Citation: Lai Xiaoxiao, Feng Jie, Zhou Xiaoying, Hou Zhongyan, Lin Tao, Chen Yaoqiang. Catalytic Oxidation of Toluene Over Potassium Modified Mn/Ce0.65Zr0.35O2 Catalyst[J]. Acta Physico-Chimica Sinica, ;2020, 36(8): 190504. doi: 10.3866/PKU.WHXB201905047 shu

Catalytic Oxidation of Toluene Over Potassium Modified Mn/Ce0.65Zr0.35O2 Catalyst

  • Corresponding author: Lin Tao, lintaochem@scu.edu.cn Chen Yaoqiang, chenyaoqiang@scu.edu.cn
  • Received Date: 13 May 2019
    Revised Date: 27 June 2019
    Accepted Date: 2 July 2019
    Available Online: 5 July 2019

    Fund Project: The research was supported by National Key Research and Development Program of China (2016YFC0204901)National Key Research and Development Program of China 2016YFC0204901

  • Volatile organic compounds (VOCs) are both harmful to human health and the environment; however, catalytic combustion offers a promising method for VOC purification because of its high efficiency without secondary pollution. Although manganese-based catalysts have been well studied for VOC catalytic oxidation, their catalytic activity at low temperature must be improved. Alkali metals as promoters have the potential to modulate the electronic and structural properties of the catalysts, improving their catalytic activity. Herein, a Ce0.65Zr0.35O2 support was prepared by co-precipitation and MnOx/Ce0.65Zr0.35O2 catalysts were obtained through the incipient-wetness impregnation method. The catalytic properties of K-modified MnOx/Ce0.65Zr0.35O2 for toluene oxidation with different molar ratios of K/Mn were investigated. In addition, the catalysts were characterized by XRD, UV/visible Raman, Hydrogen temperature program reduction (H2-TPR), Oxygen temperature programmed desorption (O2-TPD), X-ray photoelectron spectroscopy (XPS) and in situ diffuse reflectance FTIR spectroscopy (DRIFTS) experiments. The results showed that alkali metal doping with K significantly improved the catalytic activity. In particular, when the molar ratio of K/Mn was 0.2, the monolith catalyst Mn/Ce0.65Zr0.35O2-K-0.2 exhibited the best performance with the lowest complete conversion temperature T90 of 242 ℃ at a GHSV of 12000 h−1. The XRD results suggested that MnOx was uniformly distributed on the surface of the catalyst and that Mn4+ partially reduced to Mn3+ on the addition of K. The Raman spectrum demonstrated that with increasing K content, both the β- and α-MnO2 phases coexisted on the Mn/Ce0.65Zr0.35O2-K-0.2 catalyst, increasing the number of surface defect sites. The H2-TPR experiment results confirmed that Mn/Ce0.65Zr0.35O2-K-0.2 exhibited the lowest reduction temperature and good reducibility. From the O2-TPD experiments, it was clear that Mn/Ce0.65Zr0.35O2-K-0.2 contained the most surface adsorbed oxygen species and excellent lattice oxygen mobility, which benefitted the toluene oxidation activity. In addition, the XPS results suggested that the content of surface adsorbed oxygen species of the Mn/Ce0.65Zr0.35O2-K-0.2 catalyst was the highest among all the tested samples. In addition, toluene-TPSR in N2 as measured by in situ DRIFTs analysis demonstrated that available lattice oxygen was present in the Mn/Ce0.65Zr0.35O2-K-0.2 catalyst. Therefore, the Mn/Ce0.65Zr0.35O2-K-0.2 catalyst exhibited the best redox properties and oxygen mobility of the prepared samples and showed excellent activity toward toluene oxidation. Therefore, it was concluded that the addition of an appropriate amount of K improved the redox performance of the catalyst and increased the number of surface defect sites and mobility of the lattice oxygen of the catalyst as well as the concentration of the surface active oxygen species, thereby significantly improving catalytic ability.
  • 加载中
    1. [1]

      He, C.; Cheng, J.; Zhang, X.; Douthwaite, M.; Pattisson, S.; Hao, Z. Chem. Rev. 2019, doi: 10.1021/acs.chemrev.8b00408  doi: 10.1021/acs.chemrev.8b00408

    2. [2]

      Kim, S. C.; Shim, W. G. Appl. Catal. B 2010, 98 (3–4), 180. doi: 10.1016/j.apcatb.2010.05.027  doi: 10.1016/j.apcatb.2010.05.027

    3. [3]

      Parmar, G. R.; Rao, N. N. Crit. Rev. Environ. Sci. Technol. 2008, 39 (1), 41. doi: 10.1080/10643380701413658  doi: 10.1080/10643380701413658

