Citation: Pan Jinbo, Shen Sheng, Zhou Wei, Tang Jie, Ding Hongzhi, Wang Jinbo, Chen Lang, Au Chak-Tong, Yin Shuang-Feng. Recent Progress in Photocatalytic Hydrogen Evolution[J]. Acta Physico-Chimica Sinica, ;2020, 36(3): 190506. doi: 10.3866/PKU.WHXB201905068 shu

Recent Progress in Photocatalytic Hydrogen Evolution


  • Author Bio:







    Shuang-Feng Yin obtained his Bachelor Degree in 1996 from Beijing University of Chemical Technology. He subsequently received his Ph.D. from Tsinghua University in 2003. He was promoted to full Professor in Hunan University in 2006. He has been a senior visiting scholar in the Hong Kong Baptist University and Japan Institute of Integrated Industrial Technology from 2008 to 2009. His research interests focus on photocatalytic energy conversion and C―H bond activation
  • Corresponding author: Yin Shuang-Feng, sf_yin@hnu.edu.cn
  • Received Date: 21 May 2019
    Revised Date: 24 June 2019
    Accepted Date: 8 July 2019
    Available Online: 11 March 2019

    Fund Project: This project was financially supported by the National Natural Science Foundation of China (21725602, 21476065, 21671062, 21776064), the Innovative Research Groups of Hunan Province (2019JJ10001), Hunan Provincial Innovation Foundation for Postgraduate (CX2018B193)the National Natural Science Foundation of China 21725602the National Natural Science Foundation of China 21776064Hunan Provincial Innovation Foundation for Postgraduate CX2018B193the National Natural Science Foundation of China 21476065the Innovative Research Groups of Hunan Province 2019JJ10001the National Natural Science Foundation of China 21671062

  • The photocatalytic hydrogen evolution reaction (PHER) has gained much attention as a promising strategy for the generation of clean energy. As opposed to conventional hydrogen evolution strategies (steam methane reforming, electrocatalytic hydrogen evolution, etc.), the PHER is an environmentally friendly and sustainable method for converting solar energy into H2 energy. However, the PHER remains unsuitable for industrial applications because of efficiency losses in three critical steps: light absorption, carrier separation, and surface reaction. In the past four decades, the processes responsible for these efficiency losses have been extensively studied. First, light absorption is the principal factor deciding the performance of most photocatalysts, and it is closely related to band-gap structure of photocatalysts. However, most of the existing photocatalysts have a wide bandgap, indicating a narrow light absorption range, which restricts the photocatalytic efficiency. Therefore, searching for novel semiconductors with a narrow bandgap and broadening the light absorption range of known photocatalysts is an important research direction. Second, only the photogenerated electrons and holes that migrate to the photocatalyst surface can participate in the reaction with H2O, whereas most of the photogenerated electrons and holes readily recombine with one another in the bulk phase of the photocatalysts. Hence, tremendous effort has been undertaken to shorten the charge transfer distance and enhance the electric conductivity of photocatalysts for improving the separation and transfer efficiency of photogenerated carriers. Third, the surface redox reaction is also an important process. Because water oxidation is a four-electron process, sluggish O2 evolution is the bottleneck in photocatalytic water splitting. The unreacted holes can easily recombine with electrons. Sacrificial agents are widely used in most catalytic systems to suppress charge carrier recombination by scavenging the photogenerated holes. Moreover, the low H2 evolution efficiency of most photocatalysts has encouraged researchers to introduce highly active sites on the photocatalyst surface. Based on the abovementioned three steps, multifarious strategies have been applied to modulate the physicochemical properties of semiconductor photocatalysts with the aim of improving the light absorption efficiency, suppressing carrier recombination, and accelerating the kinetics of surface reactions. The strategies include defect generation, localized surface plasmon resonance (LSPR), element doping, heterojunction fabrication, and cocatalyst loading. An in-depth study of these strategies provides guidance for the design of efficient photocatalysts. In this review, we focus on the mechanism and application of these strategies for optimizing light absorption, carrier separation and transport, and surface reactions. Furthermore, we provide a critical view on the promising trends toward the construction of advanced catalysts for H2 evolution.
  • 加载中
    1. [1]

      Zhang, G.; Lan, Z. A.; Wang, X. Angew. Chem. Int. Edit. 2016, 55, 15712. doi: 10.1002/anie.201607375  doi: 10.1002/anie.201607375

    2. [2]

