Advances in Biothermochemistry and Thermokinetics
- Corresponding author: Liu Yi, yiliuchem@whu.edu.cn
Citation: Xie Wen, Zhou Lianjiao, Xu Juan, Guo Qinglian, Jiang Fenglei, Liu Yi. Advances in Biothermochemistry and Thermokinetics[J]. Acta Physico-Chimica Sinica, ;2020, 36(6): 190505. doi: 10.3866/PKU.WHXB201905051
Held C., Sadowski G., Annu. Rev. Chem. Biomol. Eng. 2016, 7, 395. doi: 10.1146/annurev-chembioeng-080615-034704
doi: 10.1146/annurev-chembioeng-080615-034704
Maskow T., Schubert T., Wolf A., Buchholz F., Regestein L., Buechs J., Mertens F., Harms H., Lerchner J., Appl. Microbiol. Biotechnol. 2011, 92 (1), 55. doi: 10.1007/s00253-011-3497-7
doi: 10.1007/s00253-011-3497-7
Alberty R. A., Goldberg R. N., Biochemistry 1992, 31 (43), 10610. doi: 10.1021/bi00158a025
doi: 10.1021/bi00158a025
Liu Y., Xie W. H., Xie C. L., Qu S. S., Acta. Phys. -Chim. Sin. 1996, 12 (2), 156.
doi: 10.3866/PKU.WHXB19960213
Liu Y., Tan A. M., Xie C. L., Wang C. X., Acta. Phys. -Chim. Sin. 1996, 12 (4), 377.
Liu Y., Tan A. M., Xie C. L., Wang C. X., Acta. Phys. -Chim. Sin. 1996, 12 (5), 451.
Liu Y., Wang C. X., Xie C. L., Qu S. S., Acta. Phys. -Chim. Sin. 1996, 12 (7), 659.
Ozilgen M., Int. J. Energy Res. 2017, 41 (11), 1513. doi: 10.1002/er.3712
doi: 10.1002/er.3712
Kabo G. J., Blokhin A. V., Paulechka E., Roganov G. N., Frenkel M., Yursha L. A., Diky V., J. Chem. Thermodyn. 2019, 131, 225. doi: 10.1016/j.jct.2018.10.025
doi: 10.1016/j.jct.2018.10.025
Jiang L. L., Liu Y., Zheng S. X., Chin. J. Appl. Environ. Biol. 2016, 22 (4), 0732.
doi: 10.3724/SP.J.1145.2015.10031
Hansen L. D., Barros N., Transtrum M. K., Rodriguez-Anon J. A., Proupin J., Pineiro V., Arias-Gonzalez A., Thermochim. Acta 2018, 670, 128. doi: 10.1016/j.tca.2018.10.010
doi: 10.1016/j.tca.2018.10.010
Barros N., Feijoo S., Perez-Cruzado C., Hansen L. D., AIMS Microbiol. 2017, 3 (4), 762. doi: 10.3934/microbiol.2017.4.762
doi: 10.3934/microbiol.2017.4.762
Barros N., Salgado J., Villanueva M., Rodriquez-Anon. J.; Proupin J., Feijoo S., Martin-Pastor. M. J. Therm. Anal. Calorim. 2010, 104 (1), 53. doi: 10.1007/s10973-010-1163-4
doi: 10.1007/s10973-010-1163-4
Xu J. B., Feng Y. Z., Barros N., Zhong L. H., Chen R. R., Lin, X. G. J. Therm. Anal. Calorim. 2016, 127 (2), 1457. doi: 10.1007/s10973-016-5952-2
doi: 10.1007/s10973-016-5952-2
Cenciani K., Freitas S. D., Critter S. A. M., Airoldi C., Rev. Bras. Cienc. Solo 2011, 35, 1167. doi: 10.1590/S0100-06832011000400010
doi: 10.1590/S0100-06832011000400010
Cenciani K., Freitas S. D., Critter S. A. M., Airoldi C., Sci. Agric. 2008, 65 (6), 674. doi: 10.1590/S0103-90162008000600016
doi: 10.1590/S0103-90162008000600016
