Citation: ZHANG Chufeng, CHEN Zhewei, LIAN Yuebin, CHEN Yujie, LI Qin, GU Yindong, LU Yongtao, DENG Zhao, PENG Yang. Copper-based Conductive Metal Organic Framework In-situ Grown on Copper Foam as a Bifunctional Electrocatalyst[J]. Acta Physico-Chimica Sinica, ;2019, 35(12): 1404-1411. doi: 10.3866/PKU.WHXB201905030 shu

Copper-based Conductive Metal Organic Framework In-situ Grown on Copper Foam as a Bifunctional Electrocatalyst

  • Corresponding author: PENG Yang, ypeng@suda.edu.cn
  • Received Date: 6 May 2019
    Revised Date: 4 June 2019
    Accepted Date: 4 June 2019
    Available Online: 10 December 2019

    Fund Project: the Postdoctoral Science Foundation of China 2018T110544The project was supported by the National Natural Science Foundation of China 21805201The project was supported by the National Natural Science Foundation of China 21701118the Natural Science Foundation of Jiangsu Province, China BK20160323the Natural Science Foundation of Jiangsu Province, China BK20161209The project was supported by the National Natural Science Foundation of China (21701118, 21805201), the Natural Science Foundation of Jiangsu Province, China (BK20161209, BK20160323, BK20170341), the Postdoctoral Science Foundation of China (2017M611899, 2018T110544) and the Key Technology Initiative of Suzhou Municipal Science and Technology Bureau, China (SYG201748)the Natural Science Foundation of Jiangsu Province, China BK20170341the Key Technology Initiative of Suzhou Municipal Science and Technology Bureau, China SYG201748the Postdoctoral Science Foundation of China 2017M611899

  • With the increasing energy demands for electronic equipment, numerous studies have been conducted to achieve higher energy conversion and develop storage devices such as metal-air batteries, water splitting devices, and fuel cells. All these devices are related to the oxygen evolution reaction (OER) and/or oxygen reduction reaction (ORR). Currently, platinum group metals (PGMs) or their oxides are the most active electrocatalysts for OER and ORR. However, the high cost and scarcity of these noble metals hinder their widespread application. Therefore, the development of a low-cost electrocatalyst that exhibits catalytic performance comparable to or better than that of PGMs is essential.Metal-organic frameworks (MOFs) are a new class of porous materials constructed from metal ions and organic linkers. MOF materials have diverse metal centers. In addition, organic ligands containing various heteroatoms can change the microenvironment of these metal centers. Moreover, the size, morphology, and porosity of MOF materials can be precisely tuned. These advantages of MOF are beneficial for electrocatalytic reactions. However, MOF is generally considered to be a poor electrocatalyst and is rarely used in the field of electrocatalysis because of its low electrical conductivity. To increase the electrical conductivity of MOF, high-temperature calcination or hybridization with conductive supports is necessary. However, high-temperature calcination may sacrifice the intrinsic molecular metal active sites of MOFs, whereas hybridization with conductive supports may block their inherent micropores. The development of MOF materials with high electrical conductivity is vital for electrocatalysis.Herein, we report a two-dimensional conductive MOF based on copper foam growth (Cu3HITP2/CF, where HITP = 2, 3, 6, 7, 10, 11-hexaaminotriphenylene hexahydrochloride, CF = copper foam), which has high electrical conductivity and excellent catalytic stability and can be used as a bi-functional electrocatalyst in OER and ORR. In addition, this catalyst does not require heat treatment or the addition of a conductive agent. We first electroplated needle-shaped Cu(OH)2 nanowires onto the surface of a blank copper foam, and then immersed it in a solution of HITP to convert it into Cu3HITP2 at 65 ℃. To confirm its physicochemical properties, the as-synthesized Cu3HITP2/CF was characterized and analyzed by X-ray diffraction, infrared spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. The morphology was characterized by scanning and transmission electron microscopy. The as-synthesized Cu3HITP2/CF maintained a two-dimensional needle-like morphology during the reaction and could be stably operated in an alkaline solution. The overpotential at 10 mA·cm-2 in the OER was only 1.53 V, and the current density did not decrease significantly after 24 h. The Faraday efficiency was as high as 96.84%, and only 1.57% of the by-product H2O2 was produced. In addition, during the ORR, the half-wave potential of Cu3HITP2/CF reached 0.75 V and its activity did not decrease significantly after 2000 cycles of voltammetric scanning. Moreover, its electron transfer number was 3.85, with 5.7% H2O2 generation. Comparative experiments with powder Cu3HITP2 showed that Cu3HITP2 grown on copper foam had a larger electrochemical specific surface area and exhibited superior OER and ORR properties, which was due to its two-dimensional needle-like morphology. In general, this study not only provides a method for in-situ growth of MOF materials on copper foam but also provides new ideas for developing two-dimensional conductive MOF materials in the field of electrocatalysis.
  • 加载中
    1. [1]