      Tee, S. Y.; Win, K. Y.; Teo, W. S.; Koh, L. D.; Liu, S.; Teng, C. P.; Han, M. Y. Adv. Sci. 2017, 4, 1600337. doi: 10.1002/advs.201600337  doi: 10.1002/advs.201600337

    3. [3]

      Wang, W.; Xu, X.; Zhou, W.; Shao, Z. Adv. Sci. 2017, 4, 1600371. doi: 10.1002/advs.201600371  doi: 10.1002/advs.201600371

    4. [4]

      Su, T. M; Shao, Q.; Qin, Z. Z.; Guo, Z. H.; Wu, Z. L. ACS Catal. 2018, 8, 2253. doi: 10.1021/acscatal.7b03437  doi: 10.1021/acscatal.7b03437

    5. [5]

      Ran, J. R.; Zhang, J.; Yu, J. G.; Jaroniec, M.; Qiao, S. Z. Chem. Soc. Rev. 2014, 43, 7787. doi: 10.1039/C3CS60425J  doi: 10.1039/C3CS60425J

    6. [6]

      Yuan, Y. J.; Chen, D.; Yu, Z. T.; Zou, Z. G. J. Mater. Chem. A 2018, 6, 11606. doi: 10.1039/C8TA00671G  doi: 10.1039/C8TA00671G

    7. [7]

      Yang, J. H.; Wang, D.; Han, H. X.; Li, C. Acc. Chem. Res. 2013, 46, 1900. doi: 10.1021/ar300227e  doi: 10.1021/ar300227e

    8. [8]

      Yan, J. H; Wang, T.; Wu, G. J; Dai, W. L; Guan, N. J; Li, L. D; Gong, J. L. Adv. Mater. 2015, 27, 1580. doi: 10.1002/adma.201404792  doi: 10.1002/adma.201404792

    9. [9]

      Zhou, L.; Yu, X. Q.; Zhu, J. Nano Lett. 2014, 14, 1093. doi: 10.1021/nl500008y  doi: 10.1021/nl500008y

    10. [10]

      Shi, R.; Ye, H. F.; Liang, F.; Wang, Z.; Li, K.; Weng, Y.; Lin, Z. S; Wen, F. F.; Che, C. M.; Chen, Y. Adv. Mater. 2018, 30, 1705941. doi: 10.1002/adma.201705941  doi: 10.1002/adma.201705941

    11. [11]

      Ge, M. Z.; Cai, J. S.; Iocozzia, J.; Cao, C. Y.; Huang, J. Y.; Zhang, X. N; Shen, J. L.; Wang, S. C; Zhang, S. N; Zhang, K. Q.; et al. Int. J. Hydroge. Energy 2017, 42, 8418. doi: 10.1016/j.ijhydene.2016.12.052  doi: 10.1016/j.ijhydene.2016.12.052

    12. [12]

      He, J.; Chen, L.; Yi, Z. Q.; Ding, D.; Au, C. T.; Yin, S. F. Catal. Commun. 2017, 99, 79. doi: 10.1016/j.catcom.2017.05.029  doi: 10.1016/j.catcom.2017.05.029

    13. [13]

      Wang, M.; Ju, P.; Li, J. J.; Zhao, Y.; Han, X. X.; Hao, Z. M. ACS Sustain. Chem. Eng. 2017, 5, 7878. doi: 10.1021/acssuschemeng.7b01386  doi: 10.1021/acssuschemeng.7b01386

    14. [14]

      Kong, L. Q.; Yan, J. Q.; Liu, S. Z. ACS Sustain. Chem. Eng. 2018, 7, 1389. doi: 10.1021/acssuschemeng.8b05117  doi: 10.1021/acssuschemeng.8b05117

    15. [15]

      Liu, J. N.; Jia, Q. H.; Long, J. L.; Wang, X. X.; Gao, Z. W.; Gu, Q. Appl. Catal. B-Environ. 2018, 222, 35. doi.:10.1016/j.apcatb.2017.09.073  doi: 10.1016/j.apcatb.2017.09.073

    16. [16]

      Qi, K. Z.; Xie, Y. B.; Wang, R. D.; Liu, S. Y.; Zhao, Z. Appl. Surf. Sci. 2019, 466, 847. doi: 10.1016/j.apsusc.2018.10.037  doi: 10.1016/j.apsusc.2018.10.037

    17. [17]

      Zhang, X. Y.; Zhang, Z. Z.; Huang, H. J.; Wang, Y.; Tong, N.; Lin, J. J.; Liu, D.; Wang, X. X. Nanoscale 2018, 10, 21509. doi: 10.1039/C8NR07186A  doi: 10.1039/C8NR07186A

