Recent Advances in Catalysts Based on Molecular Cubanes for Visible Light-Driven Water Oxidation
- Corresponding author: Ding Yong, dingyong1@lzu.edu.cn
Citation: Sun Wanjun, Lin Junqi, Liang Xiangming, Yang Junyi, Ma Baochun, Ding Yong. Recent Advances in Catalysts Based on Molecular Cubanes for Visible Light-Driven Water Oxidation[J]. Acta Physico-Chimica Sinica, ;2020, 36(3): 190502. doi: 10.3866/PKU.WHXB201905025
Berardi, S.; Drouet, S.; Francàs, L.; Gimbert-Suriñach, C.; Guttentag, M.; Richmond, C.; Stoll, T.; Llobet, A. Chem. Soc. Rev. 2014, 43, 7501. doi: 10.1039/c3cs60405e
doi: 10.1039/c3cs60405e
Song, F.; Ding, Y.; Ma, B.; Wang, C.; Wang, Q.; Du, X.; Fu, S.; Song, J. Energy Environ. Sci. 2013, 6, 1170. doi: 10.1039/C3EE24433D
doi: 10.1039/C3EE24433D
Gong, J.; Li, C.; Wasielewski, M. R. Chem. Soc. Rev. 2019, 48, 1862. doi: 10.1039/c9cs90020al
doi: 10.1039/c9cs90020al
Wang, J. -W.; Zhong, D. -C.; Lu, T. -B. Coord. Chem. Rev. 2018, 377, 225. doi: 10.1016/j.ccr.2018.09.003
doi: 10.1016/j.ccr.2018.09.003
Xiao, A.; Lu, H.; Zhao, Y.; Luo, G. G. Acta Phys. -Chim. Sin. 2016, 32 (12), 2968.
doi: 10.3866/PKU.WHXB201609194
Yu, L.; Ding, Y.; Zheng, M.; Chen, H.; Zhao, J. Chem. Commun. 2016, 52, 14494. doi: 10.1039/C6CC02728h
doi: 10.1039/C6CC02728h
Dismukes, G. C.; Brimblecombe, R.; Felton, G. A.; Pryadun, R. S.; Sheats, J. E.; Spiccia, L.; Swiegers, G. F. Acc. Chem. Res. 2009, 42, 1935. doi:10.1021/ar900249x
doi: 10.1021/ar900249x
Tian, T.; Gao, H.; Zhou, X.; Zheng, L.; Wu, J.; Li, K.; Ding, Y. ACS Energy Lett. 2018, 3, 2150. doi: 10.1021/acsenergylett.8b01206
doi: 10.1021/acsenergylett.8b01206
Zhang, B.; Sun, L. Chem. Soc. Rev. 2019, 48, 2216. doi: 10.1039/c8cs00897c
doi: 10.1039/c8cs00897c
Gersten, S. W.; Samuels, G. J.; Meyer, T. J. J. Am. Chem. Soc. 1982, 104, 4029. doi: 10.1021/ja00378a053
doi: 10.1021/ja00378a053
Umena, Y.; Kawakami, K.; Shen, J. -R.; Kamiya, N. Nature 2011, 473, 55. doi: 10.1038/nature09913
doi: 10.1038/nature09913
Zhang, C. X.; Chen, C. H.; Dong, H. X.; Shen, J. R.; Dau, H.; Zhao, J. Q. Science 2015, 348, 690. doi: 10.1126/science.aaa6550
doi: 10.1126/science.aaa6550
Kok, B.; Forbush, B.; McGloin, M. Photochem. Photobiol. 1970, 11, 457. doi: 10.1111/j.1751-1097.1970.tb06017.x
doi: 10.1111/j.1751-1097.1970.tb06017.x
