Citation: Huang Juanjuan, Du Jianmei, Du Haiwei, Xu Gengsheng, Yuan Yupeng. Control of Nitrogen Vacancy in g-C3N4 by Heat Treatment in an Ammonia Atmosphere for Enhanced Photocatalytic Hydrogen Generation[J]. Acta Physico-Chimica Sinica, ;2020, 36(7): 190505. doi: 10.3866/PKU.WHXB201905056 shu

Control of Nitrogen Vacancy in g-C3N4 by Heat Treatment in an Ammonia Atmosphere for Enhanced Photocatalytic Hydrogen Generation

  • Corresponding author: Du Haiwei, haiwei.du@ahu.edu.cn Yuan Yupeng, yupengyuan@ahu.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 15 May 2019
    Revised Date: 28 June 2019
    Accepted Date: 28 June 2019
    Available Online: 5 July 2019

    Fund Project: the National Natural Science Foundation of China 551872003the Anhui Provincial Natural Science Foundation, China 1908085J21The project was supported by the National Natural Science Foundation of China (51872003, 51572003) and the Anhui Provincial Natural Science Foundation, China (1908085J21, 1908085QB83)the National Natural Science Foundation of China 51572003the Anhui Provincial Natural Science Foundation, China 1908085QB83

  • Graphite phase carbon nitride (g-C3N4) has shown excellent potential when applied to photocatalytic hydrogen (H2) generation upon exposure to visible light. However, the photocatalytic activity during hydrogen generation remains very low because of the high recombination rate of photogenerated electron-hole pairs and poor conductivity. Of the various strategies to improve H2 generation efficiency, N vacancies have proven to be effective at increasing the photocatalytic performance of g-C3N4. However, creating a N vacancy is primarily dependent on the post-heating of g-C3N4 in air at an elevated temperature, which generates a high concentration of N vacancies and consequent decreased crystallinity of g-C3N4. Thus, as-produced g-C3N4 offers low photocatalytic efficiency owing to the high recombination rate of photogenerated electron-hole pairs. Currently, controlling the concentration of N vacancy in g-C3N4 is an immense challenge. Herein, we report an effective means of achieving controllable N vacancies in g-C3N4 via urea in-situ generated NH3 at an elevated temperature. Specifically, g-C3N4 was first prepared with dicyandiamide as a precursor and subjected to rapid post-thermal treatment at 650 ℃ in a tubular furnace for 10 min, in which a desired amount of urea was mixed with g-C3N4 as the source material for NH3. X-ray diffraction analysis showed increased crystallinity and an unchanged crystal structure as compared to pristine g-C3N4. X-ray photoelectron spectroscopy and elemental analysis verified the reduced levels of N-vacancy concentration with urea added as the NH3 source when compared to the g-C3N4 post-heated in air without the addition of urea. In addition, UV-Vis spectra displayed an increased visible light absorption due to the generated N vacancies. Moreover, the specific surface area of g-C3N4 was progressively enlarged with an increase in the amount of urea added. The high crystallinity, low N-vacancy concentration, increased light absorption, and enlarged surface area translated into markedly increased photocatalytic H2 generation. The highest H2 generation rate from the optimized added amount of urea was 6.5 μmol·h-1, which was three times higher than that when using a g-C3N4 sample thermally treated without urea addition. The H2 generation enhancement was also the result of the increased separation efficiency of photogenerated electron-hole pairs as exemplified by the significantly decreased photoluminescence spectra and large transient photocurrent. The results of this study demonstrate the simultaneous production of highly crystalline g-C3N4 and controllable creation of N vacancy by in-situ generated NH3 through thermal decomposition of urea. This study reveals the immense potential of NH3 at controlling the N-vacancy concentration of g-C3N4 for increased photocatalytic H2 generation.
  • 加载中
    1. [1]

      Naseri, A.; Samadi, M.; Pourjavadi, A.; Moshfegh, A. Z.; Ramakrishna, S. J. Mater. Chem. A 2017, 5, 23406. doi: 10.1039/C7TA05131J  doi: 10.1039/C7TA05131J

    2. [2]

      Zhang, J. S.; Wang, B.; Wang, X. C. Acta Phys. -Chim. Sin. 2013, 29(9), 1865.  doi: 10.3866/PKU.WHXB201306173

