Citation: Ren Ning, Wang Fang, Zhang Jianjun, Zheng Xinfang. Progress in Thermal Analysis Kinetics[J]. Acta Physico-Chimica Sinica, ;2020, 36(6): 190506. doi: 10.3866/PKU.WHXB201905062 shu

Progress in Thermal Analysis Kinetics

  • Corresponding author: Ren Ning, ningren9@163.com Zhang Jianjun, jjzhang6@163.com
  • Received Date: 20 May 2019
    Revised Date: 10 June 2019
    Accepted Date: 10 June 2019
    Available Online: 14 June 2019

    Fund Project: The project was supported by the National Natural Science Foundation of China (21803016)the National Natural Science Foundation of China 21803016

  • Thermal analysis (TA) is a technology that can be applied to evaluate the relationship between the physical properties of substances and temperature changes under programmed temperature control. It has been widely used in many fields and is particularly useful for determining the thermal stability and service life of polymers and other materials, the stability of drugs, and the danger of flammable and explosive materials. Simultaneously, the mechanism of dehydration, decomposition, and degradation of inorganic materials or dissociation of complexes can be studied and the decomposition rates of environmental pollutants can be estimated. Recently, TA kinetics has become the most extensively studied topic in TA research. The main purpose of kinetic analysis is to obtain the three kinetic triplets of a reaction process, namely, activation energy Ea, pre-exponential factors A, and and mechanism function f(a). For a solid-state reaction, many mathematical models and corresponding data processing methods can be used for the study of TA kinetics. These methods can be classified as either isothermal or non-isothermal methods and further divided into integral and differential methods in the form of the kinetic equation. These equations can be divided into a single scanning rate and multiple scanning rate methods (isoconversion method) by the operation method. The isoconversion method can calculate activation energies without the mechanism function, and the complexity of the reaction can be determined by the change in activation energy as a function of conversion rate. Therefore, the International Confederation for Thermal Analysis and Calorimetry (ICTAC) recommends the isoconversion method for processing TA data. Because of the limitation of traditional isoconversion methods, novel isoconversion methods have been proposed over the past 10 years. The relationship among the existing dynamic analysis methods must be complementary, instead of competitive, because the reliability of the analysis results can be improved only through complementarity. Further efforts to popularize modern integral and differential methods with equal conversion rates are essential. Herein, the progress in isoconversion method development is briefly introduced. A novel kinetic equation and seven new isoconversion methods are reviewed, and the characteristics and limitations of these methods are discussed. In addition, the development trends and prospects of TA kinetics research methods are highlighted. We suggest that the Arrhenius formula should be modified on the basis of the relationship between the rate constant and temperature. The rate equation that is more suitable for non-isothermal and heterogeneous reactions should be used. The mechanism of multi-step solid-state reactions should be studied in depth, and unified standards must be adopted for the study of thermal decomposition kinetics. This represents imminent and important progress in the study of TA kinetics.
  • 加载中
    1. [1]

      Hu, R. Z.; Gao, S. L.; Zhao, F. Q.; Shi, Q. Z.; Zhang, T. L.; Zhang, J. J. Thermal Analysis Kinetics, 2nd ed.; Science Press: Beijing, China, 2008; pp. 1–19.

    2. [2]

      Brown, M. E.; Maciejewski, M.; Vyazovkin, S.; Thermochim. Acta 2000, 355, 125. doi: 10.1016/S0040-6031(00)00443-3  doi: 10.1016/S0040-6031(00)00443-3

    3. [3]

      Lu, Z. R. Chin. J. Inorg. Chem. 1998, 14 (2), 119.  doi: 10.3321/j.issn:1001-4861.1998.02.001

    4. [4]

      Ren, N.; Zhang, J. J. Prog. Chem. 2006, 18, 410.  doi: 10.3321/j.issn:1005-281X.2006.04.005

    5. [5]

