Progress in Thermal Analysis Kinetics
- Corresponding author: Ren Ning, ningren9@163.com Zhang Jianjun, jjzhang6@163.com
Citation: Ren Ning, Wang Fang, Zhang Jianjun, Zheng Xinfang. Progress in Thermal Analysis Kinetics[J]. Acta Physico-Chimica Sinica, ;2020, 36(6): 190506. doi: 10.3866/PKU.WHXB201905062
Hu, R. Z.; Gao, S. L.; Zhao, F. Q.; Shi, Q. Z.; Zhang, T. L.; Zhang, J. J. Thermal Analysis Kinetics, 2nd ed.; Science Press: Beijing, China, 2008; pp. 1–19.
Brown, M. E.; Maciejewski, M.; Vyazovkin, S.; Thermochim. Acta 2000, 355, 125. doi: 10.1016/S0040-6031(00)00443-3
doi: 10.1016/S0040-6031(00)00443-3
Lu, Z. R. Chin. J. Inorg. Chem. 1998, 14 (2), 119.
doi: 10.3321/j.issn:1001-4861.1998.02.001
Ren, N.; Zhang, J. J. Prog. Chem. 2006, 18, 410.
doi: 10.3321/j.issn:1005-281X.2006.04.005
Vyazovkin, S. Thermochim. Acta 2000, 355, 155. doi: 10.1016/S0040-6031(00)00445-7
doi: 10.1016/S0040-6031(00)00445-7
Burnham, A. K. Thermochim. Acta 2000, 355, 165. doi: 10.1016/S0040-6031(00)00446-9
doi: 10.1016/S0040-6031(00)00446-9
Roduit, B. Thermochim. Acta 2000, 355, 171. doi: 10.1016/S0040-6031(00)00447-0
doi: 10.1016/S0040-6031(00)00447-0
Ozawa, T. Bull. Chem. Soc. Jpn. 1965, 38, 1881.
doi: 10.1246/bcsj.38.1881
Flynn, J. H., Wall, L. A. J. Polym. Sci. B 1966, 4, 323. doi: 10.1002/pol.1966.110040504
doi: 10.1002/pol.1966.110040504
Kissinger, H. E. Anal. Chem. 1957, 29, 1702.
doi: 10.1021/ac60131a045
Friedman, H. L. J. Polym. Sci. C 1964, 6, 183.
Yu, H.Y.; Wang, F.; Liu, Q. C.; Ma, Q. Y. Acta Phys. -Chim. Sin. 2017, 33, 344.
doi: 10.3866/PKU.WHXB201611023
Li, J.; Chen, L. Z.; Wang, J. L.; Lan, G. C.; Hou, H.; Li, M. Acta Phys. -Chim. Sin. 2015, 31, 2049.
doi: 10.3866/PKU.WHXB201510092
Ding, Z. M.; Cao, W. L.; Ma, X.; Hang, X. J.; Zhang, Y.; Xu, K. Z.; Song, J. R.; Huang, J. J. Mol. Struct. 2019, 1175, 373. doi: 10.1016/j.molstruc.2018.07.107
doi: 10.1016/j.molstruc.2018.07.107
Wang, S. X.; Tan, Z. C.; Che, R. X.; Li, Y. S. Acta. Chim. Sin. 2012, 70, 212.
doi: 10.6023/A1104075
He, N. Z.; Suo, Z. R.; Guo, R.; Zhang Y.; Liu, R. Q. Chin. J. Energ. Mater. 2016, 24, 1183.
doi: 10.11943/j.issn.1006-9941.2016.12.009
Zhang, S. Y.; Liu, B.; Yang, J.; Zhang, S. H.; Yue, K. F. J. Solid State Chem. 2019, 273, 141. doi: 10.1016/j.jssc.2019.02.041
doi: 10.1016/j.jssc.2019.02.041
Vinícius, D. C.; Tannous, K. Thermochim. Acta 2017, 657, 56. doi: 10.1016/j.tca.2017.09.016
doi: 10.1016/j.tca.2017.09.016
Vyazovkin, S. Isoconversional Kinetics of Thermally Stimulated Processes; Springer: Heidelberg, Germany, 2015.