    3. [3]

      Ye, S.; Wang, R.; Wu, M. Z.; Yuan, Y. P. Appl. Surf. Sci. 2015, 358, 15. doi: 10.1016/j.apsusc.2015.08.173  doi: 10.1016/j.apsusc.2015.08.173

    4. [4]

      Dong, F.; Wu, L.; Sun, Y.; Fu, M.; Wu, Z.; Lee, S. C. J. Mater. Chem. 2011, 21, 15171. doi: 10.1039/c1jm12844b  doi: 10.1039/c1jm12844b

    5. [5]

      Zhao, Y. C.; Yu, D. L.; Yanagisawa, O.; Matsugi, K.; Tian, Y. J. Diam. Relat. Mater. 2005, 14(10), 1700. doi: 10.1016/j.diamond.2005.06.017  doi: 10.1016/j.diamond.2005.06.017

    6. [6]

      Cui, Y. J.; Zhang, J. S.; Zhang, G. G, ; Huang, J. H.; Liu, P.; Antonietti, M.; Wang, X. C. J. Mater. Chem. 2011, 21, 13032. doi: 10.1039/C1JM11961C  doi: 10.1039/C1JM11961C

    7. [7]

      Kang, Y. Y.; Yang, Y. Q.; Yin L. C.; Kang, X. D.; Wang, L. Z.; Liu, G.; Cheng, M. H. Adv. Mater. 2016, 28(30), 6471. doi: 10.1002/adma.201601567  doi: 10.1002/adma.201601567

    8. [8]

      Xu, J.; Wu, H. T.; Wang, X.; Xue, B.; Li, Y. X.; Cao, Y. Phys. Chem. Chem. Phys. 2013, 15, 4510. doi: 10.1039/C3CP44402C  doi: 10.1039/C3CP44402C

    9. [9]

      Chai, B.; Peng, T. Y.; Mao, J.; Li, K.; Zan, L. Phys. Chem. Chem. Phys. 2012, 14, 16745. doi: 10.1039/C2CP42484C  doi: 10.1039/C2CP42484C

    10. [10]

      Chen, Y. F.; Huang, W. X.; He, D. L.; Situ, Y.; Huang, H. ACS Appl. Mater. Interfaces 2014, 6, 14405. doi: 10.1021/am503674e  doi: 10.1021/am503674e

    11. [11]

      Kumar, S.; Tonda, S.; Baruah, A.; Kumar, B.; Shanker, V. Dalton Trans. 2014, 43, 16105. doi: 10.1039/C4DT01076K  doi: 10.1039/C4DT01076K

    12. [12]

      Zhang, S. W.; Li, J. X.; Zeng, M. Y.; Li, J.; Xu, J. Z.; Wang, X. K. Chem. Eur. J. 2014, 20, 9805. doi: 10.1002/chem.201400060  doi: 10.1002/chem.201400060

    13. [13]

      Niu, P.; Qiao, M.; Li, Y. F.; Huang, L.; Zhai, T. Y. Nano Energy 2018, 44, 73. doi: 10.1016/j.nanoen.2017.11.059  doi: 10.1016/j.nanoen.2017.11.059

    14. [14]

      Wu, J. J.; Li, N.; Fang, H. B.; Li, X. T.; Zheng, Y. Z.; Tao, X. Chem. Eng. J. 2019, 358, 20. doi: 10.1016/j.cej.2018.09.208  doi: 10.1016/j.cej.2018.09.208

    15. [15]

      Chen, J. L.; Hong, Z. H.; Chen, Y. L.; Lin, B. Z.; Gao, B. F. Mater. Lett. 2015, 145, 129. doi: 10.1016/j.matlet.2015.01.073  doi: 10.1016/j.matlet.2015.01.073

    16. [16]

      Niu, P.; Liu, G.; Cheng, H. M. J. Phys. Chem. C 2012, 116, 11013. doi: 10.1021/jp301026y  doi: 10.1021/jp301026y

    17. [17]

      Sun, N.; Liang, Y.; Ma, X. J.; Chen, F. Chem. Eur. J. 2017, 23, 15466. doi: 10.1002/chem.201703168  doi: 10.1002/chem.201703168

    18. [18]