      Vyazovkin, S. Thermochim. Acta 2000, 355, 155. doi: 10.1016/S0040-6031(00)00445-7  doi: 10.1016/S0040-6031(00)00445-7

    6. [6]

      Burnham, A. K. Thermochim. Acta 2000, 355, 165. doi: 10.1016/S0040-6031(00)00446-9  doi: 10.1016/S0040-6031(00)00446-9

    7. [7]

      Roduit, B. Thermochim. Acta 2000, 355, 171. doi: 10.1016/S0040-6031(00)00447-0  doi: 10.1016/S0040-6031(00)00447-0

    8. [8]

      Ozawa, T. Bull. Chem. Soc. Jpn. 1965, 38, 1881.  doi: 10.1246/bcsj.38.1881

    9. [9]

      Flynn, J. H., Wall, L. A. J. Polym. Sci. B 1966, 4, 323. doi: 10.1002/pol.1966.110040504  doi: 10.1002/pol.1966.110040504

    10. [10]

      Kissinger, H. E. Anal. Chem. 1957, 29, 1702.  doi: 10.1021/ac60131a045

    11. [11]

      Friedman, H. L. J. Polym. Sci. C 1964, 6, 183.

    12. [12]

      Yu, H.Y.; Wang, F.; Liu, Q. C.; Ma, Q. Y. Acta Phys. -Chim. Sin. 2017, 33, 344.  doi: 10.3866/PKU.WHXB201611023
       

    13. [13]

      Li, J.; Chen, L. Z.; Wang, J. L.; Lan, G. C.; Hou, H.; Li, M. Acta Phys. -Chim. Sin. 2015, 31, 2049.  doi: 10.3866/PKU.WHXB201510092
       

    14. [14]

      Ding, Z. M.; Cao, W. L.; Ma, X.; Hang, X. J.; Zhang, Y.; Xu, K. Z.; Song, J. R.; Huang, J. J. Mol. Struct. 2019, 1175, 373. doi: 10.1016/j.molstruc.2018.07.107  doi: 10.1016/j.molstruc.2018.07.107

    15. [15]

      Wang, S. X.; Tan, Z. C.; Che, R. X.; Li, Y. S. Acta. Chim. Sin. 2012, 70, 212.  doi: 10.6023/A1104075

    16. [16]

      He, N. Z.; Suo, Z. R.; Guo, R.; Zhang Y.; Liu, R. Q. Chin. J. Energ. Mater. 2016, 24, 1183.  doi: 10.11943/j.issn.1006-9941.2016.12.009

    17. [17]

      Zhang, S. Y.; Liu, B.; Yang, J.; Zhang, S. H.; Yue, K. F. J. Solid State Chem. 2019, 273, 141. doi: 10.1016/j.jssc.2019.02.041  doi: 10.1016/j.jssc.2019.02.041

    18. [18]

      Vinícius, D. C.; Tannous, K. Thermochim. Acta 2017, 657, 56. doi: 10.1016/j.tca.2017.09.016  doi: 10.1016/j.tca.2017.09.016

    19. [19]

      Vyazovkin, S. Isoconversional Kinetics of Thermally Stimulated Processes; Springer: Heidelberg, Germany, 2015.

    20. [20]

      Starink, M. J. Thermochim. Acta 1996, 288, 97. doi: 10.1016/S0040-6031(96)03053-5  doi: 10.1016/S0040-6031(96)03053-5

    21. [21]

      Vyazovkin, S.; Goryachko, V. Thermochim. Acta 1992, 194, 221. doi:10.1016/0040-6031(92)80020-W  doi: 10.1016/0040-6031(92)80020-W

    22. [22]

      Vyazovkin, S.; Wight, C. A. Thermochim. Acta 1999, 340, 53. doi: 10.1016/S0040-6031(99)00253-1  doi: 10.1016/S0040-6031(99)00253-1

    23. [23]

      Li, C. R.; Tang, T. B. Thermochim. Acta 1999, 325, 43. doi: 10.1016/S0040-6031(98)00568-1  doi: 10.1016/S0040-6031(98)00568-1