Menert A., Paalme V., Juhkam J., Vilu R., Thermochim. Acta 2004, 420 (1–2), 89. doi: 10.1016/j.tca.2003.12.032
doi: 10.1016/j.tca.2003.12.032
Haman N., Ferrentino G., Imperiale S., Scampicchio M., J. Therm. Anal. Calorim. 2008, 132 (2), 1065. doi: 10.1007/s10973-018-6995-3
doi: 10.1007/s10973-018-6995-3
Hasan S. M. K., Manzocco L., Morozova K., Nicoli M. C., Scampicchio M., Thermochim. Acta 2017, 649, 63. doi: 10.1016/j.tca.2017.01.008
doi: 10.1016/j.tca.2017.01.008
Hasan S. M. K., .; Asaduzzaman M., Merkyte V., Morozova K., Scampicchio M., Food Anal. Meth. 2017, 11 (2), 432. doi: 10.1007/s12161-017-1014-z
doi: 10.1007/s12161-017-1014-z
Haman N., Longo E., Schiraldi A., Scampicchio M., Thermochim. Acta 2017, 658, 1. doi: 10.1016/j.tca.2017.10.012
doi: 10.1016/j.tca.2017.10.012
Morozova K., Andreotti C., Armani M., Cavani L., Cesco S., Cortese L., Gerbi V., Mimmo T., Spena P. R., Scampicchio M., J. Therm. Anal. Calorim. 2016, 127 (2), 1351. doi: 10.1007/s10973-016-5891-y
doi: 10.1007/s10973-016-5891-y
Rakhmatullina D. F., Gordon L. K., Ponomareva A. A., Ogorodnikova T. I., Alyab'ev A. Y., Iyudin V. S., Obynochnyi A. A., Russ. J. Plant Physiol. 2011, 58 (1), 100. doi: 10.1134/S1021443710061044
doi: 10.1134/S1021443710061044
Yan C. N., Liu Y., Yan W., Song Z. H., Qu S. S., Chin. J. Nat. 1997, 19 (5), 288.
Gao D., Ren Y. S., Yan D., Acta Pharm. Sin. B 2014, 49 (3), 385. doi: 10.16438/j.0513-4870.2014.03.018
doi: 10.16438/j.0513-4870.2014.03.018
Winkelmann M., Hunger N., Huttl R., Wolf G., Thermochim. Acta 2009, 482 (1–2), 12. doi:10.1016/j.tca.2008.10.007
doi: 10.1016/j.tca.2008.10.007
Russel M., Liu C. R., Alam A., Wang F., Yao J., Daroch M., Shah M. R., Wang Z. M., Environ. Sci. Pollut. Res. 2018, 25(19), 18519. doi: 10.1007/s11356-018-1926-1
doi: 10.1007/s11356-018-1926-1
Howard-Varona C., Hargreaves K. R., Abedon S. T., Sullivan M. B., ISME J. 2017, 11 (7), 1511. doi: 10.1038/ismej.2017.16
doi: 10.1038/ismej.2017.16
Xu J., Kiesel B., Kallies R., Jiang F. L., Liu Y., Maskow T., Microb. Biotechnol. 2018, 11 (6), 1112. doi: 10.1111/1751-7915.13042
doi: 10.1111/1751-7915.13042
Xu J., He H., Wang Y. Y., Yan R., Zhou L. J., Liu Y. Z., Jiang F. L., Maskow T., Liu Y., Environ. Sci.: Nano 2018, 5 (7), 1556. doi: 10.1039/c8en00142a
doi: 10.1039/C8EN00142A
Liu G. S., Liu Y., Chen X. D., Liu P., Shen P., Qu S. S., J. Virol. Methods 2003, 112 (1–2), 137. doi: 10.1016/S0166-0934(03)00214-3
doi: 10.1016/S0166-0934(03)00214-3
Liu G. S., Li M. J., Chen X. D., Liu Y., Zhu J. C., Shen P., Thermochim. Acta 2005, 435(1), 34. doi: 10.1016/j.tca.2005.03.022
doi: 10.1016/j.tca.2005.03.022
Liu G. S., Ran Z. L., Wang H. L., Liu Y., Shen P., Lu Y., Acta Chim. Sin. 2007, 65(10), 917.
