maofa. Progress in Chemo–Mechanical Interactions between Nanoparticles and Cells[J]. Acta Physico-Chimica Sinica, ;2020, 36(1): 190507. doi: 10.3866/PKU.WHXB201905076 shu

Progress in Chemo–Mechanical Interactions between Nanoparticles and Cells

  • Corresponding author: Yao Li, yaoli@iccas.ac.cn Ge Maofa, gemaofa@iccas.ac.cn
  • Received Date: 28 May 2019
    Revised Date: 5 July 2019
    Accepted Date: 8 July 2019
    Available Online: 18 January 2019

    Fund Project: the National Key Research and Development Program of China 2018YFA0208800the Beijing Natural Science Foundation, China L172048the National Natural Science Foundation of China 21778055The project was supported by the National Natural Science Foundation of China (21778055, 21573250), the National Key Research and Development Program of China (2018YFA0208800), and the Beijing Natural Science Foundation, China (L172048)the National Natural Science Foundation of China 21573250

  • The biosafety of nanoparticles is gaining extensive attention due to their dichotomous effects in fields of biomedicine and atmospheric chemistry. A number of studies have been carried out focusing on the cytotoxicity of nanoparticles and their interactions with cells. However, the mechanism of nanoparticle–cell interactions remains unclear. Here, we review the latest progress in the study of nanoparticle-cell interactions from a cellular chemo-mechanical perspective. Cell mechanics play an important role in cell differentiation, proliferation, apoptosis, polarization, adhesion, and migration. An understanding of the effects of nanoparticles on cell mechanics is therefore needed in order to enhance comprehension of nanoparticle–cell interactions. Firstly, the main molecules and signal pathways related to mechanical chemistry are introduced from three perspectives: cell surface adhesion receptors, the cytoskeleton, and the nucleus. Specifically, integrins and cadherins play a critical role in sensing both the external mechanical force and the force of cell transmission. Actin and microtubules, which are two components of the cytoskeletal network, act as a bridge in mechanical conduction. The nucleus can also be mechanically stressed by the surrounding cytoskeleton through the contraction of the matrix. The nuclear envelope also plays important roles in sensing mechanical signals and in adjusting the morphology and function of the nucleus. We summarize the major nanoparticle-based tools used in the laboratory for the study of cell mechanics, which includes traction force microscopy, atomic force microscopy, optical tweezers, magnetic manipulation, micropillars, and force-induced remnant magnetization spectroscopy. In addition, we discuss the effects that nanoparticles have on cell mechanics. Nanoparticles interact with the adhesion of molecules on the cell membrane surface and on cell cytoskeletal proteins, which further affects the mechanical properties involved in cell stiffness, cell adhesion, and cell migration. Overall, the general conclusions regarding the effects of nanoparticles on cell mechanics are as follows: (1) Nanoparticles can affect cell adhesion by disrupting tight and adherent junctions, and by regulating cell-extracellular matrix adhesion; (2) Nanoparticles can interact with cytoskeletal proteins (actins and tubulins) leading to structural reorganization or disruption of microtubules and F-actin; (3) Cell stiffness changes with the structural reorganization of the cytoskeleton; (4) Cell migration ability can be affected through changes in the cytoskeleton, cell adhesion, and the expression of cell migration-related proteins/molecules. To develop the nano-biosafety evaluation system, future studies should attempt to gain a better understanding of the molecular mechanisms involved with regards to nanoparticles and cell mechanics. Ultimately, further development of new methods and technologies based on nano-mechanical chemistry for diagnosis and treatment purposes are expected, given the wide application of nanomaterials in the biomedical field.
  • 加载中
    1. [1]

      Grabinski, C.; Schaeublin, N.; Wijaya, A.; D'Couto, H.; Baxamusa, S. H.; Hamad-Schifferli, K.; Hussain, S. M. ACS Nano 2011, 5 (4), 2870. doi: 10.1021/nn103476x  doi: 10.1021/nn103476x

    2. [2]

      Pati, R.; Das, I.; Mehta, R. K.; Sahu, R.; Sonawane, A. Toxicol. Sci. 2016, 150 (2), 454. doi: 10.1093/toxsci/kfw010  doi: 10.1093/toxsci/kfw010

    3. [3]