    4. [4]

      Tidahy, H.; Siffert, S.; Lamonier, J.; Zhilinskaya, E.; Aboukais, A.; Yuan, Z.; Vantomme, A.; Su, B.; Canet, X.; Deweireld, G. Appl. Catal. A 2006, 310, 61. doi: 10.1016/j.apcata.2006.05.020  doi: 10.1016/j.apcata.2006.05.020

    5. [5]

      Scirè, S. Appl. Catal. B 2003, 45 (2), 117. doi: 10.1016/s0926-3373(03)00122-x  doi: 10.1016/s0926-3373(03)00122-x

    6. [6]

      Genuino, H. C.; Dharmarathna, S.; Njagi, E. C.; Mei, M. C.; Suib, S. L. J. Phys. Chem. C 2012, 116 (22), 12066. doi: 10.1021/jp301342f  doi: 10.1021/jp301342f

    7. [7]

      Yang, J. S.; Jung, W. Y.; Lee, G. D.; Park, S. S.; Jeong, E. D.; Kim, H. G.; Hong, S. S. J. Ind. Eng. Chem. 2008, 14 (6), 779. doi: 10.1016/j.jiec.2008.05.008  doi: 10.1016/j.jiec.2008.05.008

    8. [8]

      Li, H.; Qi, G.; Tana; Zhang, X.; Huang, X.; Li, W.; Shen, W. Appl. Catal. B 2011, 103 (1–2), 54. doi: 10.1016/j.apcatb.2011.01.008  doi: 10.1016/j.apcatb.2011.01.008

    9. [9]

      Wu, M.; Wang, X.; Dai, Q.; Gu, Y.; Li, D. Catal. Today 2010, 158 (3–4), 336. doi: 10.1016/j.cattod.2010.04.006  doi: 10.1016/j.cattod.2010.04.006

    10. [10]

      Zhao, F.; Zhang, G.; Zeng, P.; Yang, X.; Ji, S. Chin. J. Catal. 2011, 32 (5), 821. doi: 10.1016/s1872-2067(10)60184-2  doi: 10.1016/s1872-2067(10)60184-2

    11. [11]

      Zhang, C.; Guo, Y.; Guo, Y.; Lu, G.; Boreave, A.; Retailleau, L.; Baylet, A.; Giroir-Fendler, A. Appl. Catal. B 2014, 148149, 490. doi: 10.1016/j.apcatb.2013.11.030  doi: 10.1016/j.apcatb.2013.11.030

    12. [12]

      Lahousse, C.; Bernier, A.; Grange, P.; Delmon, B.; Papaefthimiou, P.; Ioannides, T.; Verykios, X. J. Catal. 1998, 178, 214. doi.org/10.1006/jcat.1998.2148  doi: 10.1006/jcat.1998.2148

    13. [13]

      Raciulete, M.; Afanasiev, P. Appl. Catal. A 2009, 368 (1–2), 79. doi: 10.1016/j.apcata.2009.08.012  doi: 10.1016/j.apcata.2009.08.012

    14. [14]

      Aguero, F. N.; Barbero, B. P.; Gambaro, L.; Cadús, L. E. Appl. Catal. B 2009, 91 (1–2), 108. doi: 10.1016/j.apcatb.2009.05.012  doi: 10.1016/j.apcatb.2009.05.012

    15. [15]

      Piumetti, M.; Fino, D.; Russo, N. Appl. Catal. B 2015, 163, 277. doi: 10.1016/j.apcatb.2014.08.012  doi: 10.1016/j.apcatb.2014.08.012

    16. [16]

      Huang, N.; Qu, Z.; Dong, C.; Qin, Y.; Duan, X. Appl. Catal. A 2018, 560, 195. doi: 10.1016/j.apcata.2018.05.001  doi: 10.1016/j.apcata.2018.05.001

    17. [17]

      Wang, H.; Lu, Y.; Han, Y.; Lu, C.; Wan, H.; Xu, Z.; Zheng, S. Appl. Surf. Sci. 2017, 420, 260. doi: 10.1016/j.apsusc.2017.05.133  doi: 10.1016/j.apsusc.2017.05.133

    18. [18]

      Shen, B.; Wang, Y.; Wang, F.; Liu, T. Chem. Eng. J. 2014, 236, 171. doi: 10.1016/j.cej.2013.09.085  doi: 10.1016/j.cej.2013.09.085

    19. [19]

