Citation: Kang Liping, Zhang Gaini, Bai Yunlong, Wang Huanjing, Lei Zhibin, Liu Zonghuai. Two-Dimensional Nanosheet Hole Strategy and Their Assembled Materials for Supercapacitor Application[J]. Acta Physico-Chimica Sinica, ;2020, 36(2): 190503. doi: 10.3866/PKU.WHXB201905032 shu

Two-Dimensional Nanosheet Hole Strategy and Their Assembled Materials for Supercapacitor Application

  • Corresponding author: Liu Zonghuai, zhliu@snnu.edu.cn
  • Received Date: 7 May 2019
    Revised Date: 3 June 2019
    Accepted Date: 4 June 2019
    Available Online: 10 February 2019

    Fund Project: the National Natural Science Foundation of China 51772182the National Natural Science Foundation of China 21471093The project was supported by the National Natural Science Foundation of China (21471093, 51772182) and the 111 Project

  • Owing to their high power density, excellent rate performance, and good cycle performance, supercapacitors are widely used for energy storage applications. Two-dimensional (2D) layered materials are structural compounds having a layered host structure with a layer thickness of nanometers and a lateral dimension of several micrometers. Their layer spacing can be controlled by changing the interaction between the layers. 2D layered materials can be delaminated into nanosheets. Exfoliated nanosheet materials provide a new strategy for improving the performance of supercapacitors. Unlike bulk layered materials, the exfoliated nanosheets not only provide a unique nano-scale reaction space for electrochemical reactions, but also offer the possibility for improving the specific capacitance and storage rate of the supercapacitor. However, in 2D layered materials, the ion or electron transport in the vertical direction is obstructed, despite their fast ion and electron transport in the horizontal direction. As a result, the occurrence of electrode reactions, and hence the realization of rapid storage become difficult. It is detrimental to the power and energy densities and rapid energy storage of supercapacitors. Therefore, it is imperative to develop novel electrode materials in order to fabricate supercapacitors showinghigh energy densities at high power densities. Porous 2D layered electrode materials offer two major advantages. First, the porous structure can alleviate the problems caused by the stacking of nanosheets during the assembly process. Second, the porous structure can effectively promote the electrolyte penetration of the electrode, which alleviates the volume changes of the electrode material during the charging-discharging process and releases the structural strain. Hence, such materials facilitate ion or electron transport, thus increasing the specific capacitance of the supercapacitor. Over the past few years, 2D nanosheet holeization has evolved as a promising approach to improve the energy density of supercapacitors at high power densities. Various porous 2D layered supercapacitor electrode materials have been developed. This paper reviews the exfoliation of 2D layered materials, nanosheet holeization strategy, and the application of assembled porous layered electrode materials in supercapacitors. In this paper, we have reviewed the exfoliation of 2D layered materials with different electric properties and the performance of 2D nanosheets. Different methods used for the preparation of holey 2D nanosheets have also been discussed. We prepared holey MnO2 nanosheets and reduced graphite oxide via redox holeization mechanism, and 2D porous nanomaterials were also prepared by using suitable templates such as hard or self-sustaining templates. These holey 2D nanosheets were used to prepare porous 2D layered electrode materials such as holey graphene/manganese dioxide composite fibers and holey graphene/polypyrrole hybrid aerogels. The capacitance of these electrode materials was investigated systematically. Finally, the prospects for the development of porous 2D layered electrode materials such as the optimization of theirrate performance, flexibility, and energy density were discussed. Novel holeization methods should be developed in order to prepare metal oxide nanosheets with controllable hole sizes. In addition, other 2D materials such as MXene should be explored.
  • 加载中
    1. [1]

      Peng, L.; Fang, Z.; Zhu, Y.; Yan, C.; Yu, G. Adv. Energy Mater. 2018, 8, 1702179. doi: 10.1002/aenm.201702179  doi: 10.1002/aenm.201702179

    2. [2]

      Wang, Y. G.; Song, Y. F.; Xia, Y. Y. Chem. Soc. Rev. 2016, 45, 5925. doi: 10.1039/C5CS00580A  doi: 10.1039/C5CS00580A

    3. [3]

      Yan, J.; Wang, Q.; Wei, T.; Fan, Z. Adv. Energy Mater. 2014, 4, 1300816. doi: 10.1002/aenm.201300816  doi: 10.1002/aenm.201300816

    4. [4]

      Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Adv. Mater. 2010, 22, E28. doi:10.1002/adma.200903328  doi: 10.1002/adma.200903328

    5. [5]

      Chen, Y.; Zhang, Z. L.; Sui, Z. J.; Liu, Z. T.; Zhou, J. H.; Zhou, X. G. Acta Phys. -Chim. Sin.2015, 31, 1105.  doi: 10.3866/PKU.WHXB201504081

