Citation: Jing Huang, Danyang Wang, Shuhua Li, Hong Fan, Louzhen Fan. Red Fluorescent Carbon Quantum Dots for Diagnosis of Acidic Microenvironment in Tumors[J]. Acta Physico-Chimica Sinica, ;2021, 37(10): 190506. doi: 10.3866/PKU.WHXB201905067 shu

Red Fluorescent Carbon Quantum Dots for Diagnosis of Acidic Microenvironment in Tumors

  • Corresponding author: Hong Fan, fanhong661016@163.com Louzhen Fan, lzfan@bnu.edu.cn
  • Received Date: 21 May 2019
    Revised Date: 9 July 2019
    Accepted Date: 11 July 2019
    Available Online: 22 July 2019

    Fund Project: the National Natural Science Foundation of China 21573019the National Natural Science Foundation of China 21872010

  • Cancer remains a major global cause of morbidity and mortality. Diagnosis at an early stage can significantly improve the survival of cancer patients. Cancers of different origins often have vastly different genotypes and phenotypes. Therefore, it is challenging to establish a universal strategy for cancer detection. Universal cancer detection can be potentially achieved by using pH-responsive probes. An acidic microenvironment is mainly caused by lactic acid accumulation in rapidly growing tumor cells. Based on the difference in pH between tumor and normal tissues, fluorescent materials that respond to a pH of around 6.8 are ideal for tumor detection. Carbon quantum dots (CQDs) have attracted much attention in bioimaging owing to their outstanding characteristics such as stable photoluminescence, low cytotoxicity, excellent biocompatibility, and resistance to photobleaching. In this study, red fluorescent CQDs (R-CQDs) were synthesized by the solvothermal treatment of 4-(dimethylamino) phenol in the presence of potassium periodate. The UV-Vis spectrum of the R-CQDs showed a characteristic absorption peak at 545 nm. The photoluminescence spectrum revealed an emission peak at 640 nm. The brightness of this photoluminescence peak was quantified to be 12.8% in terms of the absolute quantum yield (QY). Transmission electron microscopy (TEM) images showed that the R-CQDs have uniform sizes with an average diameter of 4 nm and a lattice spacing of 0.21 nm. Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) confirmed that the R-CQDs have a large number of carboxyl groups. The Raman spectrum of the R-CQDs showed the characteristic D band at 1340 cm-1 and G band at 1585 cm-1. The X-ray powder diffraction (XRD) pattern showed a broad (002) peak centered at around 23°. The R-CQDs were responsive to highly acidic or alkaline conditions. The incorporation of a block copolymer (MeO-PEG-PDPA), prepared by atom transfer radical polymerization (ATRP), on the R-CQDs produced pH-responsive fluorescent CQDs (pRF-R-CQDs). Photoluminescence (PL) spectra showed that the pRF-R-CQDs were responsive at pH 6.8. At pH > 6.8, the fluorescence of the pRF-R-CQDs would be quenched because of deprotonation of the amine groups. In contrast, protonation of the amine groups would lead to a dramatic increase in fluorescence emission. TEM images showed that the pRF-R-CQDs self-assemble and disassemble at pH 6.8 because of their pH-responsive properties. Compared with most existing fluorescent materials, the pRF-R-CQDs can effectively resist photobleaching and autofluorescence. Moreover, these pRF-R-CQDs have minimal toxicity and can distinguish tumors from normal tissues. Therefore, pRF-R-CQDs have great potential for use as a universal material in tumor microenvironment diagnosis.
  • 加载中
    1. [1]

      Hirsch, F. R.; Franklin, W. A.; Gazdar, A. F.; Bunn, P. A. Clin. Cancer Res. 2001, 7, 5.

    2. [2]

      Nothacker, M.; Duda, V.; Hahn, M.; Warm, M.; Degenhardt, F.; Madjar, H.; Weinbrenner, S. Cancer 2009, 9, 335. doi: 10.1186/1471-2407-9-335  doi: 10.1186/1471-2407-9-335

    3. [3]

      Nguyen, Q. T.; Tsien, R. Y. Nat. Rev. Cancer 2013, 13, 653. doi: 10.1038/nrc3566  doi: 10.1038/nrc3566

    4. [4]

      Shariat, S. F.; Karakiewicz, P. I.; Ashfaq, R.; Lerner, S. P.; Palapattu, G. S.; Cote, R. J.; Sagalowsky, A. I.; Lotan, Y. Cancer 2008, 112, 315. doi: 10.1002/cncr.23162  doi: 10.1002/cncr.23162