doi: 10.3321/j.issn:0567-7351.2007.10.008
Brueckner D., Krahenbuhl S., Zuber U., Bonkat G., Braissant O., J. Appl. Microbiol. 2017, 123 (3), 773. doi: 10.1111/jam.13520
doi: 10.1111/jam.13520
Gaisford S., Beezer A. E., Bishop A. H., Walker M., Parsons D., Int. J. Pharmacol. 2009, 366 (1–2), 111. doi: 10.1016/j.ijpharm.2008.09.005
doi: 10.1016/j.ijpharm.2008.09.005
Said J., Walker M., Parsons D., Stapleton P., Beezer A. E., Gaisford S., Int. J. Pharmacol. 2014, 474 (1–2), 177. doi: 10.1016/j.ijpharm.2014.08.034
doi: 10.1016/j.ijpharm.2014.08.034
Moreno M. G., Trampuz A., Di Luca M., Res. Microbiol. 2017, 72(11), 3085. doi: 10.1093/jac/dkx265
doi: 10.1093/jac/dkx265
Butini M. E., Cabric S., Trampuz A., Di Luca M., J. Antimicrob. Chemother. 2018, 161, 252. doi: 10.1016/j.colsurfb.2017.10.050
doi: 10.1016/j.colsurfb.2017.10.050
Tkhilaishvili T., Di Luca M., Abbandonato G., Maiolo E. M., Klatt A. B., Reuter M., Moncke-Buchner E., Trampuz A., J. Appl. Microbiol. 2018, 169(Suppl, 9), 515. doi: 10.1016/j.resmic.2018.05.010
doi: 10.1016/j.resmic.2018.05.010
Wu F. G., Sun H. Y., Zhou Y., Deng G., Yu Z. W., RSC Adv. 2015, 5 (1), 726. doi: 10.1039/c4ra07569b
doi: 10.1039/C4RA07569B
Wu F. G., Jiang Y. W., Chen Z., Yu Z. W., Langmuir 2016, 32 (15), 3655. doi: 10.1021/acs.langmuir.6b00235
doi: 10.1021/acs.langmuir.6b00235
Said J., Walker M., Parsons D., Stapleton P., Beezer A. E., Gaisford S., Methods 2015, 76, 35. doi: 10.1016/j.ymeth.2014.12.002
doi: 10.1016/j.ymeth.2014.12.002
Mishra S., Chattopadhyay A., Naaz S., Ghosh A. K., Das A. R., Bandyopadhyay D., Life Sci. 2019, 218, 96. doi: 10.1016/j.lfs.2018.12.035
doi: 10.1016/j.lfs.2018.12.035
Dong P., Li J. H., Xu S. P., Wu X. J., Xiang X., Yang Q. Q., Jin J. C., Liu Y., Jiang F. L., J. Hazard. Mater. 2018, 308, 139. doi: 10.1016/j.jhazmat.2016.01.017
doi: 10.1016/j.jhazmat.2016.01.017
Zhao J., Ma L., Xiang X., Guo Q. L., Jiang F. L., Liu Y., Chemosphere 2016, 153, 414. doi: 10.1016/j.chemosphere.2016.03.082
doi: 10.1016/j.chemosphere.2016.03.082
Yang L. Y., Gao J. L., Gao T., Dong P., Ma L., Jiang F. L., Liu Y., J. Hazard. Mater. 2016, 301, 119. doi: 10.1016/j.jhazmat.2015.08.046
doi: 10.1016/j.jhazmat.2015.08.046
Lai L., Li Y. P., Mei P., Chen W., Jiang F. L., Liu Y., J. Membr. Biol. 2016, 249 (6), 757. doi: 10.1007/s00232-016-9920-3
doi: 10.1007/s00232-016-9920-3
Shore E. R., Awais M., Kershaw N. M., Gibson R. R., Pandalanen S., Latawiec D., Wen L., Javed M. A., Criddle D. N., Berry N., et al. J. Med. Chem. 2016, 59 (6), 2596. doi: 10.1021/acs.jmedchem.5b01801
doi: 10.1021/acs.jmedchem.5b01801
Jiao X. Y., Yuan L., Wu C., Liu Y. J., Jiang F. L., Hu Y. J., Liu Y., Toxicol. Res. 2018, 7(2), 191. doi: 10.1039/C7TX00234C
doi: 10.1039/C7TX00234C
Yuan L., Liu Y. J., He H., Jiang F. L.; Li H. R., Liu Y., Acta Phys. -Chim. Sin. 2018, 34 (1), 73.
