Citation: Xie Wen, Zhou Lianjiao, Xu Juan, Guo Qinglian, Jiang Fenglei, Liu Yi. Advances in Biothermochemistry and Thermokinetics[J]. Acta Physico-Chimica Sinica, ;2020, 36(6): 190505. doi: 10.3866/PKU.WHXB201905051 shu

Advances in Biothermochemistry and Thermokinetics

  • Corresponding author: Liu Yi, yiliuchem@whu.edu.cn
  • Received Date: 14 May 2019
    Revised Date: 19 June 2019
    Accepted Date: 19 June 2019
    Available Online: 27 June 2019

    Fund Project: The project was supported by the National Science Foundation of China (21873075, 21573168)the National Science Foundation of China 21573168the National Science Foundation of China 21873075

  • Biological systems can be regarded as complex and open thermodynamic systems. All processes involved in biological growth and metabolism are accompanied by material and energy exchange. During metabolism, energy in the organisms is released in the form of heat, i.e., metabolic heat, which is the basis for development in the field of biothermochemistry. The calorimetric method considers the thermal effects produced by the various forms of action as the research object, to reveal the law of energy change and quantitative energy conversion. Studying the thermodynamic processes of complex biological systems and related reactions through microcalorimetry and thermodynamic methods reflects the intrinsic laws of life-related processes macroscopically and intrinsically. With the tremendous development and progress in microcalorimetry in terms of the temperature measurement accuracy, stability of temperature control, automation, and multi-functionalization, calorimetry has been widely used in life sciences. It can be used to describe macroscopic processes such as ecosystems and biological evolution, observe organismal and cell growth, examine mitochondrial metabolism, and study problems at the molecular level, including enzymatic reactions and interactions between small molecules and biomacromolecules. Herein, the application of biomass calorimetry in the life sciences is reviewed. The status and progress of biomass calorimetry at different biological and structural levels, such as the ecosystem, biological, organ, cellular, subcellular, and molecular levels are introduced. For example, soil microbial metabolic activity is a universal index for evaluating soil quality. The growth and metabolism of organisms as well as the physical and chemical processes of substances in soil are often accompanied by heat release, which is usually a nonselective signal. The use of isothermal microcalorimetry to nonspecifically monitor and record soil microbial metabolic characteristics has promoted the study of microbial metabolism in complex soil systems. The application of calorimetry to the study of tissues and organs mainly involves the calorimetric study of isolated animal and plant tissues and organs. Calorimetry of animal and microbial cells is considered the most common application of calorimetry in life sciences research. It mainly involves the classification and identification of bacteria, their growth and metabolism, inhibition mechanisms of drugs on microbial growth, principles of kinetics, and the thermodynamic characteristics of microbial growth and metabolism. However, owing to the lack of specificity of biomass calorimetry and the lack of direct access to information at the molecular level, more applications of calorimetry combined with other analytical techniques (especially in biology, medicine, and pharmacy) are needed in the future.
  • 加载中
    1. [1]

      Held C., Sadowski G., Annu. Rev. Chem. Biomol. Eng. 2016, 7, 395. doi: 10.1146/annurev-chembioeng-080615-034704  doi: 10.1146/annurev-chembioeng-080615-034704

    2. [2]

      Maskow T., Schubert T., Wolf A., Buchholz F., Regestein L., Buechs J., Mertens F., Harms H., Lerchner J., Appl. Microbiol. Biotechnol. 2011, 92 (1), 55. doi: 10.1007/s00253-011-3497-7  doi: 10.1007/s00253-011-3497-7

    3. [3]

      Alberty R. A., Goldberg R. N., Biochemistry 1992, 31 (43), 10610. doi: 10.1021/bi00158a025  doi: 10.1021/bi00158a025

    4. [4]

      Liu Y., Xie W. H., Xie C. L., Qu S. S., Acta. Phys. -Chim. Sin. 1996, 12 (2), 156.  doi: 10.3866/PKU.WHXB19960213

    5. [5]

      Liu Y., Tan A. M., Xie C. L., Wang C. X., Acta. Phys. -Chim. Sin. 1996, 12 (4), 377.

