Citation: Li Hui, Liu Shuangyu, Yuan Tianci, Wang Bo, Sheng Peng, Xu Li, Zhao Guangyao, Bai Huitao, Chen Xin, Chen Zhongxue, Cao Yuliang. Electrochemical Mechanism of Na0.44MnO2 in Alkaline Aqueous Solution[J]. Acta Physico-Chimica Sinica, ;2020, 36(5): 190502. doi: 10.3866/PKU.WHXB201905027 shu

Electrochemical Mechanism of Na0.44MnO2 in Alkaline Aqueous Solution

  • Corresponding author: Cao Yuliang, ylcao@whu.edu.cn
  • Received Date: 6 May 2019
    Revised Date: 2 June 2019
    Accepted Date: 3 June 2019
    Available Online: 10 May 2019

    Fund Project: the Science and Technology Project of State Grid, China SGRIDGKJ[2017]841the National Key Research Program of China 2016YFB0901500The project was supported by the Science and Technology Project of State Grid, China (SGRIDGKJ[2017]841), the National Key Research Program of China (2016YFB0901500) and the National Natural Science Foundation of China (21875171, 21673165)the National Natural Science Foundation of China 21673165the National Natural Science Foundation of China 21875171

  • In recent years, aqueous sodium-ion batteries (ASIBs) have experienced rapid development, and a series of cathode materials for ASIBs has been widely reported. Among these, Na0.44MnO2 possesses the most promising prospects due to its low cost, non-toxic nature, simple synthesis, and structural stability. However, the reported capacity of Na0.44MnO2 in aqueous electrolyte was ~40 mAh·g−1 (less than its theoretical capacity of 121 mAh·g−1), which limits its practical applications. Recently, we developed a novel alkaline Zn-Na0.44MnO2 dual-ion battery using Na0.44MnO2 as the cathode, a Zn metal sheet as the anode, and a 6 mol L−1 NaOH aqueous solution as the electrolyte. In this system, the Na0.44MnO2 electrode presented excellent electrochemical performance with high reversible capacity (80.2 mAh·g−1 at 0.5C) and outstanding cycling stability (73% capacity retention over 1000 cycles at 10C) in alkaline aqueous electrolyte. When the negative potential window was extended to 0.3 V, the Na0.44MnO2 electrode delivered an incredibly high capacity of 345.5 mAh·g−1, which far exceeded the theoretical capacity, but the cycling performance was extremely poor. In that study, X-ray diffraction (XRD) and inductively coupled plasma-atomic emission spectrometry (ICP-AES) analyses revealed that de-intercalation of Na+ and formation of Mn(OH)2 occurred during the discharge process, but the detailed electrochemical mechanism and structural evolution of this process remained unclear. In this study, we used ICP-AES to analyze the elemental composition of discharge products at different discharge depths and found that a small amount of Na+ ions extracted from Na0.44MnO2 electrode since Discharge-120 (corresponding to the discharge capacity of 120 mAh·g−1), and the extraction rate increased gradually with increasing discharge depth. Scanning electron microscope (SEM) and XRD analyses were also carried out to characterize the morphology and phase changes of Na0.44MnO2 electrode during discharge. The results show that the discharge of Na0.44MnO2 electrode in the voltage range 1.95–0.3 V could be divided into the three following steps: (1) the potential range above 1.0 V: Na+ ions de-intercalate reversibly into the tunnel structure of Na0.44MnO2; this discharge mechanism is consistent with that in non-aqueous and neutral aqueous sodium ion batteries. (2) The initial platform region at 1.0 V: in this step, protons (H+) began to insert into the Na+-vacancies in NaxMnO2, and the tunnel structure of NaxMnO2 was still maintained. (3) Subsequent slope region: when the Na+-vacancies in the tunnel structure were fully occupied by protons, further intercalation led to intensification of charge repulsion in the crystal structure. Thus, the tunnel structure collapsed to form a new Mn(OH)2 phase, accompanied by the release of Na+ from the structure. H+ has a smaller radius than Na+; therefore, it could insert into the smaller vacancies in Na0.44MnO2, resulting in higher specific capacity. However, the insertion of H+ will also cause structural damage, which seriously worsens the cycling stability of the Na0.44MnO2 electrode.
  • 加载中
    1. [1]