doi: 10.3866/PKU.WHXB201707043
Yuan L., Gao T., He H., Jiang F. L., Liu Y., Toxicol. Res. 2017, 6(5), 621. doi: 10.1039/C7TX00079K
doi: 10.1039/C7TX00079K
Yuan L., Zhang J. Q., Liu Y. J., Zhao J., Jiang F. L., Liu Y., J. Inorg. Biochem. 2017, 177, 17. doi: 10.1016/j.jinorgbio.2017.08.012
doi: 10.1016/j.jinorgbio.2017.08.012
Zhao J., Zhou Z. Q., Jin J. C., Yuan L., He H., Jiang F. L., Yang X. G., Dai J., Liu Y., Chemosphere 2014, 100, 194. doi: 10.1016/j.chemosphere.2013.11.031
doi: 10.1016/j.chemosphere.2013.11.031
Xia C. F., Jin J. C., Yuan L., Zhao J., Chen X. Y., Jiang F. L., Qin C. Q., Dai J., Liu Y., Chemosphere 2013, 91(11), 1577. doi: 10.1016/j.chemosphere.2012.12.049
doi: 10.1016/j.chemosphere.2012.12.049
Frank N., Lissner A., Winkelmann M., Huttl R., Mertens F. O., Kaschabek S. R., Schlomann M., Biodegradation 2010, 21 (2), 179. doi: 10.1007/s10532-009-9292-9
doi: 10.1007/s10532-009-9292-9
Goldberg R. N., Schliesser J., Mittal A., Decker S. R., Santos A. F. L. O. M., Freitas V. L. S., Urbas A., Lang B. E., Heiss C., da Silva M. D. M. C. R., et al. J. Chem. Thermodyn. 2015, 81, 184. doi: 10.1016/j.jct.2014.09.006
doi: 10.1016/j.jct.2014.09.006
Popovic M., Woodfield B. F., Hansen L. D., J. Therm. Anal. Calorim. 2019, 128, 244. doi: 10.1016/j.jct.2018.08.006
doi: 10.1016/j.jct.2018.08.006
Liu W. T., Zhang Y. Z., Cui N. B., Wang T., Food Technol. Biotechnol. 2019, 76, 194. doi: 10.1016/j.procbio.2018.10.017
doi: 10.1016/j.procbio.2018.10.017
Mason M., Scampicchio M., Quinn C. F., Transtrum M. K., Baker N., Hansen L. D., Kenealey J. D., J. Food Sci. 2018, 83 (2), 326. doi: 10.1111/1750-3841.14023
doi: 10.1111/1750-3841.14023
Aggarwal N., Sharma M., Banipal T. S., Banipal P. K., J. Chem. Eng. Data 2019, 64 (2), 517. doi: 10.1021/acs.jced.8b00681
doi: 10.1021/acs.jced.8b00681
Kabo G. J., Paulechka Y. U., Voitkevich O. V., Blokhin A. V., Stepurko E. N., Kohut S. V., Voznyi Y. V., J. Chem. Thermodyn. 2015, 85, 101. doi: 10.1016/j.jct.2015.01.005
doi: 10.1016/j.jct.2015.01.005
Wu F. G., Jiang Y. W., Sun H. Y., Luo J. J., Yu Z. W., J. Phys. Chem. B 2015, 119 (45), 14382. doi: 10.1021/acs.jpcb.5b07277
doi: 10.1021/acs.jpcb.5b07277
Belliardo C., Di Giorgio C., Chaspoul F., Gallice P., Berge-Lefranc D., J. Chem. Thermodyn. 2018, 125, 271. doi: 10.1016/j.jct.2018.05.028
doi: 10.1016/j.jct.2018.05.028