    6. [6]

      Liu Y., Tan A. M., Xie C. L., Wang C. X., Acta. Phys. -Chim. Sin. 1996, 12 (5), 451.

    7. [7]

      Liu Y., Wang C. X., Xie C. L., Qu S. S., Acta. Phys. -Chim. Sin. 1996, 12 (7), 659.

    8. [8]

      Ozilgen M., Int. J. Energy Res. 2017, 41 (11), 1513. doi: 10.1002/er.3712  doi: 10.1002/er.3712

    9. [9]

      Kabo G. J., Blokhin A. V., Paulechka E., Roganov G. N., Frenkel M., Yursha L. A., Diky V., J. Chem. Thermodyn. 2019, 131, 225. doi: 10.1016/j.jct.2018.10.025  doi: 10.1016/j.jct.2018.10.025

    10. [10]

      Jiang L. L., Liu Y., Zheng S. X., Chin. J. Appl. Environ. Biol. 2016, 22 (4), 0732.  doi: 10.3724/SP.J.1145.2015.10031

    11. [11]

      Hansen L. D., Barros N., Transtrum M. K., Rodriguez-Anon J. A., Proupin J., Pineiro V., Arias-Gonzalez A., Thermochim. Acta 2018, 670, 128. doi: 10.1016/j.tca.2018.10.010  doi: 10.1016/j.tca.2018.10.010

    12. [12]

      Barros N., Feijoo S., Perez-Cruzado C., Hansen L. D., AIMS Microbiol. 2017, 3 (4), 762. doi: 10.3934/microbiol.2017.4.762  doi: 10.3934/microbiol.2017.4.762

    13. [13]

      Barros N., Salgado J., Villanueva M., Rodriquez-Anon. J.; Proupin J., Feijoo S., Martin-Pastor. M. J. Therm. Anal. Calorim. 2010, 104 (1), 53. doi: 10.1007/s10973-010-1163-4  doi: 10.1007/s10973-010-1163-4

    14. [14]

      Xu J. B., Feng Y. Z., Barros N., Zhong L. H., Chen R. R., Lin, X. G. J. Therm. Anal. Calorim. 2016, 127 (2), 1457. doi: 10.1007/s10973-016-5952-2  doi: 10.1007/s10973-016-5952-2

    15. [15]

      Cenciani K., Freitas S. D., Critter S. A. M., Airoldi C., Rev. Bras. Cienc. Solo 2011, 35, 1167. doi: 10.1590/S0100-06832011000400010  doi: 10.1590/S0100-06832011000400010

    16. [16]

      Cenciani K., Freitas S. D., Critter S. A. M., Airoldi C., Sci. Agric. 2008, 65 (6), 674. doi: 10.1590/S0103-90162008000600016  doi: 10.1590/S0103-90162008000600016

    17. [17]

      Menert A., Paalme V., Juhkam J., Vilu R., Thermochim. Acta 2004, 420 (1–2), 89. doi: 10.1016/j.tca.2003.12.032  doi: 10.1016/j.tca.2003.12.032

    18. [18]

      Haman N., Ferrentino G., Imperiale S., Scampicchio M., J. Therm. Anal. Calorim. 2008, 132 (2), 1065. doi: 10.1007/s10973-018-6995-3  doi: 10.1007/s10973-018-6995-3

    19. [19]

      Hasan S. M. K., Manzocco L., Morozova K., Nicoli M. C., Scampicchio M., Thermochim. Acta 2017, 649, 63. doi: 10.1016/j.tca.2017.01.008  doi: 10.1016/j.tca.2017.01.008

    20. [20]

      Hasan S. M. K., .; Asaduzzaman M., Merkyte V., Morozova K., Scampicchio M., Food Anal. Meth. 2017, 11 (2), 432. doi: 10.1007/s12161-017-1014-z  doi: 10.1007/s12161-017-1014-z

