Citation: WANG Mingyue, TAN Shijing, CUI Xuefeng, WANG Bing. Introducing Strain in Anatase TiO2(001) Films by Epitaxial Growth[J]. Acta Physico-Chimica Sinica, ;2019, 35(12): 1412-1421. doi: 10.3866/PKU.WHXB201905054 shu

Introducing Strain in Anatase TiO2(001) Films by Epitaxial Growth

  • Corresponding author: WANG Bing, bwang@ustc.edu.cn
  • Received Date: 14 May 2019
    Revised Date: 29 May 2019
    Accepted Date: 30 May 2019
    Available Online: 3 December 2019

    Fund Project: The project was supported by the National Key Research and Development Program of China (2016YFA0200603) and the National Natural Science Foundation of China (21573207)The project was supported by the National Key Research and Development Program of China 2016YFA0200603the National Natural Science Foundation of China 21573207

  • The anatase phase of TiO2 is often considered to have the highest reactivity among TiO2 polymorphs. Since the anatase TiO2(001) surface has a relatively high surface energy, it is expected to be active; however, because of its high surface energy, the surface generally forms a (1 × 4) reconstructed structure. A model named, "ad-molecule" (ADM) model, has been suggested for this (1 × 4) reconstruction, theoretically predicting that the surface retains a high reactivity. However, several recent experimental results have shown that the (1 × 4) reconstructed surface is not as active as expected, leading to a controversy about the actual atomic geometry of the reconstruction. Recent theoretical work suggests that the introduction of strain in the anatase TiO2(001) surface may enhance its reactivity by distorting the surface lattice. Thus, understanding the surface structure under strain may be the key to resolving these existing challenges with this material. Herein, we present a systematic study of the epitaxial growth of anatase TiO2(001) films on BaTiO3(001)/SrTiO3(001) substrates using pulsed laser deposition, characterized using X-ray diffraction (XRD), X-ray photoemission spectroscopy (XPS), scanning transmission electron microscopy (STEM), and scanning tunneling microscopy (STM). A thin layer of BaTiO3(001) was epitaxially grown on several SrTiO3(001) substrates to introduce strain in anatase TiO2(001) films by leveraging the relatively large lattice mismatch between the anatase TiO2(001) and BaTiO3(001). The XRD and STEM results showed that strain was partially introduced in the films when the thickness of the BaTiO3 layer was ~4–6 nm. The XPS results showed that a suitable thickness of the anatase TiO2(001) films was at least 15 nm, inducing a negligible concentration of outwardly diffused Sr and Ba from the substrate to the surface, and minimizing their possible effects on the surface structure. Dominant Ti4+ oxidation state was observed, indicating that the anatase TiO2(001) surface was fully oxidized. The surface structure as characterized by STM showed that the (1 × 4) reconstruction remained as films grew on the SrTiO3(001) substrate. However, ridges in the (1 × 4) reconstructed surface showed additional super-periods typically shown as dim features in the ridges separated by 2–5 lattice distances. Considering the high-resolution STM images and fully oxidized surface, we propose that these dim features may have been caused by "TiO2" vacancies in the ridges. This is consistent with the ad-oxygen model (AOM) for the fully-oxidized (1 × 4) reconstructed surface of anatase TiO2(001). In the AOM model, Ti atoms in the ridges were coordinated fivefold, in contrast with the fourfold coordination in the ADM model. We find direct evidence that the strains introduced in anatase TiO2(001) films can significantly modify ridge structure in the (1 × 4) reconstructed surface, providing key insights into the complicated surface structure, and suggesting important implications for furthering our understanding of the reactivity of this commonly used surface.
  • 加载中
    1. [1]

      Diebold, U. Surf. Sci. Rep. 2003, 48, 53. doi: 10.1016/S0167-5729(02)00100-0  doi: 10.1016/S0167-5729(02)00100-0

    2. [2]

      Fujishima, A.; Zhang, X. T.; Tryk, D. A. Surf. Sci. Rep. 2008, 63, 515. doi: 10.1016/j.surfrep.2008.10.001  doi: 10.1016/j.surfrep.2008.10.001

    3. [3]

      Henderson, M. A. Surf. Sci. Rep. 2011, 66, 185. doi: 10.1016/j.surfrep.2011.01.001  doi: 10.1016/j.surfrep.2011.01.001

    4. [4]

      Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J. L.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W. Chem. Rev. 2014, 114, 9919. doi: 10.1021/cr5001892  doi: 10.1021/cr5001892

    5. [5]

      Guo, Q.; Zhou, C. Y.; Ma, Z. B.; Ren, Z. F.; Fan, H. J.; Yang, X. M. Acta Phys. -Chim. Sin. 2016, 32, 28.  doi: 10.3866/PKU.WHXB201512081