    6. [6]

      Wang, H. Y.; Shi, G. Q. Acta Phys. -Chim. Sin.2018, 34, 22.  doi: 10.3866/PKU.WHXB2017201706302

    7. [7]

      Tan, C.; Lai, Z.; Zhang, H. Adv. Mater. 2017, 29, 1701392. doi: 10.1002/adma.201701392  doi: 10.1002/adma.201701392

    8. [8]

      Wang, Q.; Yan, J.; Fan, Z. Energy Environ. Sci. 2016, 9, 729. doi: 10.1039/C5EE03109E  doi: 10.1039/C5EE03109E

    9. [9]

      Lu, X. H.; Yu, M. H.; Wang, G. M.; Tong, Y. X.; Li, Y. Energy Environ. Sci. 2014, 7, 2160. doi: 10.1039/C4EE00960F  doi: 10.1039/C4EE00960F

    10. [10]

      Lee, J. H.; Park, N.; Kim, B. G.; Jung, D. S.; Im, K.; Hur, J.; Choi, J. W. ACS Nano 2013, 7, 9366. doi: 10.1021/nn4040734  doi: 10.1021/nn4040734

    11. [11]

      Yao, Y.; Lee, K. T.; Sheng, X.; Batara, N. A.; Hong, N.; He, J.; Xu, L.; Hussain, M. M.; Atwater, H. A.; Lewis, N. S.; et al. Adv. Energy Mater. 2017, 7, 1601992. doi: 10.1002/aenm.201601992  doi: 10.1002/aenm.201601992

    12. [12]

      Fang, Y.; Lv, Y.; Che, R.; Wu, H.; Zhang, X.; Gu, D.; Zheng, G.; Zhao, D. J.Am. Chem. Soc. 2013, 135, 1524. doi: 10.1021/ja310849c  doi: 10.1021/ja310849c

    13. [13]

      Cohen-Tanugi, D.; Grossman, J. C. Nano Lett. 2012, 12, 3602. doi: 10.1021/nl3012853  doi: 10.1021/nl3012853

    14. [14]

      Chae, W. S.; Gough, D. V.; Ham, S. K.; Robinson, D. B.; Braun, P. V. ACS Appl. Mater. Interfaces 2012, 4, 3973. doi: 10.1021/am300798j  doi: 10.1021/am300798j

    15. [15]

      Pikul, J. H.; Zhang, H. G.; Cho, J.; Braun, P. V.; King, W. P. Nat. Commun. 2013, 4, 1732. doi: 10.1038/ncomms2747  doi: 10.1038/ncomms2747

    16. [16]

      Zhang, Y.; He, K.; Chang, C. Z.; Song, C. L.; Wang, L. L.; Chen, X.; Jia, J. F.; Fang, Z.; Dai, X.; et al. Nat. Phys. 2010, 6, 584. doi: 10.1038/NPHYS1689  doi: 10.1038/NPHYS1689

    17. [17]

      Ma, R.; Sasaki, T. Adv. Mater. 2010, 22, 5082. doi: 10.1002/adma.201001722  doi: 10.1002/adma.201001722

    18. [18]

      Sasaki, T.; Watanabe, M. J.Am. Chem. Soc. 1998, 120, 4682. doi: 10.1021/ja974262l  doi: 10.1021/ja974262l

    19. [19]

      Xuan, J.; Wang, Z.; Chen, Y.; Liang, D.; Cheng, L.; Yang, X.; Liu, Z.; Ma, R.; Sasaki, T.; Geng, F. Angew. Chem. Int. Ed. 2016, 55, 14569. doi: 10.1002/anie.201606643  doi: 10.1002/anie.201606643

    20. [20]

      Geng, F. X.; Ma, R. Z.; Nakamura, A.; Akatsuka, K.; Ebina, Y.; Yamauchi, Y.; Miyamoto, N.; Tateyama, Y.; Sasaki, T. Nat. Commun. 2013, 4, 1632. doi: 10.1038/ncomms2641  doi: 10.1038/ncomms2641

    21. [21]

      Norrish, K. Discuss. Faraday Soc. 1954, 18, 120. doi: 10.1039/DF9541800120  doi: 10.1039/DF9541800120

    22. [22]

      Hayashi, S.; Akiba, E. Chem. Phys. Lett. 1994, 226, 495. doi: 10.1016/0009-2614[94]00773-X  doi: 10.1016/0009-2614[94]00773-X

    23. [23]

      Joensen, P.; Frindt, R. F.; Morrison, S. R. Mater. Res. Bull. 1986, 21, 457. doi: 10.1016/0025-5408[86]90011-5  doi: 10.1016/0025-5408[86]90011-5

    24. [24]