      Ferrandon, M.; Mawdsley, J.; Krause, T. Appl. Catal. A 2008, 342 (1–2), 69. doi: 10.1016/j.apcata.2008.03.001  doi: 10.1016/j.apcata.2008.03.001

    20. [20]

      Pasha, N.; Lingaiah, N.; Siva Sankar Reddy, P.; Sai Prasad, P. S. Catal. Lett. 2007, 118 (1–2), 64. doi: 10.1007/s10562-007-9146-1  doi: 10.1007/s10562-007-9146-1

    21. [21]

      Tang, Q.; Liu, T.; Yang, Y. Catal. Commun. 2008, 9 (15), 2570. doi: 10.1016/j.catcom.2008.07.013  doi: 10.1016/j.catcom.2008.07.013

    22. [22]

      Panagiotopoulou, P.; Kondarides, D. I. J. Catal. 2008, 260 (1), 141. doi: 10.1016/j.jcat.2008.09.014  doi: 10.1016/j.jcat.2008.09.014

    23. [23]

      Li, X.; Hong, H.; Chang, L.; Changbin, Z.; Bo, Z. Environ. Sci. Technol. 2009, 43, 890. doi: 10.1021/es801867y  doi: 10.1021/es801867y

    24. [24]

      Bai, B.; Li, J. ACS Catal. 2014, 4 (8), 2753. doi: 10.1021/cs5006663  doi: 10.1021/cs5006663

    25. [25]

      Tang, Q.; Huang, X.; Wu, C.; Zhao, P.; Chen, Y.; Yang, Y. J. Mol. Catal. A: Chem. 2009, 306 (1–2), 48. doi: 10.1016/j.molcata.2009.02.020  doi: 10.1016/j.molcata.2009.02.020

    26. [26]

      Jirátová, K.; Mikulová, J.; Klempa, J.; Grygar, T.; Bastl, Z.; Kovanda, F. Appl. Catal. A 2009, 361 (1–2), 106. doi: 10.1016/j.apcata.2009.04.004  doi: 10.1016/j.apcata.2009.04.004

    27. [27]

      Hou, Z.; Feng, J.; Lin, T.; Zhang, H.; Zhou, X.; Chen, Y. Appl. Surf. Sci. 2018, 434, 82. doi: 10.1016/j.apsusc.2017.09.048  doi: 10.1016/j.apsusc.2017.09.048

    28. [28]

      Feng, J.; Hou, Z.; Zhou, X.; Zhang, H.; Cheng, T.; Lin, T.; Chen, Y. Chem. Pap. 2017, 72 (1), 161. doi: 10.1007/s11696-017-0267-8  doi: 10.1007/s11696-017-0267-8

    29. [29]

      Saqer, S. M.; Kondarides, D. I.; Verykios, X. E. Appl. Catal. B 2011, 103 (3–4), 275. doi: 10.1016/j.apcatb.2011.01.001  doi: 10.1016/j.apcatb.2011.01.001

    30. [30]

      Tang, W.; Wu, X.; Li, S.; Li, W.; Chen, Y. Catal. Commun. 2014, 56, 134. doi: 10.1016/j.catcom.2014.07.023  doi: 10.1016/j.catcom.2014.07.023

    31. [31]

      Chiou, J. Y. Z.; Lai, C. L.; Yu, S.W.; Huang, H. H.; Chuang, C. L.; Wang, C. B. Int. J. Hydrog. Energy 2014, 39 (35), 20689. doi: 10.1016/j.ijhydene.2014.07.141  doi: 10.1016/j.ijhydene.2014.07.141

    32. [32]

      Gandía, L. M.; Gil, A.; Korili, S. A. Appl. Catal. B 2001, 33, 1. doi: org/10.1016/S0926-3373 (01)00155-2  doi: 10.1016/S0926-3373(01)00155-2

    33. [33]

      He, H.; Lin, X.; Li, S.; Wu, Z.; Gao, J.; Wu, J.; Wen, W.; Ye, D.; Fu, M. Appl. Catal. B 2018, 223, 134. doi: 10.1016/j.apcatb.2017.08.084  doi: 10.1016/j.apcatb.2017.08.084

    34. [34]

      Deng, J.; Zhou, Y.; Cui, Y.; Lan, L.; Wang, J.; Yuan, S.; Chen, Y. J. Mater. Sci. 2017, 52 (9), 5242. doi: 10.1007/s10853-017-0765-7  doi: 10.1007/s10853-017-0765-7

    35. [35]

      Hong, W. J.; Iwamoto, S.; Hosokawa, S.; Wada, K.; Kanai, H.; Inoue, M. J. Catal. 2011, 277 (2), 208. doi: 10.1016/j.jcat.2010.11.007  doi: 10.1016/j.jcat.2010.11.007