    6. [6]

      Luttrell, T.; Halpegamage, S.; Tao, J.; Kramer, A.; Sutter, E.; Batzill, M. Sci. Rep. 2014, 4, 4043. doi: 10.1038/srep04043  doi: 10.1038/srep04043

    7. [7]

      Vittadini, A.; Selloni, A.; Rotzinger, F. P.; Grätzel, M. Phys. Rev. Lett. 1998, 81, 2954. doi: 10.1103/PhysRevLett.81.2954  doi: 10.1103/PhysRevLett.81.2954

    8. [8]

      Gong, X. Q.; Selloni, A.; Vittadini, A. J. Phys. Chem. B 2006, 110, 2804. doi: 10.1021/jp056572t  doi: 10.1021/jp056572t

    9. [9]

      Lu, Y. Acta Phys. -Chim. Sin. 2016, 32, 2185.  doi: 10.3866/PKU.WHXB201605255

    10. [10]

      Ohsawa, T.; Lyubinetsky, I. V.; Henderson, M. A.; Chambers, S. A. J. Phys. Chem. C 2008, 112, 20050. doi: 10.1021/jp8077997  doi: 10.1021/jp8077997

    11. [11]

      Pan, J.; Liu, G.; Lu, G. Q.; Cheng, H. M. Angew. Chem. Int. Ed. 2011, 123, 2181. doi: 10.1002/ange.201006057  doi: 10.1002/ange.201006057

    12. [12]

      Tachikawa, T.; Yamashita, S.; Majima, T. J. Am. Chem. Soc. 2011, 133, 7197. doi: 10.1021/ja201415j  doi: 10.1021/ja201415j

    13. [13]

      Wang, X.; Li, R. G.; Xu, Q.; Han, H. X.; Li, C. Acta Phys. -Chim. Sin. 2013, 29, 1566.  doi: 10.3866/PKU.WHXB201304284

    14. [14]

      Herman, G. S.; Gao, Y. Thin Solid Films 2001, 397, 157. doi: 10.1016/S0040-6090(01)01476-6  doi: 10.1016/S0040-6090(01)01476-6

    15. [15]

      Lazzeri, M.; Selloni, A. Phys. Rev. Lett. 2001, 87, 266105. doi: 10.1103/PhysRevLett.87.266105  doi: 10.1103/PhysRevLett.87.266105

    16. [16]

      Wang, Y.; Sun, H. J.; Tan, S. J.; Feng, H.; Cheng, Z. W.; Zhao, J.; Zhao, A. D.; Wang, B.; Luo, Y.; Yang, J. L.; et al. Nat. Commun. 2013, 4, 2214. doi: 10.1038/ncomms3214  doi: 10.1038/ncomms3214

    17. [17]

      Tang, H. Q.; Cheng, Z. W.; Dong, S. H.; Cui, X. F.; Feng, H.; Ma, X. C.; Luo, B.; Zhao, A. D.; Zhao, J.; Wang, B. J. Phys. Chem. C 2017, 121, 1272. doi: 10.1021/acs.jpcc.6b12917  doi: 10.1021/acs.jpcc.6b12917

    18. [18]

      Cheng, Z. W.; Tang, H. Q.; Cui, X. F.; Dong, S. H.; Ma, X. C.; Luo, B.; Tan, S. J.; Wang, B. J. Phys. Chem. C 2017, 121, 19930. doi: 10.1021/acs.jpcc.7b07256  doi: 10.1021/acs.jpcc.7b07256

    19. [19]

      Luo, B.; Tang, H. Q.; Cheng, Z. W.; Ji, Y. Y.; Cui, X. F.; Shi, Y. L.; Wang, B. J. Phys. Chem. C 2017, 121, 17289. doi: 10.1021/acs.jpcc.7b04530  doi: 10.1021/acs.jpcc.7b04530

    20. [20]

      Xu, M. L.; Wang, S.; Wang, H. Phys. Chem. Chem. Phys. 2017, 19, 16615. doi: 10.1039/C7CP03457A  doi: 10.1039/C7CP03457A

    21. [21]

      Shi, Y. L.; Sun, H. J.; Saidi, W. A.; Nguyen, M. C.; Wang, C. Z.; Ho, K. M.; Yang, J. L.; Zhao, J. J. Phys. Chem. Lett. 2017, 8, 1764. doi: 10.1021/acs.jpclett.7b00181  doi: 10.1021/acs.jpclett.7b00181

    22. [22]

      Sun, H. J.; Lu, W. C.; Zhao, J. J. Phys. Chem. C 2018, 122, 14528. doi: 10.1021/acs.jpcc.8b02777  doi: 10.1021/acs.jpcc.8b02777