Suga, M.; Akita, F.; Sugahara, M.; Kubo, M.; Nakajima, Y.; Nakane, T.; Yamashita, K.; Umena, Y.; Nakabayashi, M.; Yamane, T.; et al. Nature 2017, 543, 131. doi: 10.1038/nature21400
doi: 10.1038/nature21400
Suga, M.; Akita, F.; Hirata, K.; Ueno, G.; Murakami, H.; Nakajima, Y.; Shimizu, T.; Yamashita, K.; Yamamoto, M.; Ago, H.; et al. Nature 2015, 517, 99. doi: 10.1038/nature13991
doi: 10.1038/nature13991
Chen, C.; Chen, Y.; Yao, R.; Li, Y.; Zhang, C. Angew. Chem. Int. Ed. 2019, 58, 3939. doi: 10.1002/anie.201814440
doi: 10.1002/anie.201814440
Lin, J.; Han, Q.; Ding, Y. Chem. Rec. 2018, 18, 1531. doi: 10.1002/tcr.201800029
doi: 10.1002/tcr.201800029
Buriak, J. M.; Kamat, P. V.; Schanze, K. S. ACS Appl. Mater. Interfaces 2014, 6, 11815. doi: 10.1021/am504389z
doi: 10.1021/am504389z
Lin, J.; Meng, X.; Zheng, M.; Ma, B.; Ding, Y. Appl Catal B: Environ 2019, 241, 351. doi: 10.1016/j.apcatb.2018.09.052
doi: 10.1016/j.apcatb.2018.09.052
Parent, A. R.; Crabtree, R. H.; Brudvig, G. W. Chem. Soc. Rev. 2013, 42, 2247. doi: 10.1039/C2CS35225G
doi: 10.1039/C2CS35225G
Yamada, Y.; Yano, K.; Hong, D.; Fukuzumi, S. Phys. Chem. Chem. Phys. 2012, 14, 5753. doi: 10.1039/c2cp00022a
doi: 10.1039/c2cp00022a
McCool, N. S.; Robinson, D. M.; Sheats, J. E.; Dismukes, G. C. J. Am. Chem. Soc. 2011, 133, 11446. doi: 10.1021/ja203877y
doi: 10.1021/ja203877y
Dismukes, G. C.; Brimblecombe, R.; Felton, G. A. N.; Pryadun, R. S.; Sheats, J. E.; Spiccia, L.; Swiegers, G. F. Acc. Chem. Res. 2009, 42, 1935. doi: 10.1021/ar900249x
doi: 10.1021/ar900249x
Smith, P. F.; Kaplan, C.; Sheats, J. E.; Robinson, D. M.; McCool, N. S.; Mezle, N.; Dismukes, G. C. Inorg. Chem. 2014, 53, 2113. doi: 10.1021/ic402720p
doi: 10.1021/ic402720p
Dimitrou, K.; Folting, K.; Streib, W. E.; Christou, G. J. Am. Chem. Soc. 1993, 115, 6432. doi: 10.1021/ja00067a077
doi: 10.1021/ja00067a077
Sumner, E. C. Inorg. Chem. 1988, 27, 1320. doi: 10.1021/ic00281a004
doi: 10.1021/ic00281a004
La Ganga, G.; Puntoriero, F.; Campagna, S.; Bazzan, I.; Berardi, S.; Bonchio, M.; Sartorel, A.; Natali, M.; Scandola, F. Faraday Discuss. 2012, 155, 177. doi: 10.1039/c1fd00093d
doi: 10.1039/c1fd00093d
Berardi, S.; La Ganga, G.; Natali, M.; Bazzan, I.; Puntoriero, F.; Sartorel, A.; Scandola, F.; Campagna, S.; Bonchio, M. J. Am. Chem. Soc. 2012, 134, 11104. doi: 10.1021/ja303951z
doi: 10.1021/ja303951z