    18. [18]

      Kuehnel, M. F.; Creissen, C. E.; Sahm, C. D.; Wielend, D.; Schlosser, A.; Orchard, K. L.; Reisner. E. Angew. Chem. Int. Edit. 2019, 58, 5059. doi: 10.1002/anie.201814265  doi: 10.1002/anie.201814265

    19. [19]

      Singh, R.; Dutta, S. Fuel 2018, 220, 607. doi: 10.1016/j.fuel.2018.02.068  doi: 10.1016/j.fuel.2018.02.068

    20. [20]

      Han, X.; Xu, D. Y.; An, L.; Hou, C. Y.; Li, Y. G.; Zhang, Q. H.; Wang, H. Z. Int. J. Hydrog. Energy 2018, 43, 4845. doi: 10.1016/j.ijhydene.2018.01.117  doi: 10.1016/j.ijhydene.2018.01.117

    21. [21]

      Gao, H. Q.; Zhang, P.; Hu, J. H.; Pan, J. M.; Fan, J. J.; Shao, G. S. Appl. Surf. Sci. 2017, 391, 211. doi: 10.1016/j.apsusc.2016.06.170  doi: 10.1016/j.apsusc.2016.06.170

    22. [22]

      Liu, Y. Z.; Xu, X. Y.; Zhang, J. Q.; Zhang, H. Y.; Tian, W. J.; Li, X. J.; Tade, M. O.; Sun, H. Q.; Wang, S. B. Appl. Catal. B-Environ. 2018, 239, 334. doi: 10.1016/j.apcatb.2018.08.028  doi: 10.1016/j.apcatb.2018.08.028

    23. [23]

      Yuan, Y. J.; Li, Z. J.; Wu, S. T.; Chen, D. Q.; Yang, L. X.; Cao, D. P.; Tu, W. G.; Yu, Z. T.; Zou, Z. G. Chem. Eng. J. 2018, 350, 335. doi: 10.1016/j.cej.2018.05.172  doi: 10.1016/j.cej.2018.05.172

    24. [24]

      Xiao, M.; Luo, B.; Wang, S. C.; Wang, L. Z. J. Energy. Chem. 2018, 27, 1111. doi: 10.1016/j.jechem.2018.02.018  doi: 10.1016/j.jechem.2018.02.018

    25. [25]

      Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2009, 8, 76. doi: 10.1038/NMAT2317  doi: 10.1038/NMAT2317

    26. [26]

      Zhang, L. Z.; Jing, D. W.; Guo, L. J.; Yao, X. D. ACS Sustain. Chem. Eng. 2014, 2, 1446. doi: 10.1021/sc500045e  doi: 10.1021/sc500045e

    27. [27]

      Zhao, Y. F.; Yang, Z. Y.; Zhang, Y. X.; Jing, L.; Guo, X.; Ke, Z.; Hu, P.; Wang, G.; Yan, Y. M.; Sun, K. N. J. Phys. Chem. C 2014, 118, 14238. doi: 10.1021/jp504005x  doi: 10.1021/jp504005x

    28. [28]

      Chai, B.; Peng, T. Y.; Zeng, P.; Zhang, X. H.; Liu, X. J. Phys. Chem. C 2011, 115, 6149. doi: 10.1021/jp1112729  doi: 10.1021/jp1112729

    29. [29]

      Chaudhari, N. S.; Bhirud, A. P.; Sonawane, R. S.; Nikam, L. K.; Warule, S. S.; Rane, V. H.; Kale, B. B.; Green Chem. 2011, 13, 2500. doi: 10.1039/C1GC15515F  doi: 10.1039/C1GC15515F

    30. [30]

      Liu, C.; Chai, B.; Wang, C. L.; Yan, J. T.; Ren, Z. D. Int. J. Hydrog. Energy 2018, 43, 6977. doi: 10.1016/j.ijhydene.2018.02.116  doi: 10.1016/j.ijhydene.2018.02.116

    31. [31]

      Li, T. L.; Cai, C. D.; Yeh, T. F.; Teng, H. S. J. Alloy. Compd. 2013, 550, 326. doi: 10.1016/j.jallcom.2012.10.157  doi: 10.1016/j.jallcom.2012.10.157

    32. [32]