    23. [23]

      Yuan, W. T.; Wu, H. L.; Li, H. B.; Dai, Z. X.; Zhang, Z.; Sun, C. H.; Wang, Y. Chem. Mater. 2017, 29, 3189 doi: 10.1021/acs.chemmater.7b00284  doi: 10.1021/acs.chemmater.7b00284

    24. [24]

      Xiong, F.; Yin, L. L.; Wang, Z. M.; Jin, Y. K.; Sun, G. H.; Gong, X. Q.; Huang, W. X. J. Phys. Chem. C 2017, 121, 9991. doi: 10.1021/acs.jpcc.7b02154  doi: 10.1021/acs.jpcc.7b02154

    25. [25]

      Vitale, E.; Zollo, G.; Agosta, L.; Gala, F.; Brandt, E. G.; Lyubartsev, A. J. Phys. Chem. C 2018, 122, 22407. doi: 10.1021/acs.jpcc.8b05646  doi: 10.1021/acs.jpcc.8b05646

    26. [26]

      Beinik, I.; Bruix, A.; Li, Z. S.; Adamsen, K. C.; Koust, S.; Hammer, B.; Wendt, S.; Lauritsen, J. V. Phys. Rev. Lett. 2018, 121, 206003. doi: 10.1103/PhysRevLett.121.206003  doi: 10.1103/PhysRevLett.121.206003

    27. [27]

      Murakami, M.; Matsumoto, Y.; Nakajima, K.; Makino, T.; Segawa, Y.; Chikyow, T.; Ahmet, P.; Kawasaki, M.; Koinuma, H. Appl. Phys. Lett. 2001, 78, 2664. doi: 10.1063/1.1365412  doi: 10.1063/1.1365412

    28. [28]

      Yamamoto, S.; Sumita, T.; Miyashita, A.; Naramoto, H. Thin Solid Films 2001, 401, 88. doi: 10.1016/S0040-6090(01)01636-4  doi: 10.1016/S0040-6090(01)01636-4

    29. [29]

      Du, Y. G.; Kim, D. J.; Kaspar, T. C.; Chamberlin, S. E.; Lyubinetsky, I.; Chambers, S. A. Surf. Sci. 2012, 606, 1443. doi: 10.1016/j.susc.2012.05.010  doi: 10.1016/j.susc.2012.05.010

    30. [30]

      Krupski, K.; Sanchez, A. M.; Krupski, A.; McConville, C. F. Appl. Surf. Sci. 2016, 388, 684. doi: 10.1016/j.apsusc.2016.02.214  doi: 10.1016/j.apsusc.2016.02.214

    31. [31]

      Liang, Y.; Gan, S. P.; Chambers, S. A.; Altman, E. I. Phys. Rev. B 2001, 63, 235402. doi: 10.1103/PhysRevB.63.235402  doi: 10.1103/PhysRevB.63.235402

    32. [32]

      Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D.; Chastain, J. Handbook of X-Ray Photoelectron Spectroscopy; Perkin-Elmer: Minnesota, 1992; pp. 104–139.

    33. [33]

      Watanabe, Y.; Matsumoto, Y.; Kunitomo, H.; Tanamura, M.; Nishimoto, E. Jpn. J. Appl. Phys. 1994, 33, 5182. doi: 10.1143/JJAP.33.5182  doi: 10.1143/JJAP.33.5182

    34. [34]

      Herman, G. S.; Sievers, M. R.; Gao, Y. Phys. Rev. Lett. 2000, 84, 3354. doi: 10.1103/PhysRevLett.84.3354  doi: 10.1103/PhysRevLett.84.3354

    35. [35]

      Xia, Y. B.; Zhu, K.; Kaspar, T. C.; Du, Y. G.; Birmingham, B.; Park, K. T.; Zhang, Z. R. J. Phys. Chem. Lett. 2013, 4, 2958. doi: 10.1021/jz401284u  doi: 10.1021/jz401284u

    36. [36]

      Shi, Y. L.; Sun, H. J.; Nguyen, M. C.; Wang, C. Z.; Ho, K. M.; Saidi, W. A.; Zhao, J. Nanoscale 2017, 9, 11553. doi: 10.1039/C7NR0245  doi: 10.1039/C7NR0245

  • 加载中
    1. [1]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    2. [2]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    3. [3]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    4. [4]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    5. [5]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    6. [6]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    7. [7]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    8. [8]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    9. [9]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    10. [10]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    11. [11]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    12. [12]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    13. [13]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    14. [14]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    15. [15]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    16. [16]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    17. [17]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    18. [18]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    19. [19]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    20. [20]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

Metrics
  • PDF Downloads(11)
  • Abstract views(549)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return