      Li, J. C.; Mao, H. L.; Kawazoe, N.; Chen, G. P. Biomater. Sci. 2017, 5 (2), 173. doi: 10.1039/c6bm00714g  doi: 10.1039/c6bm00714g

    4. [4]

      Rotsch, C.; Radmacher, M. Biophys. J. 2000, 78 (1), 520. doi: 10.1016/s0006-3495(00)76614-8  doi: 10.1016/s0006-3495(00)76614-8

    5. [5]

      Tay, C. Y.; Cai, P. Q.; Setyawati, M. I.; Fang, W. R.; Tan, L. P.; Hong, C. H. L.; Chen, X. D.; Leong, D. T. Nano Lett. 2014, 14 (1), 83. doi: 10.1021/nl4032549  doi: 10.1021/nl4032549

    6. [6]

      Li, Y.; Jing, L.; Yu, Y. B.; Yu, Y.; Duan, J. C.; Yang, M.; Geng, W. J.; Jiang, L. Z.; Li, Q. L.; Sun, Z. W. Part. Part. Syst. Charact. 2015, 32 (6), 636. doi: 10.1002/ppsc.201400180  doi: 10.1002/ppsc.201400180

    7. [7]

      Nakayama, K. H.; Surya, V. N.; Gole, M.; Walker, T. W.; Yang, W. G.; Lai, E. S.; Ostrowski, M. A.; Fuller, G. G.; Dunn, A. R.; Huang, N. F. Nano Lett. 2016, 16 (1), 410. doi: 10.1021/acs.nanolett.5b04028  doi: 10.1021/acs.nanolett.5b04028

    8. [8]

      Hynes, R. O. Cell 2002, 110 (6), 673. doi: 10.1016/s0092-8674(02)00971-6  doi: 10.1016/s0092-8674(02)00971-6

    9. [9]

      Guo, W. J.; Giancotti, F. G. Nat. Rev. Mol. Cell Biol. 2004, 5 (10), 816. doi: 10.1038/nrm1490  doi: 10.1038/nrm1490

    10. [10]

      Mitra, S. K.; Hanson, D. A.; Schlaepfer, D. D. Nat. Rev. Mol. Cell Biol. 2005, 6 (1), 56. doi: 10.1038/nrm1549  doi: 10.1038/nrm1549

    11. [11]

      Li, Z. H.; Lee, H. J.; Zhu, C. Exp. Cell Res. 2016, 349 (1), 85. doi: 10.1016/j.yexcr.2016.10.001  doi: 10.1016/j.yexcr.2016.10.001

    12. [12]

      Geiger, B.; Yamada, K. M. CSH Perspect. Biol. 2011, 3 (5), 21. doi: 10.1101/cshperspect.a005033  doi: 10.1101/cshperspect.a005033

    13. [13]

      Jiang, G. Y.; Giannone, G.; Critchley, D. R.; Fukumoto, E.; Sheetz, M. P. Nature 2003, 424 (6946), 334. doi: 10.1038/nature01805  doi: 10.1038/nature01805

    14. [14]

      Kukkurainen, S.; Maatta, J. A.; Saeger, J.; Valjakka, J.; Vogel, V.; Hytonen, V. P. Mol. Biosyst. 2014, 10 (12), 3217. doi: 10.1039/c4mb00341a  doi: 10.1039/c4mb00341a

    15. [15]

      Yao, M. X.; Goult, B. T.; Chen, H.; Cong, P. W.; Sheetz, M. P.; Yan, J. Sci. Rep. 2014, 4, 7. doi: 10.1038/srep04610  doi: 10.1038/srep04610

    16. [16]

      Mitra, S. K.; Schlaepfer, D. D. Curr. Opin. Cell Biol. 2006, 18 (5), 516. doi: 10.1016/j.ceb.2006.08.011  doi: 10.1016/j.ceb.2006.08.011

    17. [17]

      Beningo, K. A.; Dembo, M.; Kaverina, I.; Small, J. V.; Wang, Y. L. J. Cell Biol. 2001, 153 (4), 881. doi:10.1083/jcb.153.4.881  doi: 10.1083/jcb.153.4.881

    18. [18]

      Scarpa, E.; Szabo, A.; Bibonne, A.; Theveneau, E.; Parsons, M.; Mayor, R. Dev. Cell 2015, 34 (4), 421. doi: 10.1016/j.devcel.2015.06.012  doi: 10.1016/j.devcel.2015.06.012