Starink, M. J. Thermochim. Acta 1996, 288, 97. doi: 10.1016/S0040-6031(96)03053-5
doi: 10.1016/S0040-6031(96)03053-5
Vyazovkin, S.; Goryachko, V. Thermochim. Acta 1992, 194, 221. doi:10.1016/0040-6031(92)80020-W
doi: 10.1016/0040-6031(92)80020-W
Vyazovkin, S.; Wight, C. A. Thermochim. Acta 1999, 340, 53. doi: 10.1016/S0040-6031(99)00253-1
doi: 10.1016/S0040-6031(99)00253-1
Li, C. R.; Tang, T. B. Thermochim. Acta 1999, 325, 43. doi: 10.1016/S0040-6031(98)00568-1
doi: 10.1016/S0040-6031(98)00568-1
Budrugeac, P. J. Therm. Anal. Cal. 2002, 68, 131. doi: 10.1023/A:1014932903582
doi: 10.1023/A:1014932903582
Vyazovkin, S.; Dollimore, D. J. Chem. Inform. Comp. Sci. 1996, 36, 42. doi: 10.1021/ci950062m
doi: 10.1021/ci950062m
Popescu, C. Thermochim. Acta 1996, 285, 309. doi: 10.1016/0040-6031(96)02916-4
doi: 10.1016/0040-6031(96)02916-4
Zhang, J. J.; Ren, N. Chin. J. Chem. 2004, 22, 1459. doi: 10.1002/cjoc.20040221218
doi: 10.1002/cjoc.20040221218
Sun, S. J.; Ren, N.; Zhang J. J.; Ye, H. M.; Wang, J. F. J. Chem. Eng. Data 2010, 55, 2458. doi: 10.1021/je900858d
doi: 10.1021/je900858d
Xi, G. X.; Song, S. L.; Liu, Q. J. Henan Normal Univ. (Nat. Sci. Ed.) 2004, 32, 78.
Vyazovkina, S.; Burnhamb, A. K.; Criadoc, J. M.; Pérez-Maquedac, L. A.; Popescud, C.; Sbirrazzuoli, N. Thermochim. Acta 2011, 520, 1. doi: 10.1016/j.tca.2011.03.034
doi: 10.1016/j.tca.2011.03.034
Vyazovkina, S. Handbook of Thermal Analysis and Calorimetry, Vol. 6; Elseviver: Amsterdam, The Netherlands, 2018, pp. 131–172. doi: 10.1016/B978-0-444-64062-8.00008-5 doi: 10.1016/B978-0-444-64062-8.00008-5
Vyazovkina, S. Anal. Chem. 2010, 82, 4936. doi: 10.1021/ac100859s
doi: 10.1021/ac100859s
Vyazovkina, S. Anal. Chem. 2008, 80, 4301. doi: 10.1021/ac8005999
doi: 10.1021/ac8005999
Burnham, A.K.; Dinh, L. N. J. Therm. Anal. Calorim. 2007, 89, 479. doi: 10.1007/s10973-006-8486-1
doi: 10.1007/s10973-006-8486-1
Sbirrazzuoli, N.; Vincent, L.; Mija, A.; Guigo, N. Chemometr. Intell. Lab. 2009, 96, 219. doi: 10.1016/j.chemolab.2009.02.002
doi: 10.1016/j.chemolab.2009.02.002
Criado, J. M.; Sánchez-Jiménez, P. E.; Pérez-Maqueda, L. A. J. Therm. Anal. Calorim. 2008, 92, 199. doi: 10.1007/s10973-007-8763-7
doi: 10.1007/s10973-007-8763-7
Cheng, Y. Chin. J. Inorg. Chem. 2006, 22, 287.
