Citation: An Huifang, Jiang Li, Li Feng, Wu Ping, Zhu Xiaoshu, Wei Shaohua, Zhou Yiming. Hydrogel-Derived Three-Dimensional Porous Si-CNT@G Nanocomposite with High-Performance Lithium Storage[J]. Acta Physico-Chimica Sinica, ;2020, 36(7): 190503. doi: 10.3866/PKU.WHXB201905034 shu

Hydrogel-Derived Three-Dimensional Porous Si-CNT@G Nanocomposite with High-Performance Lithium Storage

  • Corresponding author: Wu Ping, zjwuping@njnu.edu.cn Zhou Yiming, zhouyiming@njnu.edu.cn
  • Received Date: 8 May 2019
    Revised Date: 24 June 2019
    Accepted Date: 25 June 2019
    Available Online: 1 July 2019

    Fund Project: the National Natural Science Foundation of China 51401110The project was supported by the Industry-Academia Cooperation Innovation Fund Project of Jiangsu Province, China (BY2013001-01), the National Natural Science Foundation of China (51401110), and the Key Research and Development Plan of Jiangsu Province, China (BE2015069)the Industry-Academia Cooperation Innovation Fund Project of Jiangsu Province, China BY2013001-01the Key Research and Development Plan of Jiangsu Province, China BE2015069

  • Silicon is a promising anode material for lithium-ion batteries (LIBs) because of its natural abundance, high theoretical capacity, and relatively low working potential for lithium storage. However, two main obstacles exist that hinder its commercial application. One is the large volume variation during prolonged cycling, which causes irreversible cracking and disconnection of the active mass from the current collector and subsequently rapid decay of capacity of the electrode. The other is its poor intrinsic electronic conductivity, which seriously restricts its rate performance. To date, strategies to improve its cycling stability and rate capability include rational designs of different Si nanostructures and the incorporation of conductive agents. In this study, we present a novel and effective method to fabricate a Si/C composite. Through hydrogen bonding and the electrostatic interaction between graphene oxides (GO) and acidized chitosans (Cs), a hybrid hydrogel was fabricated in which silicon nanoparticles and carbon nanotubes were encapsulated in situ. Following freeze-drying and subsequent calcination, a three-dimensional porous silicon/carbon nanotube/graphene (Si-CNT@G) nanocomposite was obtained. The phase, structure, and morphology of the sample were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). The results show that the silicon nanoparticles were uniformly distributed in the graphene network, which was interwoven with carbon nanotubes. The resultant Si-CNT@G nanocomposite featured a porous three-dimensional conductive carbonaceous support, providing short pathways for electrons, conductive transport highways for lithium ions, a sufficient interface for contact of the electrolyte and electrode, and an effective buffer matrix to alleviate structural change during discharge/charge cycling. Benefiting from these particular features, the as-prepared Si-CNT@G nanocomposite exhibited superior lithium storage performance with high specific capacity and excellent long-term cycling stability when evaluated as an anode material for LIBs. For example, a high discharge capacity of 673.7 mAh·g−1 can be retained after 200 discharge/charge cycles at a current density of 500 mA·g−1 in the potential range of 0.01–1.20 V, with a decent capacity retention of 97%. Even when at a current density of 2000 mA·g−1, a high discharge capacity of 566.9 mAh·g−1 can still be retained. In contrast, the discharge capacity of pure silicon nanoparticles, when tested under the same conditions, was practically nil. These results suggest that the Si-CNT@G nanocomposite is a promising anode material for high-performance LIBs.
  • 加载中
    1. [1]

      Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Angew. Chem. Int. Ed. 2008, 47, 2930. doi: 10.1002/anie.200702505  doi: 10.1002/anie.200702505

    2. [2]

      Qian, J.; Lin, N.; Qian, Y. T. Acta Chim. Sin. 2017, 75, 147.  doi: 10.6023/A16100548

    3. [3]

      Li, J. Y.; Xu, Q.; Li, G.; Yin, Y. X.; Wan, L. J.; Guo, Y. G. Mater. Chem. Front. 2017, 1, 1691. doi: 10.1039/C6QM00302H  doi: 10.1039/C6QM00302H

    4. [4]

      Liu, D.; Zhao, Y.; Tan, R.; Tian, L. L.; Liu, Y. D.; Chen, H. B.; Pan, F. Nano Energy 2017, 36, 206. doi: 10.1016/j.nanoen.2017.04.043  doi: 10.1016/j.nanoen.2017.04.043

    5. [5]

      Kong, L. J.; Zhou, X. Y.; Fan, S. Y.; Li, Z. J.; Gu, Z. G. Acta Chim. Sin. 2016, 74, 620.  doi: 10.6023/A16010060

    6. [6]

      Wu, H.; Cui, Y. Nano Today 2012, 7, 414. doi: 10.1016/j.nantod. 2012.08.004  doi: 10.1016/j.nantod.2012.08.004

    7. [7]

      Sun, Y. M.; Lopez, J.; Lee, H. W.; Liu, N.; Zheng, G. Y.; Wu, C. L.; Sun, J.; Liu, W.; Chung, J. W.; Bao, Z. N. Adv. Mater. 2016, 28, 2455. doi: 10.1002/adma.201504723  doi: 10.1002/adma.201504723

    8. [8]

      Xu, R. T.; Wang, G.; Zhou, T. F.; Zhang, Q.; Cong, H. P.; Xin, S.; Rao, J.; Zhang, C. F.; Liu, Y. K.; Guo, Z. P. Nano Energy 2017, 39, 253. doi: 10.1016/j.nanoen.2017.07.007  doi: 10.1016/j.nanoen.2017.07.007

    9. [9]