      Xue, C.; An, H.; Yan, X. Q.; Li, J. L.; Yang, B. L.; Wei, J. J.; Yang, G. D. Nano Energy 2017, 39, 513. doi: 10.1016/j.nanoen.2017.07.030  doi: 10.1016/j.nanoen.2017.07.030

    33. [33]

      Yi, S. S.; Zhang, X. B.; Wulan, B. R.; Yan, J. M.; Jiang, Q. Energ. Environ. Sci. 2018, 11, 3128. doi: 10.1039/C8EE02096E  doi: 10.1039/C8EE02096E

    34. [34]

      Zheng, Z. Z.; Xie, W.; Huang, B. B.; Dai, Y. Chem. Eur. J. 2018, 24, 18322. doi: 10.1002/chem.201803705.  doi: 10.1002/chem.201803705

    35. [35]

      Kong, X. C.; Xu, Y. M.; Cui, Z. D.; Li, Z. Y.; Liang, Y.; Gao, Z. H.; Zhu, S. L.; Yang, X. J. Appl. Catal. B-Environ. 2018, 230, 11. doi: 1016/j.apcatb.2018.02.019  doi: 10.1016/j.apcatb.2018.02.019

    36. [36]

      Liu, C.; Wu, P. C.; Wu, J. N.; Hou, J.; Bai, H. C.; Liu, Z. Y. Chem. Eng. J. 2019, 359, 58. doi: 10.1016/j.cej.2018.11.117  doi: 10.1016/j.cej.2018.11.117

    37. [37]

      Yousaf, A. B.; Imran, M.; Zaidi, S. J.; Kasak, P. Sci. Rep. 2017, 7, 6574. doi: 10.1038/s41598-017-06808-6  doi: 10.1038/s41598-017-06808-6

    38. [38]

      Wang, J. P.; Cong, J. K.; Xu, H.; Wang, J. M.; Liu, H.; Liang, M.; Gao, J. K.; Ni, Q. Q.; Yao, J. M. ACS Sustain. Chem. Eng. 2017, 5, 10633. doi: 10.1021/acssuschemeng.7b02608  doi: 10.1021/acssuschemeng.7b02608

    39. [39]

      Gao, H. Q.; Zhang, P.; Zhao, J. T.; Zhang, Y. S.; Hu, J. H.; Shao, G. S. Appl. Catal. B-Environ. 2017, 210, 297. doi: 10.1016/j.apcatb.2017.03.050  doi: 10.1016/j.apcatb.2017.03.050

    40. [40]

      Lou, Y. B.; Zhang, Y. K.; Cheng, L.; Chen, J. X.; Zhao, Y. X. ChemSusChem 2018, 11, 1505. doi: 10.1002/cssc.201800249  doi: 10.1002/cssc.201800249

    41. [41]

      Xu, G. L.; Shen, J. C.; Chen, S. M.; Gao, Y. J.; Zhang, H. B.; Zhang, J. Phys. Chem. Chem. Phys. 2018, 20, 17471. doi: 10.1039/C8CP01986J  doi: 10.1039/C8CP01986J

    42. [42]

      Yang, Y. R.; Ye, K.; Cao, D. X.; Gao, P.; Qiu, M.; Liu, L.; Yang, P. P. ACS Appl. Mater. Inter. 2018, 10, 19633. doi: 10.1021/acsami.8b02804  doi: 10.1021/acsami.8b02804

    43. [43]

      He, J.; Chen, L.; Yi, Z. Q.; Au, C. T.; Yin, S. F. Ind. Eng. Chem. Res. 2016, 55, 8327. doi: 10.1021/acs.iecr.6b01511  doi: 10.1021/acs.iecr.6b01511

    44. [44]

      Shi, R.; Ye, H. F.; Liang, F.; Wang, Z.; Li, K.; Weng, Y. X.; Lin, Z. S.; Fu, W. F.; Che, C. M.; Chen, Y. J. Adv Mater. 2017, 30, 1705941. doi: 10.1002/adma.201705941  doi: 10.1002/adma.201705941

    45. [45]

      Chen, J.; Shen, S. H.; Guo, P. H.; Wang, M.; Wu, P.; Wang, X. X.; Guo, L. J. Appl. Catal. B-Environ. 2014, 152–153, 335. doi: 10.1016/j.apcatb.2014.01.047

    46. [46]

      She, X. J.; Wu, J. J.; Xu, H.; Zhong, J.; Wang, Y.; Song, Y. H.; Nie, K. Q.; Liu, Y.; Yang, Y. C.; Rodrigues, M. T. et al. Adv. Energy. Mater. 2017, 7, 1700025. doi: 10.1002/aenm.201700025  doi: 10.1002/aenm.201700025