    24. [24]

      Budrugeac, P. J. Therm. Anal. Cal. 2002, 68, 131. doi: 10.1023/A:1014932903582  doi: 10.1023/A:1014932903582

    25. [25]

      Vyazovkin, S.; Dollimore, D. J. Chem. Inform. Comp. Sci. 1996, 36, 42. doi: 10.1021/ci950062m  doi: 10.1021/ci950062m

    26. [26]

      Popescu, C. Thermochim. Acta 1996, 285, 309. doi: 10.1016/0040-6031(96)02916-4  doi: 10.1016/0040-6031(96)02916-4

    27. [27]

      Zhang, J. J.; Ren, N. Chin. J. Chem. 2004, 22, 1459. doi: 10.1002/cjoc.20040221218  doi: 10.1002/cjoc.20040221218

    28. [28]

      Sun, S. J.; Ren, N.; Zhang J. J.; Ye, H. M.; Wang, J. F. J. Chem. Eng. Data 2010, 55, 2458. doi: 10.1021/je900858d  doi: 10.1021/je900858d

    29. [29]

      Xi, G. X.; Song, S. L.; Liu, Q. J. Henan Normal Univ. (Nat. Sci. Ed.) 2004, 32, 78.

    30. [30]

      Vyazovkina, S.; Burnhamb, A. K.; Criadoc, J. M.; Pérez-Maquedac, L. A.; Popescud, C.; Sbirrazzuoli, N. Thermochim. Acta 2011, 520, 1. doi: 10.1016/j.tca.2011.03.034  doi: 10.1016/j.tca.2011.03.034

    31. [31]

      Vyazovkina, S. Handbook of Thermal Analysis and Calorimetry, Vol. 6; Elseviver: Amsterdam, The Netherlands, 2018, pp. 131–172. doi: 10.1016/B978-0-444-64062-8.00008-5  doi: 10.1016/B978-0-444-64062-8.00008-5

    32. [32]

      Vyazovkina, S. Anal. Chem. 2010, 82, 4936. doi: 10.1021/ac100859s  doi: 10.1021/ac100859s

    33. [33]

      Vyazovkina, S. Anal. Chem. 2008, 80, 4301. doi: 10.1021/ac8005999  doi: 10.1021/ac8005999

    34. [34]

      Burnham, A.K.; Dinh, L. N. J. Therm. Anal. Calorim. 2007, 89, 479. doi: 10.1007/s10973-006-8486-1  doi: 10.1007/s10973-006-8486-1

    35. [35]

      Sbirrazzuoli, N.; Vincent, L.; Mija, A.; Guigo, N. Chemometr. Intell. Lab. 2009, 96, 219. doi: 10.1016/j.chemolab.2009.02.002  doi: 10.1016/j.chemolab.2009.02.002

    36. [36]

      Criado, J. M.; Sánchez-Jiménez, P. E.; Pérez-Maqueda, L. A. J. Therm. Anal. Calorim. 2008, 92, 199. doi: 10.1007/s10973-007-8763-7  doi: 10.1007/s10973-007-8763-7

    37. [37]

      Cheng, Y. Chin. J. Inorg. Chem. 2006, 22, 287.  doi: 10.3321/j.issn:1001-4861.2006.02.018

    38. [38]

      Cheng, Y.; Li, Y. C.; Huang, Y. L. J. Therm. Anal. Calorim. 2008, 93, 111. doi: 10.1007/s10973-007-8825-x  doi: 10.1007/s10973-007-8825-x

    39. [39]

      Ortega, A. Thermochim. Acta 2008, 474, 81. doi: 10.1016/j.tca.2008.05.003  doi: 10.1016/j.tca.2008.05.003

    40. [40]

      Rotaru, A.; Gosa, M. J. Therm. Anal. Calorim. 2009, 97, 421. doi: 10.1007/s10973-008-9772-x  doi: 10.1007/s10973-008-9772-x