doi: 10.3321/j.issn:1001-4861.2006.02.018
Cheng, Y.; Li, Y. C.; Huang, Y. L. J. Therm. Anal. Calorim. 2008, 93, 111. doi: 10.1007/s10973-007-8825-x
doi: 10.1007/s10973-007-8825-x
Ortega, A. Thermochim. Acta 2008, 474, 81. doi: 10.1016/j.tca.2008.05.003
doi: 10.1016/j.tca.2008.05.003
Rotaru, A.; Gosa, M. J. Therm. Anal. Calorim. 2009, 97, 421. doi: 10.1007/s10973-008-9772-x
doi: 10.1007/s10973-008-9772-x
Vyazovkin, S. J. Comput. Chem. 2001, 22, 178. doi:10.1002/1096-987X
doi: 10.1002/1096-987X
Cai, J. M.; Chen, S. Y. J. Comput. Chem. 2009, 30, 1986. doi: 10.1002/jcc.21195
doi: 10.1002/jcc.21195
Han, Y. Q.; Chen, H. X.; Liu, N. A. J. Therm. Anal. Calorim. 2011, 104, 679. doi: 10.1007/s10973-010-1029-9
doi: 10.1007/s10973-010-1029-9
Budrugeac, P.; Segal, E. J. Mater. Sci. 2001, 36, 2707. doi: 10.1023/A:1017964813621
doi: 10.1023/A:1017964813621
Han, Y. Q.; Liu, N. A. Fire Safety Sci. 2011, 20, 9.
Budrugeac, P. Thermochim. Acta 2018, 661, 116. doi: 10.1016/j.tca.2018.01.025
doi: 10.1016/j.tca.2018.01.025
Qi, X. X.; Ren, N.; Xu, S. L.; Zhang, J. J.; Zong, G. C.; Gao, J.; Geng, L. N.; Wang, S. P.; Shi, S. K. RSC. Adv. 2015, 5, 9261. doi: 10.1039/c4ra12063a
doi: 10.1039/c4ra12063a
Wu, X. H.; He, S. M.; Ren, N.; Zhang, J. J. Sci. Sin. Chim. 2019, 49, 978.
doi: 10.1360/N032018-00222
Gao, Z. M.; Nakada, M.; Amasaki, I. Thermochim. Acta 2001, 369, 137. doi: 10.1016/S0040-6031(00)00760-7
doi: 10.1016/S0040-6031(00)00760-7
Zhang, K.; Lin, S. K.; Lin, M. L. Modern Scientific Instruments 2002, 5, 15.
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
Wenqi Gao , Xiaoyan Fan , Feixiang Wang , Zhuojun Fu , Jing Zhang , Enlai Hu , Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026
Xin Lv , Hongxing Zhang , Kaibo Duan , Wenhui Dai , Zhihui Wen , Wei Guo , Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090
Tiejun Su . The Construction and Application of the Calculation Formula for Endpoint Error in Precipitation Titration: A Case Study of the Mohr Method. University Chemistry, 2024, 39(11): 384-387. doi: 10.12461/PKU.DXHX202402039
Peng GENG , Guangcan XIANG , Wen ZHANG , Haichuang LAN , Shuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155
Simin Fang , Hong Wu , Wei Liu , Wei Wei , Hongyan Feng , Wan Li . Construction and Application of Teaching Resources for Inorganic and Analytical Chemistry Experimental Course in the Context of Digital Empowerment. University Chemistry, 2024, 39(10): 156-163. doi: 10.3866/PKU.DXHX202402053
Xiaohui Li , Ze Zhang , Jingyi Cui , Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027
Peifeng Su , Xin Lu . Development of Undergraduate Quantum Mechanics Module in Chemistry Department under the “Double First Class” Initiative. University Chemistry, 2024, 39(8): 99-103. doi: 10.3866/PKU.DXHX202401087
Hongyi Zhang , Zhihong Shi , Zhijun Zhang . A New Strategy for “De-formulized” Calculation of Dynamic Buffer Capacity in Analytical Chemistry Education. University Chemistry, 2024, 39(3): 390-394. doi: 10.3866/PKU.DXHX202309030
Ruming Yuan , Pingping Wu , Laiying Zhang , Xiaoming Xu , Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057
Chengpeng Liu , Yinxia Fu . Design and Practice of Ideological and Political Education for the Public Elective Course “Life Chemistry Experiment” in Universities. University Chemistry, 2024, 39(10): 242-248. doi: 10.12461/PKU.DXHX202404064