    21. [21]

      Haman N., Longo E., Schiraldi A., Scampicchio M., Thermochim. Acta 2017, 658, 1. doi: 10.1016/j.tca.2017.10.012  doi: 10.1016/j.tca.2017.10.012

    22. [22]

      Morozova K., Andreotti C., Armani M., Cavani L., Cesco S., Cortese L., Gerbi V., Mimmo T., Spena P. R., Scampicchio M., J. Therm. Anal. Calorim. 2016, 127 (2), 1351. doi: 10.1007/s10973-016-5891-y  doi: 10.1007/s10973-016-5891-y

    23. [23]

      Rakhmatullina D. F., Gordon L. K., Ponomareva A. A., Ogorodnikova T. I., Alyab'ev A. Y., Iyudin V. S., Obynochnyi A. A., Russ. J. Plant Physiol. 2011, 58 (1), 100. doi: 10.1134/S1021443710061044  doi: 10.1134/S1021443710061044

    24. [24]

      Yan C. N., Liu Y., Yan W., Song Z. H., Qu S. S., Chin. J. Nat. 1997, 19 (5), 288.
       

    25. [25]

      Gao D., Ren Y. S., Yan D., Acta Pharm. Sin. B 2014, 49 (3), 385. doi: 10.16438/j.0513-4870.2014.03.018  doi: 10.16438/j.0513-4870.2014.03.018

    26. [26]

      Winkelmann M., Hunger N., Huttl R., Wolf G., Thermochim. Acta 2009, 482 (1–2), 12. doi:10.1016/j.tca.2008.10.007  doi: 10.1016/j.tca.2008.10.007

    27. [27]

      Russel M., Liu C. R., Alam A., Wang F., Yao J., Daroch M., Shah M. R., Wang Z. M., Environ. Sci. Pollut. Res. 2018, 25(19), 18519. doi: 10.1007/s11356-018-1926-1  doi: 10.1007/s11356-018-1926-1

    28. [28]

      Howard-Varona C., Hargreaves K. R., Abedon S. T., Sullivan M. B., ISME J. 2017, 11 (7), 1511. doi: 10.1038/ismej.2017.16  doi: 10.1038/ismej.2017.16

    29. [29]

      Xu J., Kiesel B., Kallies R., Jiang F. L., Liu Y., Maskow T., Microb. Biotechnol. 2018, 11 (6), 1112. doi: 10.1111/1751-7915.13042  doi: 10.1111/1751-7915.13042

    30. [30]

      Xu J., He H., Wang Y. Y., Yan R., Zhou L. J., Liu Y. Z., Jiang F. L., Maskow T., Liu Y., Environ. Sci.: Nano 2018, 5 (7), 1556. doi: 10.1039/c8en00142a  doi: 10.1039/C8EN00142A

    31. [31]

      Liu G. S., Liu Y., Chen X. D., Liu P., Shen P., Qu S. S., J. Virol. Methods 2003, 112 (1–2), 137. doi: 10.1016/S0166-0934(03)00214-3  doi: 10.1016/S0166-0934(03)00214-3

    32. [32]

      Liu G. S., Li M. J., Chen X. D., Liu Y., Zhu J. C., Shen P., Thermochim. Acta 2005, 435(1), 34. doi: 10.1016/j.tca.2005.03.022  doi: 10.1016/j.tca.2005.03.022

    33. [33]

      Liu G. S., Ran Z. L., Wang H. L., Liu Y., Shen P., Lu Y., Acta Chim. Sin. 2007, 65(10), 917.  doi: 10.3321/j.issn:0567-7351.2007.10.008

    34. [34]

      Brueckner D., Krahenbuhl S., Zuber U., Bonkat G., Braissant O., J. Appl. Microbiol. 2017, 123 (3), 773. doi: 10.1111/jam.13520  doi: 10.1111/jam.13520

    35. [35]