    5. [5]

      Cheang, M. C. U.; Voduc, D.; Bajdik, C.; Leung, S.; McKinney, S.; Chia, S. K.; Perou, C. M.; Nielsen, T. O. Clin. Cancer Res. 2008, 14, 1368. doi: 10.1158/1078-0432.CCR-07-1658  doi: 10.1158/1078-0432.CCR-07-1658

    6. [6]

      Li, T. F.; Li, Y. W.; Xiao, L.; Yu, H. T.; Fan, L. Z. Acta Chim. Sin. 2014, 72, 227. doi: 10.6023/A13101036  doi: 10.6023/A13101036

    7. [7]

      Peppercorn, J.; Shapira, I.; Deshields, T.; Kroetz, D.; Friedman, P.; Spears, P.; Collyar, D.; Shulman, L.; Dressler, L.; Bertagnolli, M. Cancer 2012, 118, 5060. doi: 10.1002/cncr.27515  doi: 10.1002/cncr.27515

    8. [8]

      Arya, S. K.; Bhansali, S. Chem Rev. 2011, 111, 6783. doi: 10.1021/cr100420s  doi: 10.1021/cr100420s

    9. [9]

      Stephan, C.; Cammann, H.; Meyer, H. A.; Lein, M.; Jung, K. Cancer Lett. 2007, 249, 18. doi:10.1016/j.canlet.2006.12.031  doi: 10.1016/j.canlet.2006.12.031

    10. [10]

      Shukla, H. D.; Mahmood, J.; Vujaskovic, Z. Cancer Lett. 2015, 369, 28. doi: 10.1016/j.canlet.2015.08.003  doi: 10.1016/j.canlet.2015.08.003

    11. [11]

      He, P.; Yuan, F. L.; Wang, Z. F.; Tan, Z. A.; Fan, L. Z.; Acta Phys. -Chim. Sin. 2018, 34 (11), 1250.  doi: 10.3866/PKU.WHXB201804041

    12. [12]

      Vaupel, P.; Kallinowski, F.; Okunieff, P. Cancer Res. 1989, 49, 6449. doi: content/49/23/6449

    13. [13]

      Denko, N. C. Nat. Rev. Cancer 2008, 8, 705. doi: 10.1038/nrc2468  doi: 10.1038/nrc2468

    14. [14]

      Bissell, M. J.; Hines, W. C. Nat. Med. 2011, 17, 320. doi: 10.1038/nm.2328  doi: 10.1038/nm.2328

    15. [15]

      Wang, L.; Li, C. J. Mater. Chem. 2011, 21, 15862. doi: 10.1039/c1jm12072g  doi: 10.1039/c1jm12072g

    16. [16]

      Webb, B. A.; Chimenti, M.; Jacobson, M. P.; Barber, D. L. Nat. Rev. Cancer 2011, 11, 671. doi: 10.1038/nrc3110  doi: 10.1038/nrc3110

    17. [17]

      Vander Heiden, M. G.; Cantley, L. C.; Thompson, C. B. Science 2009, 324, 1029. doi: 10.1126/science.1160809  doi: 10.1126/science.1160809

    18. [18]

      Kroemer, G.; Jaattela, M. Nat. Rev. Cancer 2005, 5, 886.

    19. [19]

      Tannock, I. F.; Rotin, D. Cancer Res. 1989, 49, 4373.

    20. [20]

      Zhang, X.; Lin, Y.; Gillies, R. J. J. Nucl. Med. 2010, 51, 1167. doi: 10.2967/jnumed.109.068981  doi: 10.2967/jnumed.109.068981

    21. [21]

      Montet, X.; Ntziachristos, V.; Grimm, J.; Weissleder, R. Cancer Res. 2005, 65, 6330. doi: 10.1158/0008-5472.  doi: 10.1158/0008-5472

    22. [22]

      Svoronos, A.; Braddock, D. T.; Glazer, P. M.; Engelman, D. M.; Saltzman, W. M.; Slack, F. J. Nature 2015, 518, 107. doi: 10.1038/nature13905  doi: 10.1038/nature13905

    23. [23]

      Xie, W. J.; Fu, Y. Y.; Ma, H.; Zhang, M.; Fan, L. Z. Acta Chim. Sin. 2012, 70, 2169. doi: 10.6023/A12060302  doi: 10.6023/A12060302