    19. [19]

      Yao, M. X.; Qiu, W.; Liu, R. C.; Efremov, A. K.; Cong, P. W.; Seddiki, R.; Payre, M.; Lim, C. T.; Ladoux, B.; Mege, R. M.; et al. Nat. Commun. 2014, 5, 11. doi: 10.1038/ncomms5525  doi: 10.1038/ncomms5525

    20. [20]

      Mui, K. L.; Chen, C. S.; Assoian, R. K. J. Cell Sci. 2016, 129 (6), 1093. doi: 10.1242/jcs.183699  doi: 10.1242/jcs.183699

    21. [21]

      Auernheimer, V.; Lautscham, L. A.; Leidenberger, M.; Friedrich, O.; Kappes, B.; Fabry, B.; Goldmann, W. H. J. Cell Sci. 2015, 128 (18), 3435. doi: 10.1242/jcs.172031  doi: 10.1242/jcs.172031

    22. [22]

      Gasparski, A. N.; Beningo, K. A. Arch. Biochem. Biophys. 2015, 586, 20. doi: 10.1016/j.abb.2015.07.017  doi: 10.1016/j.abb.2015.07.017

    23. [23]

      Kiefel, H.; Bondong, S.; Hazin, J.; Ridinger, J.; Schirmer, U.; Riedle, S.; Altevogt, P. Cell Adhes. Migr. 2012, 6 (4), 374. doi: 10.4161/cam.20832  doi: 10.4161/cam.20832

    24. [24]

      Colombo, F.; Meldolesi, J. Trends Pharmacol. Sci. 2015, 36 (11), 769. doi: 10.1016/j.tips.2015.08.004  doi: 10.1016/j.tips.2015.08.004

    25. [25]

      Bershadsky, A.; Chausovsky, A.; Becker, E.; Lyubimova, A.; Geiger, B. Curr. Biol. 1996, 6 (10), 1279. doi: 10.1016/s0960-9822(02)70714-8  doi: 10.1016/s0960-9822(02)70714-8

    26. [26]

      Padmakumar, V. C.; Libotte, T.; Lu, W. S.; Zaim, H.; Abraham, S.; Noegel, A. A.; Gotzmann, J.; Foisner, R.; Karakesisoglou, L. J. Cell Sci. 2005, 118 (15), 3419. doi: 10.1242/jcs.02471  doi: 10.1242/jcs.02471

    27. [27]

      Haque, F.; Lloyd, D. J.; Smallwood, D. T.; Dent, C. L.; Shanahan, C. M.; Fry, A. M.; Trembath, R. C.; Shackleton, S. Mol. Cell. Biol. 2006, 26 (10), 3738. doi: 10.1128/mcb.26.10.3738-3751.2006  doi: 10.1128/mcb.26.10.3738-3751.2006

    28. [28]

      Luxton, G. W. G.; Gomes, E. R.; Folker, E. S.; Vintinner, E.; Gundersen, G. G. Science 2010, 329 (5994), 956. doi: 10.1126/science.1189072  doi: 10.1126/science.1189072

    29. [29]

      Guilluy, C.; Osborne, L. D.; Van Landeghem, L.; Sharek, L.; Superfine, R.; Garcia-Mata, R.; Burridge, K. Nat. Cell Biol. 2014, 16 (4), 376. doi: 10.1038/ncb2927  doi: 10.1038/ncb2927

    30. [30]

      Fanucchi, S.; Shibayama, Y.; Burd, S.; Weinberg, M. S.; Mhlanga, M. M. Cell 2013, 155 (3), 606. doi: 10.1016/j.cell.2013.09.051  doi: 10.1016/j.cell.2013.09.051

    31. [31]

      Dekker, J.; Mirny, L. Cell 2016, 164 (6), 1110. doi: 10.1016/j.cell.2016.02.007  doi: 10.1016/j.cell.2016.02.007

    32. [32]

      Uhler, C.; Shivashankar, G. V. Nat. Rev. Mol. Cell Biol. 2017, 18 (12), 717. doi: 10.1038/nrm.2017.101  doi: 10.1038/nrm.2017.101

    33. [33]