    47. [47]

      Cui, H. J.; Li, B. B.; Li, Z. Y.; Li, X. Z; Xu, S. Appl. Surf. Sci. 2018, 455, 831. doi: 10.1016/j.apsusc.2018.06.054  doi: 10.1016/j.apsusc.2018.06.054

    48. [48]

      Xing, J.; Li, Y. H.; Jiang, H. B.; Wang, Y. Yang, H. G. Int. J. Hydrog. Energy 2014, 39, 1237. doi: 10.1016/j.ijhydene.2013.11.041  doi: 10.1016/j.ijhydene.2013.11.041

    49. [49]

      Xiao, J. D.; Han, L. L.; Luo, J.; Yu, S. H.; Jiang, H. L. Angew. Chem. Int. Edit. 2017, 57, 1103. doi: 10.1002/anie.201711725  doi: 10.1002/anie.201711725

    50. [50]

      Bian, H.; Ji, Y. J; Yan, J. Q.; Li, P.; Li, L.; Li, Y. Y.; Liu, S. Z. Small 2018, 14, 1703003. doi: 10.1002/smll.201703003  doi: 10.1002/smll.201703003

    51. [51]

      Qi, K. Z; Xie, Y. B; Wang, R. D; Liu, S. Y.; Zhao, Z. Appl. Surf. Sci. 2019, 466, 847. doi: 10.1016/j.apsusc.2018.10.037  doi: 10.1016/j.apsusc.2018.10.037

    52. [52]

      Li, H.; Li, J.; Ai, Z. H.; Jia, F. L.; Zhang, L. Z. Angew. Chem. Int. Edit. 2018, 57, 122. doi: 10.1002/anie.201705628  doi: 10.1002/anie.201705628

    53. [53]

      Fang, Z. L.; Bueken, B.; De Vos, D. E.; Fischer, R. A. Angew. Chem. Int. Edit. 2015, 54, 7234. doi: 10.1002/anie.201411540  doi: 10.1002/anie.201411540

    54. [54]

      Bai, S.; Zhang, N.; Gao, C.; Xiong, Y. J. Nano Energy 2018, 53, 296. doi: 10.1016/j.nanoen.2018.08.058  doi: 10.1016/j.nanoen.2018.08.058

    55. [55]

      Seo, H. S.; Ping, Y.; Galli, G. Chem. Mater. 2018, 30, 7793. doi: 10.1021/acs.chemmater.8b03201  doi: 10.1021/acs.chemmater.8b03201

    56. [56]

      Jang, J. W.; Friedrich, D.; Müller, S.; Lamers, M.; Hempel, H.; Lardhi, S.; Cao, Z.; Harb, M.; Cavallo, L.; Heller, R. et al. Adv. Energy. Mater. 2017, 7, 1701536. doi: 10.1002/aenm.201701536  doi: 10.1002/aenm.201701536

    57. [57]

      Kong, X. C.; Xu, Y. M.; Cui, Z. D. Li, Z. Liang, Y. Z. Gao, Z. H. Zhu, S. L. Yang, X. J. Appl. Catal. B-Environ. 2018, 230, 11. doi: 10.1016/j.apcatb.2018.02.019  doi: 10.1016/j.apcatb.2018.02.019

    58. [58]

      Wu, Y. Q.; Lu, G. X. Phys. Chem. Chem. Phys. 2014, 16, 4165. doi: 10.1039/C3CP54461C  doi: 10.1039/C3CP54461C

    59. [59]

      Wang, G.; Yang, Y.; Han, D.; Li, Y. Nano Today 2017, 13, 23. doi: 10.1039/C3CP54461C

    60. [60]

      Cronemeyer, D. C. Phys. Rev. 1959, 113, 1222. doi: 10.1103/PhysRev.113.1222  doi: 10.1103/PhysRev.113.1222

    61. [61]

      Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S. Science 2011, 331, 746. doi: 10.1126/science.1200448  doi: 10.1126/science.1200448

    62. [62]

      Zheng, J. Y.; Lyu, Y. H.; Xie, C.; Wang, R. L.; Tao, L.; Wu, H. B.; Zhou, H. J.; Jiang, S. P.; Wang, S. Y. Adv. Mater. 2018, 30, 1801773. doi: 10.1002/adma.201801773  doi: 10.1002/adma.201801773