      Chen, Z.; Yu, A.; Higgins, D.; Li, H.; Wang, H. J.; Chen, Z. W. Nano Lett. 2012, 12, 1946. doi: 10.1021/nl2044327  doi: 10.1021/nl2044327

    2. [2]

      Lee, D. U.; Xu, P.; Cano, Z. P.; Kashkooli, A.G.; Park, M. G.; Chen, Z. W. J. Mater. Chem. A 2016, 4, 7107. doi: 10.1039/C6TA00173D  doi: 10.1039/C6TA00173D

    3. [3]

      Mamaca, N.; Mayousse, E.; Arrii-Clacens, S.; Napporn, T. W.; Servat, K.; Guillet, N.; Kokoh, K. B. Appl. Catal. B 2012, 111, 376. doi: 10.1016/j.apcatb.2011.10.020  doi: 10.1016/j.apcatb.2011.10.020

    4. [4]

      Huang, Y. Y.; Wang, Y. Q.; Tang, C.; Wang, J.; Zhang, Q.; Wang, Y. B.; Zhang, J. T. Adv. Mater. 2019, 31, 803800. doi: 10.1002/adma.201803800  doi: 10.1002/adma.201803800

    5. [5]

      Shinde, S. S.; Lee, C. H.; Sami, A.; Kim, D. H.; Lee, S. U; Lee, J. H. ACS Nano 2017, 17, 347. doi: 10.1021/acsnano.6b05914  doi: 10.1021/acsnano.6b05914

    6. [6]

      Zhang, H.; Wang, T. T.; Sumboja, A.; Zang, W. J.; Xie, J. P.; Gao, D. Q.; Pennycock, S. J.; Liu, Z. L.; Guan, C.; et al. Adv. Funct. Mater. 2018, 28, 1804846. doi: 10.1002/adfm.201804846  doi: 10.1002/adfm.201804846

    7. [7]

      Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. J. Am. Chem. Soc. 2014, 136, 13925. doi: 10.1021/ja5082553  doi: 10.1021/ja5082553

    8. [8]

      Fu, G. T.; Cui, Z. M.; Chen, Y. F.; Li, Y. T.; Tang, Y. W.; John, B. G. Adv. Energy Mater. 2017, 7, 1601172. doi: 10.1002/aenm.201601172  doi: 10.1002/aenm.201601172

    9. [9]

      Li, S.; Cheng, C.; Zhao, X. J.; Schmidt, J.; Thomas, A. Angew. Chem. Int. Ed. 2018, 57, 1856. doi: 10.1002/aenm.201702900  doi: 10.1002/aenm.201702900

    10. [10]

      Jiang, Y.; Deng, Y. P.; Fu, J.; Lee, D. U.; Liang, R. L.; Zachary, P. C.; Liu, Y. S.; Bai, Z. Y.; Sooyeon, H.; Yang, L.; et al. Adv. Energy Mater. 2018, 8, 1702900. doi: 10.1002/anie.201710852  doi: 10.1002/anie.201710852

    11. [11]

      Chen, G. B.; Zhang, J.; Wang, F. X.; Wang, L. L.; Liao, Z. Q.; Zschech, E.; Müllen, K.; Feng, X. L. Chemistry 2018, 24, 18413. doi: 10.1002/chem.201804339  doi: 10.1002/chem.201804339

    12. [12]

      Shinde, S. S.; Lee, C. H.; Yu, J. Y.; Kim, D. H.; Lee, S. U.; Lee, J. H. ACS Nano 2018, 12, 596. doi: 10.1021/acsnano.7b07473  doi: 10.1021/acsnano.7b07473

    13. [13]

      Wang, C. H.; Liu, X. L.; Demir, N. K.; Chen, J. P.; Li, K. Chem. Soc. Rev. 2016, 45, 5107. doi: 10.1039/c6cs00362a  doi: 10.1039/c6cs00362a

    14. [14]

      Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. Science 2013, 341, 1230444. doi: 10.1126/science.1230444  doi: 10.1126/science.1230444

    15. [15]

      Lee, J. Y.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Chem. Soc. Rev. 2009, 38, 1450. doi: 10.1039/b807080f  doi: 10.1039/b807080f

    16. [16]

      Meek, S. T.; Greathouse, J. A.; Allendorf, M. D. Adv. Mater. 2011, 23, 249. doi: 10.1002/adma.201002854  doi: 10.1002/adma.201002854

    17. [17]