      Yuan, H.; Dubbink, D.; Besselink, R.; Elshof, J. E. Ten. J. Angew. Chem. Int. Ed. 2015, 54, 9239. doi: 10.1002/anie.201502539  doi: 10.1002/anie.201502539

    25. [25]

      Ebina, Y.; Sasaki, T.; Watanabe, M. Solid State Ion.2002, 151, 177. doi: 10.1016/S0167-2738[02]00707-5  doi: 10.1016/S0167-2738[02]00707-5

    26. [26]

      Machado, J.; Ravishankar, N.; Rajamathi, M. Solid State Sci. 2010, 12, 1399. doi: 10.1016/j.solidstatesciences.2010.05.017  doi: 10.1016/j.solidstatesciences.2010.05.017

    27. [27]

      Kai, K.; Yoshida, Y.; Kageyama, H.; Saito, G.; Ishigaki, T.; Furukawa, Y.; Kawamata, J. J. Am. Chem. Soc. 2008, 130, 15938. doi: 10.1021/ja804503f  doi: 10.1021/ja804503f

    28. [28]

      Alberti, G.; Cavalaglio, S.; Dionigi, C.; Marmottini, F. Langmuir 2000, 16, 7663. doi: 10.1021/la0006061  doi: 10.1021/la0006061

    29. [29]

      Tan, C.; Zhang, H. Chem. Soc. Rev. 2015, 44, 2713. doi: 10.1039/c4cs00182f  doi: 10.1039/c4cs00182f

    30. [30]

      Naguib, M.; Gogotsi, Y. Acc. Chem. Res. 2015, 48, 128. doi: 10.1021/ar500346b  doi: 10.1021/ar500346b

    31. [31]

      Liu, Z. H.; Wang, Z.; Yang, X.; Kenta, O. Langmuir2002, 18, 4926. doi: 10.1021/la011677i  doi: 10.1021/la011677i

    32. [32]

      Yan, Z.; He, X.; She, L.; Sun, J.; Jiang, R.; Xu, H.; Shi, F.; Lei, Z.; Liu, Z. H. J. Materiomics 2018, 4, 129. doi: 10.1016/j.jmat.2018.01.003  doi: 10.1016/j.jmat.2018.01.003

    33. [33]

      Hibino, T. Chem. Mater. 2004, 16, 5482. doi: 10.1021/cm048842a  doi: 10.1021/cm048842a

    34. [34]

      Li, H.; Jing, L.; Liu, W.; Lin, J.; Tay, R. Y.; Tsang, S. H.; Teo, E. H. T. ACS Nano 2018, 12, 1262. doi: 10.1021/acsnano.7b07444  doi: 10.1021/acsnano.7b07444

    35. [35]

      Zhang, G.; Ren, L.; Yan, Z.; Kang, L.; Lei, Z.; Xu, H.; Shi, F.; Liu, Z. H. Chem. Commun. 2017, 53, 2950. doi: 10.1039/C6CC10250F  doi: 10.1039/C6CC10250F

    36. [36]

      Liu, Z. H.; Ooi K.; Kanoh, H.; Tang, W.; Tomida, T. Langmuir 2000, 16, 4154. doi: 10.1021/la9913755  doi: 10.1021/la9913755

    37. [37]

      Zhang, G.; Ren, L.; Yan, Z.; Kang, L.; Lei, Z.; Xu, H.; Shi, F.; Liu, Z. H. J. Mater. Chem. A 2015, 3, 14567. doi: 10.1039/C5TA03326H  doi: 10.1039/C5TA03326H

    38. [38]

      Zhang, L. L.; Zhao, X.; Stoller, M. D.; Zhu, Y.; Ji, H.; Murali, S.; Wu, Y.; Perales, S.; Clevenger, B.; Ruoff, R. S. Nano Lett. 2012, 12, 1806. doi: 10.1021/nl203903z  doi: 10.1021/nl203903z

    39. [39]

      Barranco, V.; Lillo-Rodenas, M. A.; Linares-Solano, A.; Oya, A.; Pico, F.; Iba ez, J.; Agullo-Rueda, F.; Amarilla, J. M.; Rojo, J. M. J. Phys. Chem. C 2010, 114, 10302. doi: 10.1021/jp1021278  doi: 10.1021/jp1021278

    40. [40]

      Zhu, Y.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M.; et al. Science 2011, 332, 1537. doi: 10.1126/cience.1200770  doi: 10.1126/cience.1200770

    41. [41]

      Sun, X. X.; Cheng, P.; Wang, H. J.; Xu, H.; Dang, L. Q.; Liu, Z. H.; Lei, Z. B. Carbon 2015, 92, 10. doi: 10.1016/j.carbon.2015.02.052  doi: 10.1016/j.carbon.2015.02.052

    42. [42]

      Xin, Z.; Hayner, C. M.; Kung, M. C.; Kung, H. H. ACS Nano 2011, 5, 8739. doi: 10.1021/nn202710s  doi: 10.1021/nn202710s