      Gaisford S., Beezer A. E., Bishop A. H., Walker M., Parsons D., Int. J. Pharmacol. 2009, 366 (1–2), 111. doi: 10.1016/j.ijpharm.2008.09.005  doi: 10.1016/j.ijpharm.2008.09.005

    36. [36]

      Said J., Walker M., Parsons D., Stapleton P., Beezer A. E., Gaisford S., Int. J. Pharmacol. 2014, 474 (1–2), 177. doi: 10.1016/j.ijpharm.2014.08.034  doi: 10.1016/j.ijpharm.2014.08.034

    37. [37]

      Moreno M. G., Trampuz A., Di Luca M., Res. Microbiol. 2017, 72(11), 3085. doi: 10.1093/jac/dkx265  doi: 10.1093/jac/dkx265

    38. [38]

      Butini M. E., Cabric S., Trampuz A., Di Luca M., J. Antimicrob. Chemother. 2018, 161, 252. doi: 10.1016/j.colsurfb.2017.10.050  doi: 10.1016/j.colsurfb.2017.10.050

    39. [39]

      Tkhilaishvili T., Di Luca M., Abbandonato G., Maiolo E. M., Klatt A. B., Reuter M., Moncke-Buchner E., Trampuz A., J. Appl. Microbiol. 2018, 169(Suppl, 9), 515. doi: 10.1016/j.resmic.2018.05.010  doi: 10.1016/j.resmic.2018.05.010

    40. [40]

      Wu F. G., Sun H. Y., Zhou Y., Deng G., Yu Z. W., RSC Adv. 2015, 5 (1), 726. doi: 10.1039/c4ra07569b  doi: 10.1039/C4RA07569B

    41. [41]

      Wu F. G., Jiang Y. W., Chen Z., Yu Z. W., Langmuir 2016, 32 (15), 3655. doi: 10.1021/acs.langmuir.6b00235  doi: 10.1021/acs.langmuir.6b00235

    42. [42]

      Said J., Walker M., Parsons D., Stapleton P., Beezer A. E., Gaisford S., Methods 2015, 76, 35. doi: 10.1016/j.ymeth.2014.12.002  doi: 10.1016/j.ymeth.2014.12.002

    43. [43]

      Mishra S., Chattopadhyay A., Naaz S., Ghosh A. K., Das A. R., Bandyopadhyay D., Life Sci. 2019, 218, 96. doi: 10.1016/j.lfs.2018.12.035  doi: 10.1016/j.lfs.2018.12.035

    44. [44]

      Dong P., Li J. H., Xu S. P., Wu X. J., Xiang X., Yang Q. Q., Jin J. C., Liu Y., Jiang F. L., J. Hazard. Mater. 2018, 308, 139. doi: 10.1016/j.jhazmat.2016.01.017  doi: 10.1016/j.jhazmat.2016.01.017

    45. [45]

      Zhao J., Ma L., Xiang X., Guo Q. L., Jiang F. L., Liu Y., Chemosphere 2016, 153, 414. doi: 10.1016/j.chemosphere.2016.03.082  doi: 10.1016/j.chemosphere.2016.03.082

    46. [46]

      Yang L. Y., Gao J. L., Gao T., Dong P., Ma L., Jiang F. L., Liu Y., J. Hazard. Mater. 2016, 301, 119. doi: 10.1016/j.jhazmat.2015.08.046  doi: 10.1016/j.jhazmat.2015.08.046

    47. [47]

      Lai L., Li Y. P., Mei P., Chen W., Jiang F. L., Liu Y., J. Membr. Biol. 2016, 249 (6), 757. doi: 10.1007/s00232-016-9920-3  doi: 10.1007/s00232-016-9920-3

    48. [48]

      Shore E. R., Awais M., Kershaw N. M., Gibson R. R., Pandalanen S., Latawiec D., Wen L., Javed M. A., Criddle D. N., Berry N., et al. J. Med. Chem. 2016, 59 (6), 2596. doi: 10.1021/acs.jmedchem.5b01801  doi: 10.1021/acs.jmedchem.5b01801