    36. [36]

      Zhou, G.; He, X.; Liu, S.; Xie, H.; Fu, M. J. Ind. Eng. Chem. 2015, 21, 932. doi: 10.1016/j.jiec.2014.04.035  doi: 10.1016/j.jiec.2014.04.035

    37. [37]

      Natile, M. M.; Giovanni, B.; Antonella, G. Chem. Mater. 2005, 17, 6272. doi: 10.1021/cm051352d  doi: 10.1021/cm051352d

    38. [38]

      Azalim, S.; Franco, M.; Brahmi, R.; Giraudon, J. M.; Lamonier, J. F. J. Hazard. Mater. 2011, 188 (1–3), 422. doi: 10.1016/j.jhazmat.2011.01.135  doi: 10.1016/j.jhazmat.2011.01.135

    39. [39]

      Zhou, K.; Wang, X.; Sun, X.; Peng, Q.; Li, Y. J. Catal. 2005, 229 (1), 206. doi: 10.1016/j.jcat.2004.11.004  doi: 10.1016/j.jcat.2004.11.004

    40. [40]

      Wu, Y.; Liu, M.; Ma, Z.; Xing, S. T. Catal. Today 2011, 175 (1), 196. doi: 10.1016/j.cattod.2011.04.023  doi: 10.1016/j.cattod.2011.04.023

    41. [41]

      Liao, Y.; Fu, M.; Chen, L.; Wu, J.; Huang, B.; Ye, D. Catal. Today 2013, 216, 220. doi: 10.1016/j.cattod.2013.06.017  doi: 10.1016/j.cattod.2013.06.017

    42. [42]

      Levasseur, B.; Kaliaguine, S. Appl. Catal. B 2009, 88 (3–4), 305. doi: 10.1016/j.apcatb.2008.11.007  doi: 10.1016/j.apcatb.2008.11.007

    43. [43]

      Cellier, C.; Ruaux, V.; Lahousse, C.; Grange, P.; Gaigneaux, E. Catal. Today 2006, 117 (1–3), 350. doi: 10.1016/j.cattod.2006.05.033  doi: 10.1016/j.cattod.2006.05.033

    44. [44]

      Atribak, I.; Bueno-Lopez, A.; Garcia-Garcia, A.; Azambre, B. Phys. Chem. Chem. Phys. 2010, 12 (41), 13770. doi: 10.1039/c0cp00540a  doi: 10.1039/c0cp00540a

    45. [45]

      Wang, X.; Kang, Q.; Li, D. Appl. Catal. B 2009, 86 (3–4), 166. doi: 10.1016/j.apcatb.2008.08.009  doi: 10.1016/j.apcatb.2008.08.009

    46. [46]

      Tang, W.; Wu, X.; Li, S.; Shan, X.; Liu, G.; Chen, Y. Appl. Catal. B 2015, 162, 110. doi: 10.1016/j.apcatb.2014.06.030  doi: 10.1016/j.apcatb.2014.06.030

    47. [47]

      Wang, X.; Du, L. Y.; Du, M.; Ma, C.; Zeng, J.; Jia, C. J.; Si, R. Phys. Chem. Chem. Phys. 2017, 19 (22), 14533. doi: 10.1039/c7cp02004j  doi: 10.1039/c7cp02004j

    48. [48]

      Muroyama, H.; Asajima, H.; Hano, S.; Matsui, T.; Eguchi, K. Appl. Catal. A 2015, 489, 235. doi: 10.1016/j.apcata.2014.10.039  doi: 10.1016/j.apcata.2014.10.039

    49. [49]

      Einaga, H.; Mochiduki, K.; Teraoka, Y. Catalysts 2013, 3 (1), 219. doi: 10.3390/catal3010219  doi: 10.3390/catal3010219

    50. [50]

      Sun, H.; Liu, Z.; Chen, S.; Quan, X. Chem. Eng. J. 2015, 270, 58. doi: 10.1016/j.cej.2015.02.017  doi: 10.1016/j.cej.2015.02.017

    51. [51]

      Lichtenberger, J.; Hargroveleak, S.; Amiridis, M. J. Catal. 2006, 238 (1), 165. doi: 10.1016/j.jcat.2005.12.007  doi: 10.1016/j.jcat.2005.12.007

    52. [52]

      Du, J.; Qu, Z.; Dong, C.; Song, L.; Qin, Y.; Huang, N. Appl. Surf. Sci. 2018, 433, 1025. doi: 10.1016/j.apsusc.2017.10.116  doi: 10.1016/j.apsusc.2017.10.116