      Shi, Q. R.; Cha, Y.; Song, Y.; Lee, J. I.; Zhu, C. Z.; Li, X. Y.; Song, M. K.; Du, D.; Lin, Y. H. Nanoscale 2016, 8, 15414. doi: 10.1039/C6NR04770J  doi: 10.1039/C6NR04770J

    10. [10]

      Wei, L. M.; Hou, Z. Y.; Wei, H. Electrochim. Acta 2017, 229, 445. doi: 10.1016/j.electacta.2017.01.173  doi: 10.1016/j.electacta.2017.01.173

    11. [11]

      Zhou, M.; Li, X. L.; Wang, B.; Zhang, Y. B.; Ning, J.; Xiao, Z. C.; Zhang, X. H.; Zhi, L. J. Nano Lett. 2015, 15, 6222. doi: 10.1021/acs.nanolett.5b02697  doi: 10.1021/acs.nanolett.5b02697

    12. [12]

      Wu, P.; Wang, H.; Tang, Y. W.; Zhou, Y. M.; Lu, T. H. ACS Appl. Mater. Interfaces 2014, 6, 3546. doi: 10.1021/am405725u  doi: 10.1021/am405725u

    13. [13]

      Zhou, X. S.; Yin, Y. X.; Cao, A. M.; Wan, L. J.; Guo, Y. G. ACS Appl. Mater. Interfaces 2012, 4, 2824. doi: 10.1021/am3005576  doi: 10.1021/am3005576

    14. [14]

      Feng, K.; Ahn, W.; Lui, G.; Park, H. W.; Kashkooli, A. G.; Jiang, G. P.; Wang, X. L.; Xiao, X. C.; Chen, Z. W. Nano Energy 2016, 19, 187. doi: 10.1016/j.nanoen.2015.10.025  doi: 10.1016/j.nanoen.2015.10.025

    15. [15]

      Tao, H. C.; Xiong, L. Y.; Zhu, S. C.; Zhang, L. L.; Yang, X. L. J. Electroanal. Chem. 2017, 797, 16. doi: 10.1016/j.jelechem.2017.05.010  doi: 10.1016/j.jelechem.2017.05.010

    16. [16]

      Yang, Y.; Li, J. Q.; Chen, D. Q.; Fu, T.; Sun, D.; Zhao, J. B. ChemElectroChem 2016, 3, 757. doi: 10.1002/celc.201600012  doi: 10.1002/celc.201600012

    17. [17]

      Zhou, X. S.; Cao, A. M.; Wan, L. J.; Wan, L. J.; Guo, Y. G. Nano Res. 2012, 5, 845. doi: 10.1007/s12274-012-0268-4  doi: 10.1007/s12274-012-0268-4

    18. [18]

      Chen, J.; Yao, B. W.; Li, C.; Shi, G. Q. Carbon 2013, 64, 225. doi: 10.1016/j.carbon.2013.07.055  doi: 10.1016/j.carbon.2013.07.055

    19. [19]

      Hummers, B. W. J.; Offeman R. E. J. Am. Chem. Soc. 1958, 80, 1339.  doi: 10.1021/ja01539a017

    20. [20]

      Han, D. L.; Yan, L. F. ACS Sustainable Chem. Eng. 2013, 2, 296. doi: 10.1021/sc400352a  doi: 10.1021/sc400352a

    21. [21]

      Bai, X. J.; Yu, Y. Y.; Kung, H. H.; Wang, B.; Jiang, J. M. J. Power Sources 2016, 306, 42. doi: 10.1016/j.jpowsour.2015.11.102  doi: 10.1016/j.jpowsour.2015.11.102

    22. [22]

      Li, Q. L.; Chen, D. Q.; Li, K.; Wang, J.; Zhao, J. B. Electrochim. Acta 2016, 202, 140. doi: 10.1016/j.electacta.2016.04.019  doi: 10.1016/j.electacta.2016.04.019

    23. [23]

      Su, J.; Zhao, J.; Li, L.; Zhang, C.; Chen, C.; Huang, T.; Yu, A. ACS Appl. Mater. Interfaces 2017, 9, 17807. doi: 10.1021/acsami.6b16644  doi: 10.1021/acsami.6b16644

    24. [24]

      Ren, Y.; Zhou, X.; Zhou, H.; Yang, J.; Chen, S.; Wu, L.; Nie, Y.; Wang, B. Chem. Eng. J. 2017, 328, 691. doi: 10.1016/j.cej.2017.07.040  doi: 10.1016/j.cej.2017.07.040

    25. [25]

      Xu, T.; Wang, D.; Qiu, P.; Zhang, J.; Wang, Q.; Xia, B.; Xie, X. Nanoscale 2018, 10, 16638. doi: 10.1039/c8nr04587a  doi: 10.1039/c8nr04587a

    26. [26]

      Chen, Z.; To, J. W. F.; Wang, C. Lu, Z. D.; Liu, N.; Chortos, A.; Pan, L. J.; Wei, F.; Cui, Y.; Bao, Z. N. Adv. Energy Mater. 2014, 4, 1400207. doi: 10.1002/aenm.201400207  doi: 10.1002/aenm.201400207

    27. [27]

      Shim, H. C.; Kim, I.; Woo, C. S.; Lee, H. J.; Hyun, S. Nanoscale 2017, 9, 4713. doi: 10.1039/C7NR00965H  doi: 10.1039/C7NR00965H

  • 加载中
    1. [1]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    2. [2]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    3. [3]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    4. [4]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    5. [5]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    6. [6]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    7. [7]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    8. [8]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    9. [9]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    10. [10]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    11. [11]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    12. [12]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    13. [13]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    14. [14]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    15. [15]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    16. [16]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    17. [17]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    18. [18]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    19. [19]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    20. [20]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

Metrics
  • PDF Downloads(12)
  • Abstract views(779)
  • HTML views(135)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return