    49. [49]

      Jiao X. Y., Yuan L., Wu C., Liu Y. J., Jiang F. L., Hu Y. J., Liu Y., Toxicol. Res. 2018, 7(2), 191. doi: 10.1039/C7TX00234C  doi: 10.1039/C7TX00234C

    50. [50]

      Yuan L., Liu Y. J., He H., Jiang F. L.; Li H. R., Liu Y., Acta Phys. -Chim. Sin. 2018, 34 (1), 73.  doi: 10.3866/PKU.WHXB201707043

    51. [51]

      Yuan L., Gao T., He H., Jiang F. L., Liu Y., Toxicol. Res. 2017, 6(5), 621. doi: 10.1039/C7TX00079K  doi: 10.1039/C7TX00079K

    52. [52]

      Yuan L., Zhang J. Q., Liu Y. J., Zhao J., Jiang F. L., Liu Y., J. Inorg. Biochem. 2017, 177, 17. doi: 10.1016/j.jinorgbio.2017.08.012  doi: 10.1016/j.jinorgbio.2017.08.012

    53. [53]

      Zhao J., Zhou Z. Q., Jin J. C., Yuan L., He H., Jiang F. L., Yang X. G., Dai J., Liu Y., Chemosphere 2014, 100, 194. doi: 10.1016/j.chemosphere.2013.11.031  doi: 10.1016/j.chemosphere.2013.11.031

    54. [54]

      Xia C. F., Jin J. C., Yuan L., Zhao J., Chen X. Y., Jiang F. L., Qin C. Q., Dai J., Liu Y., Chemosphere 2013, 91(11), 1577. doi: 10.1016/j.chemosphere.2012.12.049  doi: 10.1016/j.chemosphere.2012.12.049

    55. [55]

      Frank N., Lissner A., Winkelmann M., Huttl R., Mertens F. O., Kaschabek S. R., Schlomann M., Biodegradation 2010, 21 (2), 179. doi: 10.1007/s10532-009-9292-9  doi: 10.1007/s10532-009-9292-9

    56. [56]

      Goldberg R. N., Schliesser J., Mittal A., Decker S. R., Santos A. F. L. O. M., Freitas V. L. S., Urbas A., Lang B. E., Heiss C., da Silva M. D. M. C. R., et al. J. Chem. Thermodyn. 2015, 81, 184. doi: 10.1016/j.jct.2014.09.006  doi: 10.1016/j.jct.2014.09.006

    57. [57]

      Popovic M., Woodfield B. F., Hansen L. D., J. Therm. Anal. Calorim. 2019, 128, 244. doi: 10.1016/j.jct.2018.08.006  doi: 10.1016/j.jct.2018.08.006

    58. [58]

      Liu W. T., Zhang Y. Z., Cui N. B., Wang T., Food Technol. Biotechnol. 2019, 76, 194. doi: 10.1016/j.procbio.2018.10.017  doi: 10.1016/j.procbio.2018.10.017

    59. [59]

      Mason M., Scampicchio M., Quinn C. F., Transtrum M. K., Baker N., Hansen L. D., Kenealey J. D., J. Food Sci. 2018, 83 (2), 326. doi: 10.1111/1750-3841.14023  doi: 10.1111/1750-3841.14023

    60. [60]

      Aggarwal N., Sharma M., Banipal T. S., Banipal P. K., J. Chem. Eng. Data 2019, 64 (2), 517. doi: 10.1021/acs.jced.8b00681  doi: 10.1021/acs.jced.8b00681

    61. [61]

      Kabo G. J., Paulechka Y. U., Voitkevich O. V., Blokhin A. V., Stepurko E. N., Kohut S. V., Voznyi Y. V., J. Chem. Thermodyn. 2015, 85, 101. doi: 10.1016/j.jct.2015.01.005  doi: 10.1016/j.jct.2015.01.005