      Lv, L. W.; Tang, Y. M.; Zhang, P.; Liu, Y. S.; Bai, X. S.; Zhou, Y. S. Tissue Eng. Part B-Rev. 2018, 24 (2), 112. doi: 10.1089/ten.teb.2017.0287  doi: 10.1089/ten.teb.2017.0287

    34. [34]

      Jaalouk, D. E.; Lammerding, J. Nat. Rev. Mol. Cell Biol. 2009, 10 (1), 63. doi: 10.1038/nrm2597  doi: 10.1038/nrm2597

    35. [35]

      Schwarz, U. S.; Soine, J. R. D. Biochim. Biophys. Acta-Mol. Cell Res. 2015, 1853 (11), 3095. doi: 10.1016/j.bbamcr.2015.05.028  doi: 10.1016/j.bbamcr.2015.05.028

    36. [36]

      Muller, D. J.; Dufrene, Y. F. Trends Cell Biol. 2011, 21 (8), 461. doi: 10.1016/j.tcb.2011.04.008  doi: 10.1016/j.tcb.2011.04.008

    37. [37]

      Ahmed, W. W.; Fodor, E.; Betz, T. Biochim. Biophys. Acta-Mol. Cell Res. 2015, 1853 (11), 3083. doi: 10.1016/j.bbamcr.2015.05.022  doi: 10.1016/j.bbamcr.2015.05.022

    38. [38]

      Castillo, M.; Ebensperger, R.; Wirtz, D.; Walczak, M.; Hurtado, D. E.; Celedon, A. J. Biomed. Mater. Res. Part B 2014, 102 (8), 1779. doi: 10.1002/jbm.b.33167  doi: 10.1002/jbm.b.33167

    39. [39]

      Berret, J. F. Nat. Commun. 2016, 7, 10134. doi: 10.1038/ncomms10134  doi: 10.1038/ncomms10134

    40. [40]

      Etoc, F.; Lisse, D.; Bellaiche, Y.; Piehler, J.; Coppey, M.; Dahan, M. Nat. Nanotechnol. 2013, 8 (3), 193. doi: 10.1038/nnano.2013.23  doi: 10.1038/nnano.2013.23

    41. [41]

      Tan, J. L.; Tien, J.; Pirone, D. M.; Gray, D. S.; Bhadriraju, K.; Chen, C. S. Pro. Nat. Acad. Sci. U.S.A. 2003, 100 (4), 1484. doi: 10.1073/pnas.0235407100  doi: 10.1073/pnas.0235407100

    42. [42]

      Yao, L.; Xu, S. J. Angew. Chem.-Int. Edit. 2011, 50 (19), 4407. doi: 10.1002/anie.201007297  doi: 10.1002/anie.201007297

    43. [43]

      Yao, L.; Li, Y.; Tsai, T. W.; Xu, S. J.; Wang, Y. H. Angew. Chem. Int. Ed. 2013, 52 (52), 14041. doi: 10.1002/anie.201307419  doi: 10.1002/anie.201307419

    44. [44]

      Yao, L.; Xu, S. J. J. Phys. Chem. B 2012, 116 (33), 9944. doi: 10.1021/jp304335a  doi: 10.1021/jp304335a

    45. [45]

      Zhang, D.; Feng, F.; Li, Q. L.; Wang, X. Y.; Yao, L. Biomaterials 2018, 173, 22. doi: 10.1016/j.biomaterials.2018.04.045  doi: 10.1016/j.biomaterials.2018.04.045

    46. [46]

      Yu, C.; Zhang, D.; Feng, X.; Chai, Y.; Lu, P.; Li, Q.; Feng, F.; Wang, X.; Li, Y. Nanoscale 2019, 11 (16), 7648. doi: 10.1039/c8nr10338k  doi: 10.1039/c8nr10338k

    47. [47]

      Qin, Y.; Chen, K.; Gu, W.; Dong, X.; Lei, R.; Chang, Y.; Bai, X.; Xia, S.; Zeng, L.; Zhang, J.; et al. J. Nanobiotechnol. 2018, 16 (1), 54. doi: 10.1186/s12951-018-0380-z  doi: 10.1186/s12951-018-0380-z

    48. [48]