    41. [41]

      Vyazovkin, S. J. Comput. Chem. 2001, 22, 178. doi:10.1002/1096-987X  doi: 10.1002/1096-987X

    42. [42]

      Cai, J. M.; Chen, S. Y. J. Comput. Chem. 2009, 30, 1986. doi: 10.1002/jcc.21195  doi: 10.1002/jcc.21195

    43. [43]

      Han, Y. Q.; Chen, H. X.; Liu, N. A. J. Therm. Anal. Calorim. 2011, 104, 679. doi: 10.1007/s10973-010-1029-9  doi: 10.1007/s10973-010-1029-9

    44. [44]

      Budrugeac, P.; Segal, E. J. Mater. Sci. 2001, 36, 2707. doi: 10.1023/A:1017964813621  doi: 10.1023/A:1017964813621

    45. [45]

      Han, Y. Q.; Liu, N. A. Fire Safety Sci. 2011, 20, 9.

    46. [46]

      Budrugeac, P. Thermochim. Acta 2018, 661, 116. doi: 10.1016/j.tca.2018.01.025  doi: 10.1016/j.tca.2018.01.025

    47. [47]

      Qi, X. X.; Ren, N.; Xu, S. L.; Zhang, J. J.; Zong, G. C.; Gao, J.; Geng, L. N.; Wang, S. P.; Shi, S. K. RSC. Adv. 2015, 5, 9261. doi: 10.1039/c4ra12063a  doi: 10.1039/c4ra12063a

    48. [48]

      Wu, X. H.; He, S. M.; Ren, N.; Zhang, J. J. Sci. Sin. Chim. 2019, 49, 978.  doi: 10.1360/N032018-00222

    49. [49]

      Gao, Z. M.; Nakada, M.; Amasaki, I. Thermochim. Acta 2001, 369, 137. doi: 10.1016/S0040-6031(00)00760-7  doi: 10.1016/S0040-6031(00)00760-7

    50. [50]

      Zhang, K.; Lin, S. K.; Lin, M. L. Modern Scientific Instruments 2002, 5, 15.

  • 加载中
    1. [1]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    2. [2]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    3. [3]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    4. [4]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    5. [5]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    6. [6]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    7. [7]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    8. [8]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    9. [9]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    10. [10]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    11. [11]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    12. [12]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    13. [13]

      Tiejun Su . The Construction and Application of the Calculation Formula for Endpoint Error in Precipitation Titration: A Case Study of the Mohr Method. University Chemistry, 2024, 39(11): 384-387. doi: 10.12461/PKU.DXHX202402039

    14. [14]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    15. [15]

      Simin Fang Hong Wu Wei Liu Wei Wei Hongyan Feng Wan Li . Construction and Application of Teaching Resources for Inorganic and Analytical Chemistry Experimental Course in the Context of Digital Empowerment. University Chemistry, 2024, 39(10): 156-163. doi: 10.3866/PKU.DXHX202402053

    16. [16]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    17. [17]

      Peifeng Su Xin Lu . Development of Undergraduate Quantum Mechanics Module in Chemistry Department under the “Double First Class” Initiative. University Chemistry, 2024, 39(8): 99-103. doi: 10.3866/PKU.DXHX202401087

    18. [18]

      Hongyi Zhang Zhihong Shi Zhijun Zhang . A New Strategy for “De-formulized” Calculation of Dynamic Buffer Capacity in Analytical Chemistry Education. University Chemistry, 2024, 39(3): 390-394. doi: 10.3866/PKU.DXHX202309030

    19. [19]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    20. [20]

      Chengpeng Liu Yinxia Fu . Design and Practice of Ideological and Political Education for the Public Elective Course “Life Chemistry Experiment” in Universities. University Chemistry, 2024, 39(10): 242-248. doi: 10.12461/PKU.DXHX202404064

Metrics
  • PDF Downloads(38)
  • Abstract views(1010)
  • HTML views(100)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return