      Stock, N.; Biswas, S. Chem. Rev. 2012, 112, 933. doi: 10.1021/cr200304e  doi: 10.1021/cr200304e

    18. [18]

      Schneemann, A.; Bon, V.; Schwedler, I.; Senkovska, I.; Kaskel, S.; Fischer, R. A. Chem. Soc. Rev. 2014, 43, 6062. doi: 10.1039/c4cs00101j  doi: 10.1039/c4cs00101j

    19. [19]

      Yang, X. D.; Chen, C.; Zhou, Z. Y.; Sun, S. G. Acta Phys. –Chim. Sin. 2019, 35 (5), 472.  doi: 10.3866/PKU.WHXB201806131

    20. [20]

      Sun, L.; Campbell, M. G.; Dinca, M. Angew. Chem. Int. Ed. 2016, 55, 3566. doi: 10.1002/ange.201506219  doi: 10.1002/ange.201506219

    21. [21]

      Sheberla, D.; Bachman, J. C.; Elias, J. S.; Elias, J. S.; Sun, C. J.; Yang, S. H. Nat. Mater. 2017, 16, 220. doi: 10.1038/NMAT4766  doi: 10.1038/NMAT4766

    22. [22]

      Zhong, H. X.; Wang, J.; Zhang, Y. W.; Xu, W. L.; Xing, W.; Xu, D.; Zhang, Y. F.; Zhang, X. B. Angew. Chem. Int. Ed. 2014, 53, 14235. doi: 10.1002/anie.201408990  doi: 10.1002/anie.201408990

    23. [23]

      Wang, L.; Feng, X.; Ren, L. T.; Piao, Q. H.; Zhong, J. Q.; Wang, Y. B.; Li, H. W.; Chen, Y. F.; Wang, B. J. Am. Chem. Soc. 2015, 137, 4920. doi: 10.1021/jacs.5b01613  doi: 10.1021/jacs.5b01613

    24. [24]

      Jahan, M.; Liu, Z.; Loh, K. P. Adv. Funct. Mater.2013, 23, 5363. doi: 10.1002/adfm.201300510  doi: 10.1002/adfm.201300510

    25. [25]

      Sheberla, D.; Sun, L.; Blood-Forsythe, M.A.; Er, S.; Wade, C. R.; Brozek, C. K.; Aspuru-Guzik, A.; Dinca, M. J. Am. Chem. Soc. 2014, 136, 8859. doi: 10.1021/ja502765n  doi: 10.1021/ja502765n

    26. [26]

      Campbell, M. G.; Sheberla, D.; Liu, S. F.; Swager, T. M.; Dinca, M. Angew. Chem. Int. Ed. 2015, 54, 4349. doi: 10.1002/ange.201411854  doi: 10.1002/ange.201411854

    27. [27]

      Campbell, M. G.; Liu, S. F.; Swager, T. M.; Dinca, M. J. Am. Chem. Soc. 2015, 137, 13780. doi: 10.1021/jacs.5b09600  doi: 10.1021/jacs.5b09600

    28. [28]

      Dou, J. H.; Sun, L.; Ge, Y.; Li, W. B.; Hendon, C. H.; Li, J.; Gul, S.; Yano, J.; Stach, E. A.; Dinca, M. J. Am. Chem. Soc. 2017, 139, 13608. doi: 10.1021/jacs.7b07234  doi: 10.1021/jacs.7b07234

    29. [29]

      Feng, D. W.; Lei, T.; Lukatskaya, M. R.; Park, J.; Huang, Z. H.; Lee, M.; Shaw, L.; Chen, S. C.; Yakovenko, A. A.; Kulkarni, A. Nat. Energy 2018, 3, 30. doi: 10.1038/s41560-017-0044-5  doi: 10.1038/s41560-017-0044-5

    30. [30]

      Miner, E. M.; Fukushima, T.; Sheberla, D.; Sun, L.; Surendranath, Y.; Dinca, M. Nat. Commun. 2016, 7, 10942. doi: 10.1038/ncomms10942  doi: 10.1038/ncomms10942

    31. [31]

      Bao, J. Z.; Wang, S. L. Acta Phys. –Chim. Sin. 2011, 27, 2849.  doi: 10.3866/PKU.WHXB20112849

  • 加载中
    1. [1]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    4. [4]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    5. [5]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    6. [6]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    7. [7]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    8. [8]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    9. [9]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    10. [10]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    11. [11]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    12. [12]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    13. [13]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    14. [14]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    15. [15]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    16. [16]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    17. [17]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

    18. [18]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    19. [19]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    20. [20]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

Metrics
  • PDF Downloads(31)
  • Abstract views(1128)
  • HTML views(193)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return