      Peng, F.; Setyawati, M. I.; Tee, J. K.; Ding, X. G.; Wang, J. P.; Nga, M. E.; Ho, H. K.; Leong, D. T. Nat. Nanotechnol. 2019, 14 (3), 279. doi: 10.1038/s41565-018-0356-z  doi: 10.1038/s41565-018-0356-z

    49. [49]

      Pottler, M.; Fliedner, A.; Schreiber, E.; Janko, C.; Friedrich, R. P.; Bohr, C.; Dollinger, M.; Alexiou, C.; Durr, S. Nanoscale Res. Lett. 2017, 12 (1), 284. doi: 10.1186/s11671-017-2045-5  doi: 10.1186/s11671-017-2045-5

    50. [50]

      Li, Y.; Jing, L.; Yu, Y.; Yu, Y.; Duan, J.; Yang, M.; Geng, W.; Jiang, L.; Li, Q.; Sun, Z. Part. Part. Sys. Charact. 2015, 32 (6), 636. doi: 10.1002/ppsc.201400180  doi: 10.1002/ppsc.201400180

    51. [51]

      Xie, H.; Wang, P.; Wu, J. Artif. Cells Nanomed Biotechnol. 2019, 47 (1), 260. doi: 10.1080/21691401.2018.1552594  doi: 10.1080/21691401.2018.1552594

    52. [52]

      Soenen, S. J. H.; Nuytten, N.; De Meyer, S. F.; De Smedt, S. C.; De Cuyper, M. Small 2010, 6 (7), 832. doi: 10.1002/smll.200902084  doi: 10.1002/smll.200902084

    53. [53]

      Qin, H.; Zhu, C.; An, Z.; Jiang, Y.; Zhao, Y.; Wang, J.; Liu, X.; Hui, B.; Zhang, X.; Wang, Y. Int. J. Nanomed. 2014, 9, 2469. doi: 10.2147/IJN.S59753  doi: 10.2147/IJN.S59753

    54. [54]

      Calzado-Martin, A.; Encinar, M.; Tamayo, J.; Calleja, M.; Paulo, A. S. ACS Nano 2016, 10 (3), 3365. doi: 10.1021/acsnano.5b07162  doi: 10.1021/acsnano.5b07162

    55. [55]

      Mao, H.; Li, J.; Dulinska-Molak, I.; Kawazoe, N.; Takeda, Y.; Mamiya, H.; Chen, G. Biomater. Sci. 2015, 3 (9), 1284. doi: 10.1039/c5bm00141b  doi: 10.1039/c5bm00141b

    56. [56]

      Ogneva, I. V.; Buravkov, S. V.; Shubenkov, A. N.; Buravkova, L. B. Nanoscale Res. Lett. 2014, 9. doi: 10.1186/1556-276x-9-284  doi: 10.1186/1556-276x-9-284

    57. [57]

      Tian, X.; Yang, Z.; Duan, G.; Wu, A.; Gu, Z.; Zhang, L.; Chen, C.; Chai, Z.; Ge, C.; Zhou, R. Small 2017, 13 (3). doi: 10.1002/smll.201602133  doi: 10.1002/smll.201602133

    58. [58]

      Sun, Q.; Kanehira, K.; Taniguchi, A. Sci. Technol. Adv. Mater. 2018, 19 (1), 271. doi: 10.1080/14686996.2018.1444318  doi: 10.1080/14686996.2018.1444318

    59. [59]

      Vieira, L. F. A.; Lins, M. P.; Viana, I.; Dos Santos, J. E.; Smaniotto, S.; Reis, M. Nanoscale Res. Lett. 2017, 12 (1), 200. doi: 10.1186/s11671-017-1982-3  doi: 10.1186/s11671-017-1982-3

  • 加载中
    1. [1]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    2. [2]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    3. [3]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    4. [4]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    5. [5]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    6. [6]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    7. [7]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    8. [8]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    9. [9]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    10. [10]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    11. [11]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

    12. [12]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    13. [13]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    14. [14]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    15. [15]

      Peifeng Su Xin Lu . Development of Undergraduate Quantum Mechanics Module in Chemistry Department under the “Double First Class” Initiative. University Chemistry, 2024, 39(8): 99-103. doi: 10.3866/PKU.DXHX202401087

    16. [16]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    17. [17]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    18. [18]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    19. [19]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    20. [20]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

Metrics
  • PDF Downloads(10)
  • Abstract views(252)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return