Burova T. V., Grinberg N. V., Dubovik A. S., Olenichenko E. A., Orlov V. N., Grinberg V. Y. Polymer 2017, 108, 97. doi: 10.1016/j.polymer.2016.11.049
doi: 10.1016/j.polymer.2016.11.049
Escobar J. F. B., Restrepo M. H. P., Fernandez D. M. M., Martinez A. M., Giordani C., Castelli F., Sarpietro M. G., Colloids Surf. B 2018, 166, 203. doi: 10.1016/j.colsurfb.2018.03.023
doi: 10.1016/j.colsurfb.2018.03.023
Boros E., Sebak F., Heja D., Szakacs D., Zboray K., Schlosser G., Micsonai A., Kardos J., Bodor A., Pal G., J. Mol. Biol. 2019, 431 (3), 557. doi: 10.1016/j.jmb.2018.12.003
doi: 10.1016/j.jmb.2018.12.003
Krauss N., Wessner H., Welfle K., Welfle H., Scholz C., Seifert M., Zubow K., Ay J., Hahn M., Scheerer P., et al. Proteins: Struct., Funct., Genet. 2008, 73 (3), 552. doi: 10.1002/prot.22080
doi: 10.1002/prot.22080
Alvarez-Armenta A., Carvajal-Millan E., Pacheco-Aguilar R., Garcia-Sanchez G., Marquez-Rios E., Scheuren-Acevedo S. M., Ramirez-Suarez J. C., Environ. Sci. Pollut. Res. 2019, 57 (1), 39. doi: 10.17113/ftb.57.01.19.5848
doi: 10.17113/ftb.57.01.19.5848
Wu J. J., Xie D. W., Chen X. J., Tang Y. J., Wang L. X., Xie J. L., Wei D. Z., Process Biochem. 2019, 79, 97. doi: 10.1016/j.procbio.2018.12.018
doi: 10.1016/j.procbio.2018.12.018
Yang L. Y., Hua S. Y., Zhou Z. Q., Wang G. C., Jiang F. L., Liu Y., Colloids Surf. B 2017, 157, 261. doi: 10.1016/j.colsurfb.2017.05.065
doi: 10.1016/j.colsurfb.2017.05.065
Zhang Y., Xu Z. Q., Liu X. R., Qi Z. D., Jiang F. L., Liu Y., J. Solut. Chem. 2012, 41 (2), 351. doi: 10.1007/s10953-012-9791-x
doi: 10.1007/s10953-012-9791-x
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
Xinlong WANG , Zhenguo CHENG , Guo WANG , Xiaokuen ZHANG , Yong XIANG , Xinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259
Kun Li , Na Gao , Shuangyan Huan , Yuzhi Wang . Design of Ideological and Political Education for the Experiment of Detecting Cadmium with Anodic Stripping Voltammetry. University Chemistry, 2024, 39(2): 155-161. doi: 10.3866/PKU.DXHX202307068
Shuang Meng , Haixin Long , Zhou Zhou , Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008
Yang Liu , Peng Chen , Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085
Tianyu Feng , Guifang Jia , Peng Zou , Jun Huang , Zhanxia Lü , Zhen Gao , Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002
Jianfeng Yan , Yating Xiao , Xin Zuo , Caixia Lin , Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005