  • 加载中
    1. [1]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    2. [2]

      Dongsheng YangZixin LiYaoyao LianZiyao FuTianjiao LiPengtao MaGuoping Yang . A novel square-shaped Zr-substituted polyoxotungstate for the efficient catalytic oxidation of sulfide to sulfone. Chinese Chemical Letters, 2025, 36(3): 109717-. doi: 10.1016/j.cclet.2024.109717

    3. [3]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    4. [4]

      Peng ZhangYitao YangTian QinXueqiu WuYuechang WeiJing XiongXi LiuYu WangZhen ZhaoJinqing JiaoLiwei Chen . Interface engineering of Pt/CeO2-{100} catalysts for enhancing catalytic activity in auto-exhaust carbon particles oxidation. Chinese Chemical Letters, 2025, 36(2): 110396-. doi: 10.1016/j.cclet.2024.110396

    5. [5]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    6. [6]

      Yang LiXiaoxu LiuTianyi JiMan ZhangXueru YanMengjie YaoDawei ShengShaodong LiPeipei RenZexiang Shen . Potassium ion doped manganese oxide nanoscrolls enhanced the performance of aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109551-. doi: 10.1016/j.cclet.2024.109551

    7. [7]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    8. [8]

      Dong ChengYouyou FengBingxi FengKe WangGuoxin SongGen WangXiaoli ChengYonghui DengJing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623

    9. [9]

      Jiayu BaiSongjie HuLirong FengXinhui JinDong WangKai ZhangXiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326

    10. [10]

      Tong SuYue WangQizhen ZhuMengyao XuNing QiaoBin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191

    11. [11]

      Xiaoxue LiHongwei ZhouRongrong QianXu ZhangLei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036

    12. [12]

      Zhuangzhuang ZhangYaru QiaoJun ZhaoDai-Huo LiuMengmin JiaHongwei TangLiang WangDongmei DaiBao Li . Fluorine-doped K0.39Mn0.77Ni0.23O1.9F0.1 microspheres with highly reversible oxygen redox reaction for potassium-ion battery cathode. Chinese Chemical Letters, 2025, 36(3): 109907-. doi: 10.1016/j.cclet.2024.109907

    13. [13]

      Tianyao HeGan LiXiaoqiang XieDong HanYunyue LengQiuli ZhangWenming LiuGuobo LiHongxiang ZhangShan HuangTing HuangHonggen Peng . Design of highly active meso-zeolite enveloping Pt–Ni bimetallic catalysts for degradation of toluene. Chinese Chemical Letters, 2025, 36(4): 110137-. doi: 10.1016/j.cclet.2024.110137

    14. [14]

      Zeyu JiangYadi WangChangwei ChenChi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400

    15. [15]

      Zhanheng YanWeiqing SuWeiwei XuQianhui MaoLisha XueHuanxin LiWuhua LiuXiu LiQiuhui Zhang . Carbon-based quantum dots/nanodots materials for potassium ion storage. Chinese Chemical Letters, 2025, 36(4): 110217-. doi: 10.1016/j.cclet.2024.110217

    16. [16]

      Jun-Ming CaoKai-Yang ZhangJia-Lin YangZhen-Yi GuXing-Long Wu . Differential bonding behaviors of sodium/potassium-ion storage in sawdust waste carbon derivatives. Chinese Chemical Letters, 2024, 35(4): 109304-. doi: 10.1016/j.cclet.2023.109304

    17. [17]

      Yingfen LiZhiqi WangYunhai ZhaoDajun LuoXueliang ZhangJun ZhaoZhenghua SuShuo ChenGuangxing Liang . Potassium doping for grain boundary passivation and defect suppression enables highly-efficient kesterite solar cells. Chinese Chemical Letters, 2024, 35(11): 109468-. doi: 10.1016/j.cclet.2023.109468

    18. [18]

      Cailing WuShaojie WuQifei HuangKai SunXianqiang HuangJianji WangBing Yu . Potassium-modified carbon nitride photocatalyzed-aminoacylation of N-sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110250-. doi: 10.1016/j.cclet.2024.110250

    19. [19]

      Wenjing XiongYulin XuFangzhou ZhaoBaokai XiaHongqiang WangWei LiuSheng ChenYongzhi Zhang . Graphene architecture interpenetrated with mesoporous carbon nanosheets promotes fast and stable potassium storage. Chinese Chemical Letters, 2025, 36(4): 109738-. doi: 10.1016/j.cclet.2024.109738

    20. [20]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

Metrics
  • PDF Downloads(22)
  • Abstract views(1229)
  • HTML views(165)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return