      Fang, Y.; Zhang, J.; Xiao, L.; Ai, X.; Cao, Y.; Yang, H. Adv. Sci. 2017, 4 (5), 1600392. doi: 10.1002/advs.201600392  doi: 10.1002/advs.201600392

    2. [2]

      Fang, Y.; Chen, Z.; Xiao, L.; Ai, X.; Cao, Y.; Yang, H. Small 2018, 14 (9), 1703116. doi: 10.1002/smll.201703116  doi: 10.1002/smll.201703116

    3. [3]

      Li, F.; Zhou, Z. Small 2018, 14 (6), 1702961. doi: 10.1002/smll.201702961  doi: 10.1002/smll.201702961

    4. [4]

      Bin, D.; Wang, F.; Tamirat, A. G.; Suo, L.; Wang, Y.; Wang, C.; Xia, Y. Adv. Energy Mater. 2018, 8 (17), 1703008. doi: 10.1002/aenm.201703008  doi: 10.1002/aenm.201703008

    5. [5]

      Ding, J.; Hu, W.; Paek, E.; Mitlin, D. Chem. Rev. 2018, 118 (14), 6457. doi: 10.1021/acs.chemrev.8b00116  doi: 10.1021/acs.chemrev.8b00116

    6. [6]

      Qian, J.; Wu, C.; Cao, Y.; Ma, Z.; Huang, Y.; Ai, X.; Yang, H. Adv. Energy Mater. 2018, 8 (17), 1702619. doi: 10.1002/aenm.201702619  doi: 10.1002/aenm.201702619

    7. [7]

      Cao, Y.; Xiao, L.; Wang, W.; Choi, D.; Nie, Z.; Yu, J.; Saraf, L. V.; Yang, Z.; Liu, J. Adv. Mater. 2011, 23 (28), 3155. doi: 10.1002/adma.201100904  doi: 10.1002/adma.201100904

    8. [8]

      Kim, H.; Kim, D. J.; Seo, D. H.; Yeom, M. S.; Kang, K.; Kim, D. K.; Jung, Y. Chem. Mater. 2012, 24 (6), 1205. doi: 10.1021/cm300065y  doi: 10.1021/cm300065y

    9. [9]

      Fu, B.; Zhou, X.; Wang, Y. J. Power Sources 2016, 310, 102. doi: 10.1016/j.jpowsour.2016.01.101  doi: 10.1016/j.jpowsour.2016.01.101

    10. [10]

      Liu, Q.; Hu, Z.; Chen, M.; Gu, Q.; Dou, Y.; Sun, Z.; Chou, S.; Dou, S. X. ACS Appl. Mater. Inter. 2017, 9 (4), 3644. doi: 10.1021/acsami.6b13830  doi: 10.1021/acsami.6b13830

    11. [11]

      Whitacre, J. F.; Tevar, A.; Sharma, S. Electrochem. Commun. 2010, 12 (3), 463. doi: 10.1016/j.elecom.2010.01.020  doi: 10.1016/j.elecom.2010.01.020

    12. [12]

      Kim, D. J.; Ponraj, R.; Kannan, A. G.; Lee, H. W.; Fathi, R.; Ruffo, R.; Mari, C. M.; Kim, D. K. J. Power Sources 2013, 244, 758. doi: 10.1016/j.jpowsour.2013.02.090  doi: 10.1016/j.jpowsour.2013.02.090

    13. [13]

      Li, Z.; Young, D.; Xiang, K.; Carter, W. C.; Chiang, Y. M. Adv. Energy Mater. 2013, 3 (3), 290. doi: 10.1002/aenm.201200598  doi: 10.1002/aenm.201200598

    14. [14]

      Wang, Y.; Liu, J.; Lee, B.; Qiao, R.; Yang, Z.; Xu, S.; Yu, X.; Gu, L.; Hu, Y. S.; Yang, W.; et al. Nat. Commun. 2015, 6, 6401. doi: 10.1038/ncomms7401  doi: 10.1038/ncomms7401

    15. [15]

      Yuan, T.; Zhang, J.; Pu, X.; Chen, Z.; Tang, C.; Zhang, X.; Ai, X.; Huang, Y.; Yang, H.; Cao, Y. ACS Appl. Mater. Inter. 2018, 10 (40), 34108. doi: 10.1021/acsami.8b08297  doi: 10.1021/acsami.8b08297