    43. [43]

      Wang, X.; Jiao, L.; Sheng, K.; Li, C.; Dai, L. M.; Shi, G. Q. Sci. Rep. 2013, 3, 1996. doi: 10.1038/srep01996  doi: 10.1038/srep01996

    44. [44]

      Xu, Y.; Lin, Z.; Zhong, X.; Huang, X.; Weiss, N. O.; Huang, Y.; Duan, X. F. Nat.Commun. 2014, 5, 4554. doi: 10.1038/ncomms5554  doi: 10.1038/ncomms5554

    45. [45]

      Bai, Y.; Yang, X.; He, Y.; Zhang, J.; Kang, L.; Xu, H.; Shi, F.; Lei, Z.; Liu, Z. H. Electrochim. Acta 2016, 187, 543. doi: 10.1016/j.electacta.2015.11.090  doi: 10.1016/j.electacta.2015.11.090

    46. [46]

      Wang, Z. L.; Xu, D.; Wang, H. G.; Wu, Z.; Zhang X. B. ACS Nano 2013, 7, 2422. doi: 10.1021/nn3057388  doi: 10.1021/nn3057388

    47. [47]

      Ning, G.; Xu, C.; Mu, L.; Chen, G.; Wang, G.; Gao, J.; Fan, Z.; Qian, W.; Wei, F. Chem. Commun. 2012, 48, 6815. doi: 10.1039/C2CC31785K  doi: 10.1039/C2CC31785K

    48. [48]

      Jeon, K. W.; Zhang, L.; Choi, S.; Lee, I. S. Small 2018, 14, 1802174. doi: 10.1002/smll.201802174  doi: 10.1002/smll.201802174

    49. [49]

      Fan, Z.; Liu, Y.; Yan, J.; Ning, G.; Wang, Q.; Wei, T.; Zhi, L.; Wei, F. Adv. Energy Mater. 2012, 2, 419. doi: 10.1002/aenm.201100654  doi: 10.1002/aenm.201100654

    50. [50]

      Zhu, J.; Sakaushi, K.; Clavel, G.; Shalom, M.; Antonietti, M.; Fellinger, T. P. J. Am. Chem. Soc. 2015, 137, 5480. doi: 10.1021/jacs.5b01072  doi: 10.1021/jacs.5b01072

    51. [51]

      Wang, H.; Sun, X.; Liu, Z. H.; Lei, Z. Nanoscale 2014, 6, 6577. doi: 10.1039/C4NR00538D  doi: 10.1039/C4NR00538D

    52. [52]

      Wang, H.; Zhi, L.; Liu, K.; Dang, L.; Liu, Z. H.; Lei, Z.; Yu, C.; Qiu, J. Adv. Funct. Mater. 2015, 25, 5420. doi: 10.1002/adfm.201502025  doi: 10.1002/adfm.201502025

    53. [53]

      Huang, J.; Jin, Z.; Xu, Z. L.; Qin, L.; Huang, H.; Sadighi, Z.; Yao, S.; Cui, J.; Huang, B.; Kim, J. K. Energy Storage Mater. 2017, 8, 110. doi: 10.1016/j.ensm.2017.05.004  doi: 10.1016/j.ensm.2017.05.004

    54. [54]

      Peng, L.; Xiong, P.; Ma, L.; Yuan, Y.; Zhu, Y.; Chen, D.; Luo, X.; Lu, J.; Amine, K.; Yu, G. Nat.Commun. 2017, 8, 15139. doi: 10.1038/ncomms15139  doi: 10.1038/ncomms15139

    55. [55]

      Zhang, J.; Yang, X.; He, Y.; Bai, Y.; Kang, L.; Xu, H.; Shi, F.; Lei, Z.; Liu, Z. H. J. Mater. Chem. A 2016, 4, 9088. doi: 10.1039/C6TA02989B  doi: 10.1039/C6TA02989B

    56. [56]

      He, Y.; Bai, Y.; Yang, X.; Zhang, J.; Kang, L.; Xu, H.; Shi, F.; Lei, Z.; Liu, Z. H. J. Power Sources 2016, 317, 10. doi: 10.1016/j.jpowsour.2016.03.089  doi: 10.1016/j.jpowsour.2016.03.089

  • 加载中
    1. [1]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    2. [2]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    3. [3]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    4. [4]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    5. [5]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    6. [6]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    7. [7]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    8. [8]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    9. [9]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    10. [10]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    11. [11]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    12. [12]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    13. [13]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    14. [14]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    15. [15]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    16. [16]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    17. [17]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    18. [18]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    19. [19]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    20. [20]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

Metrics
  • PDF Downloads(6)
  • Abstract views(929)
  • HTML views(67)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return