      Niu, P.; Li, H. Q.; Ma, Y.; Zhai, T. Y. J. Phys. Chem. C 2018, 122(36), 20717. doi: 10.1021/acs.jpcc.8b04849  doi: 10.1021/acs.jpcc.8b04849

    19. [19]

      Lei, J. T.; Sisson T. M.; Lamparski, H. G.; O'Brien, D. F. Macromolecules 1998, 32(1), 73. doi: 10.1021/ma9810363  doi: 10.1021/ma9810363

    20. [20]

      Yuan, Y. P.; Xu, W. T.; Yin, L. S.; Chao, X. W.; Liao, Y. X.; Ting, Y. Q.; Xue, C. Int. J. Hydrog. Energy 2013, 38(30), 13159. doi: 10.1016/j.ijhydene.2013.07.104  doi: 10.1016/j.ijhydene.2013.07.104

    21. [21]

      Zhang, Y. H.; Pan, Q. W.; Chai, G. Q.; Liang, M.; Dong, G.; Zhang, Q.; Qiu, J. Sci. Rep. 2013, 3, 1943. doi: 10.1038/srep01943  doi: 10.1038/srep01943

    22. [22]

      Ye, P.; Liu X. L.; Iocozzia, J.; Yuan, Y. P.; Gu, L. N.; Xu, G. S.; Lin, Z. Q. J. Mater. Chem. A 2017, 5, 8493. doi: 10.1039/C7TA01031A  doi: 10.1039/C7TA01031A

    23. [23]

      Pawar, R. C.; Kang, S. Park J. H.; Kim, J. H.; Ahn, S.; Lee, C. S. Sci. Rep. 2016, 6, 31147. doi: 10.1038/srep31147  doi: 10.1038/srep31147

    24. [24]

      Li, J.; Wu, D. D.; Iocozzia, J.; Du, H. W.; Liu, X. Q.; Yuan, Y. P.; Zhou, W.; Li, Z.; Xue, Z. M.; Lin, Z. Q. Angew. Chem. Int. Ed. 2019, 58 (7), 1985. doi: 10.1002/anie.201813117  doi: 10.1002/anie.201813117

  • 加载中
    1. [1]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    2. [2]

      Xiaoming Fu Haibo Huang Guogang Tang Jingmin Zhang Junyue Sheng Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214

    3. [3]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    4. [4]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    5. [5]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    6. [6]

      Chao-Long ChenRong ChenLa-Sheng LongLan-Sun ZhengXiang-Jian Kong . Anchoring heterometallic cluster on P-doped carbon nitride for efficient photocatalytic nitrogen fixation in water and air ambient. Chinese Chemical Letters, 2024, 35(4): 108795-. doi: 10.1016/j.cclet.2023.108795

    7. [7]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    8. [8]

      Fabrice Nelly HabarugiraDucheng YaoWei MiaoChengcheng ChuZhong ChenShun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886

    9. [9]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    10. [10]

      Wengao ZengYuchen DongXiaoyuan YeZiying ZhangTuo ZhangXiangjiu GuanLiejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252

    11. [11]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    12. [12]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    13. [13]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    14. [14]

      Hang Meng Bicheng Zhu Ruolun Sun Zixuan Liu Shaowen Cao Kan Zhang Jiaguo Yu Jingsan Xu . Dynamic photoluminescence switching of carbon nitride thin films for anticounterfeiting and encryption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100410-100410. doi: 10.1016/j.cjsc.2024.100410

    15. [15]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    16. [16]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    17. [17]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    18. [18]

      Wenhao ChenJian DuHanbin ZhangHancheng WangKaicheng XuZhujun GaoJiaming TongJin WangJunjun XueTing ZhiLonglu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168

    19. [19]

      Shuyuan Pan Zehui Yang Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373

    20. [20]

      Xiaxia XingXiaoyu ChenZhenxu LiXinhua ZhaoYingying TianXiaoyan LangDachi Yang . Polyethylene imine functionalized porous carbon framework for selective nitrogen dioxide sensing with smartphone communication. Chinese Chemical Letters, 2024, 35(9): 109230-. doi: 10.1016/j.cclet.2023.109230

Metrics
  • PDF Downloads(44)
  • Abstract views(1223)
  • HTML views(453)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return