    16. [16]

      Xiao, Y.; Wang, P. F.; Yin, Y. X.; Zhu, Y. F.; Yang, X.; Zhang, X. D.; Wang, Y.; Guo, X. D.; Zhong, B. H.; Guo, Y. G. Adv. Energy Mater. 2018, 8 (22), 1800492. doi: 10.1002/aenm.201800492  doi: 10.1002/aenm.201800492

    17. [17]

      Chen, Z.; Yuan, T.; Pu, X.; Yang, H.; Ai, X.; Xia, Y.; Cao, Y. ACS Appl. Mater. Inter. 2018, 10 (14), 11689. doi: 10.1021/acsami.8b00478  doi: 10.1021/acsami.8b00478

    18. [18]

      He, X.; Wang, J.; Qiu, B.; Paillard, E.; Ma, C.; Cao, X.; Liu, H.; Stan, M. C.; Liu, H.; Gallash, T.; et al. Nano Energy 2016, 27, 602. doi: 10.1016/j.nanoen.2016.07.021  doi: 10.1016/j.nanoen.2016.07.021

    19. [19]

      Luo, J. Y.; Cui, W. J.; He, P.; Xia, Y. Y. Nat. Chem. 2010, 2, 760. doi: 10.1038/nchem.763  doi: 10.1038/nchem.763

    20. [20]

      Choi, J.; Alvarez, E.; Arunkumar, T.A.; Manthiram, A. Electrochem. Solid St. 2006, 9 (5), A241. doi: 10.1149/1.2184495  doi: 10.1149/1.2184495

    21. [21]

      Manthiram, A.; Choi, J. J. Power Sources 2006, 159 (1), 249. doi: 10.1016/j.jpowsour.2006.04.028  doi: 10.1016/j.jpowsour.2006.04.028

    22. [22]

      Wang, Y. G.; Luo, J. Y.; Wang, C. X.; Xia, Y. Y. J. Electrochem. Soc. 2006, 153 (8), A1425. doi: 10.1149/1.2203772  doi: 10.1149/1.2203772

    23. [23]

      Hertzberg, B. J.; Huang, A.; Hsieh, A.; Chamoun, M.; Davies, G.; Seo, J. K.; Zhong, Z.; Croft, M.; Erdonmez, C.; Meng, Y. S.; et al. Chem. Mater. 2016, 28 (13), 4536. doi: 10.1021/acs.chemmater.6b00232  doi: 10.1021/acs.chemmater.6b00232

    24. [24]

      Pan, H.; Shao, Y.; Yan, P.; Cheng, Y.; Han, K. S.; Nie, Z.; Wang, C.; Yang, J.; Li, X.; Bhattacharya, P.; et al. Nat. Energy 2016, 1 (5), 16039. doi: 10.1038/nenergy.2016.39  doi: 10.1038/nenergy.2016.39

    25. [25]

      Sun, W.; Wang, F.; Hou, S.; Yang, C.; Fan, X.; Ma, Z.; Gao, T.; Han, F.; Hu, R.; Zhu, M.; et al. J. Am. Chem. Soc. 2017, 139 (29), 9775. doi: 10.1021/jacs.7b04471  doi: 10.1021/jacs.7b04471

  • 加载中
    1. [1]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    2. [2]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    3. [3]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    4. [4]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    5. [5]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    6. [6]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    7. [7]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    8. [8]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    9. [9]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    10. [10]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    11. [11]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    12. [12]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    13. [13]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    14. [14]

      Xiping Luo Xing Wang Shengxiang Yang Jianzhong Guo Yuxuan Wang Xuejuan Yang . Innovative “One Body, Dual Wings” Embedded Talent Cultivation Model: Practice in the Construction of Applied Chemistry Major at Zhejiang Agriculture and Forestry University. University Chemistry, 2024, 39(3): 205-209. doi: 10.3866/PKU.DXHX202309058

    15. [15]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    16. [16]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    17. [17]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    18. [18]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    19. [19]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    20. [20]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

Metrics
  • PDF Downloads(18)
  • Abstract views(1200)
  • HTML views(227)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return