    63. [63]

      Wang, P.; Huang, B. B.; Qin, X. Y.; Zhang, X. Y.; Dai, Y.; Wei, J. Y.; Whangbo, M. H. Angew. Chem. Int. Ed. 2008, 47, 7931. doi: 10.1002/anie.200802483  doi: 10.1002/anie.200802483

    64. [64]

      Pan, J. B.; Liu, J. J.; Ma, H. C.; Zuo, S. L.; Khan, U. A.; Yu, Y. C.; Li, B. S. New. J. Chem. 2018, 42, 7293. doi: 10.1039/C8NJ00394G  doi: 10.1039/C8NJ00394G

    65. [65]

      Agrawal, A.; Cho, S. H.; Zandi, O.; Ghosh, S.; Johns, R. W.; Milliron, D. J. Chem. Rev. 2018, 118, 3121. doi: 10.1021/acs.chemrev.7b00613  doi: 10.1021/acs.chemrev.7b00613

    66. [66]

      Du, X. H.; Li, Y.; Yin, H.; Xiang, Q. J. Acta Phys. -Chim. Sin. 2018, 34, 414.  doi: 10.3866/PKU.WHXB201708283

    67. [67]

      Gao, H. Q.; Zhang, P.; Zhao, J. T.; Zhang, Y. S.; Hu, J. H.; Shao, G. S. Appl. Catal. B-Environ. 2017, 210, 297. doi: 10.1016/j.apcatb.2017.03.050  doi: 10.1016/j.apcatb.2017.03.050

    68. [68]

      Wang, J. P.; Cong, J. K.; Xu, H.; Wang, J.; Liu, H.; Liang, M.; Gao, J. K.; Ni, Q. Q.; Yao, J. M. ACS Sustain. Chem. Eng. 2017, 5, 10633. doi: 10.1021/acssuschemeng.7b02608  doi: 10.1021/acssuschemeng.7b02608

    69. [69]

      Zhang, Z. Y.; Liu, Y.; Fang, Y. R.; Cao, B. S.; Huang, J. D.; Liu, K. C.; Dong, B. Adv. Sci. 2018, 5, 1800748. doi: 10.1002/advs.201800748  doi: 10.1002/advs.201800748

    70. [70]

      Chilkalwar, A. A.; Rayalu, S. S. J. Phys. Chem. C 2018, 122, 26307. doi: 10.1021/acs.jpcc.8b05480  doi: 10.1021/acs.jpcc.8b05480

    71. [71]

      Li, D. D.; Yu, S. H.; Jiang, H. L. Adv. Mater. 2018, 30, 1707377. doi: 10.1002/adma.201707377  doi: 10.1002/adma.201707377

    72. [72]

      Lim, W. Y.; Wu, H.; Lim, Y. F.; Ho, G. W. J. Mater. Chem. A 2018, 6, 11416. doi: 10.1039/C8TA02763C  doi: 10.1039/C8TA02763C

    73. [73]

      Wang, Z. L.; Qi, Y.; Ding, C. M.; Fan, D. Y.; Liu, G. J.; Zhao, Y. L.; Li, C. Chem. Sci. 2016, 7, 4391. doi: 10.1039/C6SC00245E  doi: 10.1039/C6SC00245E

    74. [74]

      Pradhan, N.; Das Adhikari, S.; Nag, A.; Sarma, D. D. Angew. Chem. Int. Edit. 2017, 56, 7038. doi: 10.1002/anie.201611526  doi: 10.1002/anie.201611526

    75. [75]

      Jiang, L. B.; Yuan, X. Z.; Pan, Y.; Liang, J.; Zeng, G. M.; Wu, Z. B.; Wang, H. Appl. Catal. B-Environ. 2017, 217, 388. doi: 10.1016/j.apcatb.2017.06.003  doi: 10.1016/j.apcatb.2017.06.003

    76. [76]

      Cheng, R. L.; Jin, X. X.; Fan, X. Q.; Wang, M.; Tian, J. J.; Zhang, L. X.; Shi, J. L. Acta Phys. -Chim. Sin. 2017, 33, 1436.  doi: 10.3866/PKU.WHXB201704076

    77. [77]

      Li, Z.; Kong, C.; Lu, G. X. J. Phys. Chem. 2015, 120, 56. doi: 10.1021/acs.jpcc.5b09469  doi: 10.1021/acs.jpcc.5b09469

    78. [78]