    24. [24]

      Yuan, Y.; Ding, D.; Li, K.; Liu, J.; Liu, B. Small 2014, 10, 1967. doi: 10.1002/smll.201302765  doi: 10.1002/smll.201302765

    25. [25]

      Urano, Y.; Asanuma, D.; Hama, Y.; Koyama. Y.; Kamiya, M.; Nagano, T.; Hasegawa, A. Nat. Med. 2009, 15, 104. doi: 10.1038/nm.1854  doi: 10.1038/nm.1854

    26. [26]

      Reshetnyak, Y. K.; Andreev, O. A.; Lehnert, U.; Engelman, D. M. Proc. Nat. Acad. Sci. U.S.A. 2006, 103, 6460. doi: 10.1073/pnas.0601463103  doi: 10.1073/pnas.0601463103

    27. [27]

      Zhang, M.; Bai, L.; Shang, W.; Xie, W; Fang, D.; Sun, H.; Fan, L.; Han, M.; Liu, C.; Yang, S. J. Mater. Chem. 2012, 22, 7461. doi: 10.1039/c2jm16835a  doi: 10.1039/c2jm16835a

    28. [28]

      Fan, Z.; Li, Y.; Li, X.; Fan, L.; Zhou, S.; Fang, D.; Yang, S. Carbon 2014, 70, 149-156. doi: 10.1016/j.carbon.2013.12.085  doi: 10.1016/j.carbon.2013.12.085

    29. [29]

      Yuan, F.; Wang, Z.; Li, S.; Tan, Z.; Fan, L.; Yang, S. Adv. Mater. 2017, 29, 1604436. doi: 10.1002/adma.201604436  doi: 10.1002/adma.201604436

    30. [30]

      Yuan, F.; Yuan, T.; Sui, L.; Wang, Z.; Fan, L.; Tan, Z. Nat. Commun. 2018, 9, 2249. doi: 10.1038/s41467-018-04635-5  doi: 10.1038/s41467-018-04635-5

    31. [31]

      Gong, N.; Ma, X.; Ye, X.; Zhou, Q.; Chen, X.; Tan, X.; Yao, S.; Huo, S; Zhang, T.; Chen, S.; et al. Nat. Nanotech. 2019, 14, 379. doi: 10.1038/s41565-019-0373-6  doi: 10.1038/s41565-019-0373-6

    32. [32]

      Chen, D.; Feng, H. B.; Li, J. Chem. Rev. 2012, 112, 6027. doi: 10.1021/cr300115g  doi: 10.1021/cr300115g

    33. [33]

      Xi, Z. F.; Yuan, F. L.; Wang, Z. F; Li, S. H.; Fan, L. Z. Acta Chim. Sin. 2018, 76, 460. doi: 10.6023/A18020048  doi: 10.6023/A18020048

    34. [34]

      Fan, Z.; Zhou, S.; Garcia, C.; Fan, L.; Zhou, J. Nanoscale 2017, 9, 4928. doi: 10.1039/c7nr00888k  doi: 10.1039/c7nr00888k

    35. [35]

      Li, S.; Zhou, S.; Li, Y.; Zhu, J.; Fan, L.; Yang, S. ACS Appl. Mater. Interfaces 2017, 9, 22332. doi: 10.1021/acsami.7b07267  doi: 10.1021/acsami.7b07267

    36. [36]

      Sun, M.; Liu, H.; Liu, Y.; Qu, J.; Li, J. Nanoscale, 2015, 7, 1250. doi: 10.1039/c4nr05838k  doi: 10.1039/c4nr05838k

    37. [37]

      Helmlinger, G.; Yuan, F.; Dellian, M.; Jain, R. K. Nat. Med. 1997, 3, 177. doi: 10.1038/nm0297-177  doi: 10.1038/nm0297-177

    38. [38]

      Volk, T.; Jahde, E.; Fortmeyer, H. P.; Glusenkamp, K. H.; Rajewsky, M. F. Br. J. Cancer 1993, 68, 492. doi: 10.1038/bjc.1993.375  doi: 10.1038/bjc.1993.375

    39. [39]

      Wang, Y.; Zhou, K.; Huang, G.; Hensley, C.; Huang, X.; Ma, X.; Zhao, T.; Sumer, B. D.; DeBerardinis, R. J.; Gao, J. Nat. Mater. 2014, 13, 204. doi: 10.1038/NMAT3819  doi: 10.1038/NMAT3819