    62. [62]

      Wu F. G., Jiang Y. W., Sun H. Y., Luo J. J., Yu Z. W., J. Phys. Chem. B 2015, 119 (45), 14382. doi: 10.1021/acs.jpcb.5b07277  doi: 10.1021/acs.jpcb.5b07277

    63. [63]

      Belliardo C., Di Giorgio C., Chaspoul F., Gallice P., Berge-Lefranc D., J. Chem. Thermodyn. 2018, 125, 271. doi: 10.1016/j.jct.2018.05.028  doi: 10.1016/j.jct.2018.05.028

    64. [64]

      Burova T. V., Grinberg N. V., Dubovik A. S., Olenichenko E. A., Orlov V. N., Grinberg V. Y. Polymer 2017, 108, 97. doi: 10.1016/j.polymer.2016.11.049  doi: 10.1016/j.polymer.2016.11.049

    65. [65]

      Escobar J. F. B., Restrepo M. H. P., Fernandez D. M. M., Martinez A. M., Giordani C., Castelli F., Sarpietro M. G., Colloids Surf. B 2018, 166, 203. doi: 10.1016/j.colsurfb.2018.03.023  doi: 10.1016/j.colsurfb.2018.03.023

    66. [66]

      Boros E., Sebak F., Heja D., Szakacs D., Zboray K., Schlosser G., Micsonai A., Kardos J., Bodor A., Pal G., J. Mol. Biol. 2019, 431 (3), 557. doi: 10.1016/j.jmb.2018.12.003  doi: 10.1016/j.jmb.2018.12.003

    67. [67]

      Krauss N., Wessner H., Welfle K., Welfle H., Scholz C., Seifert M., Zubow K., Ay J., Hahn M., Scheerer P., et al. Proteins: Struct., Funct., Genet. 2008, 73 (3), 552. doi: 10.1002/prot.22080  doi: 10.1002/prot.22080

    68. [68]

      Alvarez-Armenta A., Carvajal-Millan E., Pacheco-Aguilar R., Garcia-Sanchez G., Marquez-Rios E., Scheuren-Acevedo S. M., Ramirez-Suarez J. C., Environ. Sci. Pollut. Res. 2019, 57 (1), 39. doi: 10.17113/ftb.57.01.19.5848  doi: 10.17113/ftb.57.01.19.5848

    69. [69]

      Wu J. J., Xie D. W., Chen X. J., Tang Y. J., Wang L. X., Xie J. L., Wei D. Z., Process Biochem. 2019, 79, 97. doi: 10.1016/j.procbio.2018.12.018  doi: 10.1016/j.procbio.2018.12.018

    70. [70]

      Yang L. Y., Hua S. Y., Zhou Z. Q., Wang G. C., Jiang F. L., Liu Y., Colloids Surf. B 2017, 157, 261. doi: 10.1016/j.colsurfb.2017.05.065  doi: 10.1016/j.colsurfb.2017.05.065

    71. [71]

      Zhang Y., Xu Z. Q., Liu X. R., Qi Z. D., Jiang F. L., Liu Y., J. Solut. Chem. 2012, 41 (2), 351. doi: 10.1007/s10953-012-9791-x  doi: 10.1007/s10953-012-9791-x

  • 加载中
    1. [1]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    2. [2]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    3. [3]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    4. [4]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    5. [5]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    6. [6]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    7. [7]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    8. [8]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    9. [9]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    10. [10]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    11. [11]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    14. [14]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    15. [15]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    16. [16]

      Kun Li Na Gao Shuangyan Huan Yuzhi Wang . Design of Ideological and Political Education for the Experiment of Detecting Cadmium with Anodic Stripping Voltammetry. University Chemistry, 2024, 39(2): 155-161. doi: 10.3866/PKU.DXHX202307068

    17. [17]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

    18. [18]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    19. [19]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    20. [20]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

Metrics
  • PDF Downloads(21)
  • Abstract views(1213)
  • HTML views(353)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return