      Chen, Z.; Fan, T. T.; Yu, X.; Wu, Q. L.; Zhu, Q. H.; Zhang, L. Z.; Li, J. H.; Fang, W. P.; Yi, X. D. J. Mater. Chem. 2018, 6, 15310. doi: 10.1039/C8TA03303J  doi: 10.1039/C8TA03303J

    79. [79]

      Li, X.; Liu, P. W.; Mao, Y.; Xing, M. Y.; Zhang, J. L. Appl. Catal. B-Environ. 2015, 164, 352. doi: 10.1016/j.apcatb.2014.09.053  doi: 10.1016/j.apcatb.2014.09.053

    80. [80]

      Zhu, Y. P.; Ren, T. Z.; Yuan, Z. Y. ACS Appl. Mater. Inter. 2015, 7, 16850. doi: 10.1021/acsami.5b04947  doi: 10.1021/acsami.5b04947

    81. [81]

      Li, H. J.; Tu, W. G.; Zhou, Y.; Zou, Z. G. Adv. Sci. 2016, 3, 1500389. doi: 10.1002/advs.201500389  doi: 10.1002/advs.201500389

    82. [82]

      Xu, Q. L.; Zhang, L. Y.; Yu, J. G.; Wageh, S.; Al-Ghamdi, A. A., Jaroniec, M. Mater. Today 2018, 21, 1042. doi: 10.1016/j.mattod.2018.04.008  doi: 10.1016/j.mattod.2018.04.008

    83. [83]

      Zhou, P.; Yu, J.; Jaroniec, M. Adv. Mater. 2014, 26, 4920. doi: 10.1002/adma.201400288  doi: 10.1002/adma.201400288

    84. [84]

      Pan, J. B.; Liu, J. J.; Ma, H. C.; Zuo, S. L.; Khan, U. A.; Yu, Y. C.; Li, B. S. Appl. Surf. Sci. 2018, 444, 177. doi: 10.1016/j.apsusc.2018.01.189  doi: 10.1016/j.apsusc.2018.01.189

    85. [85]

      Li, H. J.; Tu, W. G.; Zhou, Y.; Zou, Z. G. Adv. Sci. 2016, 3, 1500389. doi: 10.1002/advs.201500389  doi: 10.1002/advs.201500389

    86. [86]

      Fu, J. W.; Xu, Q. L.; Low, J. X.; Jiang, C. J.; Yu, J. G. Appl. Catal. B-Environ. 2019, 243, 556. doi: 10.1016/j.apcatb.2018.11.011  doi: 10.1016/j.apcatb.2018.11.011

    87. [87]

      Yu, W. L.; Zhang, S.; Chen, J. X.; Xia, P. F.; Richter, M. H.; Chen, L. F.; Xu, W.; Jin, J. P.; Chen, S. L.; Peng, T. Y. J. Mater. Chem. A 2018, 6, 15668. doi: 10.1039/C8TA02922A  doi: 10.1039/C8TA02922A

    88. [88]

      Fei, Y.; Li, H. F.; Yu, H. T.; Chen, S.; Xie, Q. Appl. Catal. B-Environ. 2018, 227, 258. doi: 10.1016/j.apcatb.2017.12.020  doi: 10.1016/j.apcatb.2017.12.020

    89. [89]

      Yu, Z. B.; Xie, Y. P.; Liu, G.; Lu, G. Q.; Ma, X. L.; Cheng, H. M. J. Mater. Chem. A 2013, 1, 2773. doi: 10.1039/C3TA01476B  doi: 10.1039/C3TA01476B

    90. [90]

      Tada, H.; Mitsui, T.; Kiyonaga, T.; Akita, T.; Tanaka, K. Nat. Mater. 2006, 5, 782. doi: 10.1038/nmat1734  doi: 10.1038/nmat1734

    91. [91]

      Li, W. B.; Feng, C.; Dai, S. Y.; Yue, J. G.; Hua, F. X.; Hou, H. Appl. Catal. B-Environ. 2015, 168–169, 465. doi: 10.1016/j.apcatb.2015.01.012

    92. [92]

      Xiao, M.; Luo, B.; Wang, S. C.; Wang, L. Z. J. Energy. Chem. 2018, 27, 1111. doi: 10.1016/j.jechem.2018.02.018  doi: 10.1016/j.jechem.2018.02.018

    93. [93]

      Fu, J. W.; Bie, C. B.; Cheng, B.; Jiang, C. J.; Yu, J. G. ACS Sustain. Chem. Eng. 2018, 6, 2767. doi: 10.1021/acssuschemeng.7b04461  doi: 10.1021/acssuschemeng.7b04461