    40. [40]

      Li, C.; Xia, J. A.; Wei, X. B.; Yan, H. H.; Si, Z.; Ju, S. H. Adv. Funct. Mater. 2010, 20, 2222. doi: 10.1002/adfm.201000038  doi: 10.1002/adfm.201000038

    41. [41]

      Li, L.; Ji, J.; Fei, R.; Wang, C.; Lu, Q.; Zhang, J.; Jiang, L.; Zhu, J. Adv. Funct. Mater. 2012, 22, 2971. doi: 10.1002/adfm.201200166  doi: 10.1002/adfm.201200166

    42. [42]

      Zheng, X.; Than, A.; Ananthanaraya, A.; Kim, D.; Chen, P. ACS Nano 2013, 7, 6278. doi: 10.1021/nn4023137  doi: 10.1021/nn4023137

    43. [43]

      Zhou, K. J.; Liu, H. M.; Zhang, S.R.; Huang, X. N.; Wang, Y. G.; Huang G.; Sumer, B. D.; Gao, J. M. J. Am. Chem. Soc. 2012, 134, 7803. doi: 10.1021/ja300176w  doi: 10.1021/ja300176w

    44. [44]

      Hu, C.; Mu, Y.; Li, M.; Qiu, J. Acta Phys. -Chim. Sin. 2019, 35 (6), 572.  doi: 10.3866/PKU.WHXB201806060

    45. [45]

      Zhu, S.; Zhang, J; Qiao, C.; Tang, S.; Li, Y.; Yuan, W.; Li, B.; Tian, L.; Liu, F.; Hu, R.; et al. Chem. Commun. 2011, 47, 6858. doi: 10.1039/C1CC11122A  doi: 10.1039/C1CC11122A

    46. [46]

      Jain, R. K. Cancer Metast. Rev. 1987, 6, 559. doi: 10.1007/BF00047468  doi: 10.1007/BF00047468

  • 加载中
    1. [1]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    2. [2]

      Chengcheng Si Linshan Chai Huiyuan Liu Liye Sun Shijian Cheng Hailing Li Wenyun Wang Fang Liu Qing Feng Min Liu . Harry Potter China Tour Themed Innovative Science Popularization Experiment: Chemistry Magic Meets the Real World at Wuhan Station. University Chemistry, 2024, 39(9): 283-287. doi: 10.12461/PKU.DXHX202401069

    3. [3]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    4. [4]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    5. [5]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    6. [6]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    7. [7]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    8. [8]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    9. [9]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    10. [10]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    11. [11]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    12. [12]

      Nana Wang Gaosheng Zhang Huosheng Li Tangfu Xiao . Discussion on the Teaching Reform of Environmental Functional Materials within the Context of “Double First-Class” Initiative: Emphasizing the Integration of Industry, Academia, Research, and Application. University Chemistry, 2024, 39(6): 137-144. doi: 10.3866/PKU.DXHX202312010

    13. [13]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    14. [14]

      Jianye KangXinyu YangXuhao YangJiahui SunYuhang LiuShutao WangWenlong Song . Carbon dots-enhanced pH-responsive lubricating hydrogel based on reversible dynamic covalent bondings. Chinese Chemical Letters, 2024, 35(5): 109297-. doi: 10.1016/j.cclet.2023.109297

    15. [15]

      Shuang LiJiayu SunGuocheng LiuShuo ZhangZhong ZhangXiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148

    16. [16]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    17. [17]

      Yan LiuYang WangJiayi ZhuXuxian SuXudong LinLiang XuXiwen Xing . Employing pH-responsive RNA triplex to control CRISPR/Cas9-mediated gene manipulation in mammalian cells. Chinese Chemical Letters, 2024, 35(9): 109427-. doi: 10.1016/j.cclet.2023.109427

    18. [18]

      Tongyu Zheng Teng Li Xiaoyu Han Yupei Chai Kexin Zhao Quan Liu Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107

    19. [19]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    20. [20]

      Lei Shu Zimin Duan Yushen Kang Zijian Zhao Hong Wang Lihua Zhu Hui Xiong Nan Wang . An Exploration of the CO2-Involved Carbon Cycle World. University Chemistry, 2024, 39(5): 144-153. doi: 10.3866/PKU.DXHX202309084

Metrics
  • PDF Downloads(12)
  • Abstract views(608)
  • HTML views(174)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return