    94. [94]

      Kuehnel, M. F.; Creissen, C. E.; Sahm, C. D.; Wielend, D.; Schlosser, A.; Orchard, K. L.; Reisner. E. Angew. Chem. Int. Edit. 2019, 58, 5059. doi: 10.1002/anie.201814265  doi: 10.1002/anie.201814265

    95. [95]

      Yuan, Y. J.; Chen, D.; Zhong, J.; Yang, L. X.; Wang, J.; Liu, M. J.; Tu, W. G. Yu, Z. T.; Zou, Z. G. J. Mater. Chem. A 2017, 5, 15771. doi: 10.1039/C7TA04410K  doi: 10.1039/C7TA04410K

    96. [96]

      Xue, F.; Liu, M. C.; Cheng, C.; Deng, J. K.; Shi, J. W. ChemCatChem 2018, 10, 5441. doi: 10.1002/cctc.201801510  doi: 10.1002/cctc.201801510

    97. [97]

      Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F. Science 2017, 355, 1. doi: 10.1126/science.aad4998  doi: 10.1126/science.aad4998

    98. [98]

      Zhu, Y. Q.; Wang, T.; Xu, T.; Li, Y. X.; Wang, C. Y. Appl. Surf. Sci. 2019, 464, 36. doi: 10.1016/j.apsusc.2018.09.061  doi: 10.1016/j.apsusc.2018.09.061

    99. [99]

      Zhang, C.; Wu, Z. J.; Liu, J. J.; Piao, L. Y. Acta Phys. -Chim. Sin. 2017, 33, 1492.  doi: 10.3866/PKU.WHXB201704141

    100. [100]

      Hou, Y. D.; Laursen, A. B.; Zhang, J. S.; Zhang, G. G.; Zhu, Y. S.; Wang, X. C.; Dahl, S.; Chorkendorff, I. Angew. Chem. Int. Edit. 2013, 52, 3621. doi: 10.1002/anie.201210294  doi: 10.1002/anie.201210294

  • 加载中
    1. [1]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    2. [2]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    3. [3]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    4. [4]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    5. [5]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    6. [6]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    7. [7]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    8. [8]

      Wengao ZengYuchen DongXiaoyuan YeZiying ZhangTuo ZhangXiangjiu GuanLiejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252

    9. [9]

      Xingyan LiuChaogang JiaGuangmei JiangChenghua ZhangMingzuo ChenXiaofei ZhaoXiaocheng ZhangMin FuSiqi LiJie WuYiming JiaYouzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455

    10. [10]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    11. [11]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    12. [12]

      Fabrice Nelly HabarugiraDucheng YaoWei MiaoChengcheng ChuZhong ChenShun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886

    13. [13]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    14. [14]

      Xiao-Ya YuanCong-Cong WangBing Yu . Recent advances in FeCl3-photocatalyzed organic reactions via hydrogen-atom transfer. Chinese Chemical Letters, 2024, 35(9): 109517-. doi: 10.1016/j.cclet.2024.109517

    15. [15]

      Rongxin ZhuShengsheng YuXuanzong YangRuyu ZhuHui LiuKaikai NiuLingbao Xing . Construction of pyrene-based hydrogen-bonded organic frameworks as photocatalysts for photooxidation of styrene in water. Chinese Chemical Letters, 2024, 35(10): 109539-. doi: 10.1016/j.cclet.2024.109539

    16. [16]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    17. [17]

      Lihua MaSong GuoZhi-Ming ZhangJin-Zhong WangTong-Bu LuXian-Shun Zeng . Sensitizing photoactive metal–organic frameworks via chromophore for significantly boosting photosynthesis. Chinese Chemical Letters, 2024, 35(5): 108661-. doi: 10.1016/j.cclet.2023.108661

    18. [18]

      Jing-Jing ZhangLujun LouRui LvJiahui ChenYinlong LiGuangwei WuLingchao CaiSteven H. LiangZhen Chen . Recent advances in photochemistry for positron emission tomography imaging. Chinese Chemical Letters, 2024, 35(8): 109342-. doi: 10.1016/j.cclet.2023.109342

    19. [19]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

    20. [20]

      Hao DengYuxin HuiChao ZhangQi ZhouQiang LiHao DuDerek HaoGuoxiang YangQi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078

Metrics
  • PDF Downloads(143)
  • Abstract views(2010)
  • HTML views(838)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return