Zhou, X.; Li, F.; Li, H.; Zhang, B.; Yu, F.; Sun, L. ChemSusChem 2014, 7, 2453. doi: 10.1002/cssc.201402195
doi: 10.1002/cssc.201402195
Ullman, A. M.; Liu, Y.; Huynh, M.; Bediako, D. K.; Wang, H.; Anderson, B. L.; Powers, D. C.; Breen, J. J.; Abruña, H. D.; Nocera, D. G. J. Am. Chem. Soc. 2014, 136, 17681. doi: 10.1021/ja5110393
doi: 10.1021/ja5110393
Nguyen, A. I.; Ziegler, M. S.; Oña-Burgos, P.; Sturzbecher-Hohne, M.; Kim, W.; Bellone, D. E.; Tilley, T. D. J. Am. Chem. Soc. 2015, 137, 12865. doi: 10.1021/jacs.5b08396
doi: 10.1021/jacs.5b08396
Wang, H. -Y.; Mijangos, E.; Ott, S.; Thapper, A. Angew. Chem. Int. Ed. 2014, 53, 14499. doi: 10.1002/anie.201406540
doi: 10.1002/anie.201406540
Wang, J. -W.; Sahoo, P.; Lu, T. -B. ACS Catal. 2016, 6, 5062. doi: 10.1021/acscatal.6b00798
doi: 10.1021/acscatal.6b00798
Evangelisti, F.; More, R.; Hodel, F.; Luber, S.; Patzke, G. R. J. Am. Chem. Soc. 2015, 137, 11076. doi: 10.1021/jacs.5b05831
doi: 10.1021/jacs.5b05831
Folkman, S. J.; Soriano-Lopez, J.; Galan-Mascaros, J. R.; Finke, R. G. J. Am. Chem. Soc. 2018, 140, 12040. doi: 10.1021/jacs.8b06303
doi: 10.1021/jacs.8b06303
Evangelisti, F.; Guttinger, R.; More, R.; Luber, S.; Patzke, G. R. J. Am. Chem. Soc. 2013, 135, 18734. doi: 10.1021/ja4098302
doi: 10.1021/ja4098302
Song, F.; Moré, R.; Schilling, M.; Smolentsev, G.; Azzaroli, N.; Fox, T.; Luber, S.; Patzke, G. R. J. Am. Chem. Soc. 2017, 139, 14198. doi: 10.1021/jacs.7b07361
doi: 10.1021/jacs.7b07361
Xie, W. -F.; Guo, L. -Y.; Xu, J. -H.; Jagodič, M.; Jagličić, Z.; Wang, W. -G.; Zhuang, G. -L.; Wang, Z.; Tung, C. -H.; Sun, D. Eur. J. Inorg. Chem. 2016, 2016, 3253. doi.10.1002/ejic.201600510
Xu, J. -H.; Guo, L. -Y.; Su, H.-F.; Gao, X.; Wu, X. -F.; Wang, W. -G.; Tung, C. -H.; Sun, D. Inorg. Chem. 2017, 56, 1591. doi: 10.1021/acs.inorgchem.6b02698
Zhao, Y.; Lin, J.; Liu, Y.; Ma, B.; Ding, Y.; Chen, M. Chem. Commun. 2015, 51, 17309. doi:10.1039/C5CC07448g
doi: 10.1039/C5CC07448g
Jiang, X.; Li, J.; Yang, B.; Wei, X. Z.; Dong, B. W.; Kao, Y.; Huang, M.; Tung, C.; Wu, L. Angew. Chem. Int. Ed. 2018, 57, 7850. doi: 10.1002/anie.201803944
doi: 10.1002/anie.201803944
Lin, J.; Liang, X.; Cao, X.; Wei, N.; Ding, Y. Chem. Commun. 2018, 54, 12515. doi: 10.1039/c8cc06362a
doi: 10.1039/c8cc06362a
Song, F.; Ding, Y.; Zhao, C. Acta Chim Sinica 2014, 72, 133.
doi: 10.6023/a13101052
Lv, H.; Geletii, Y. V.; Zhao, C.; Vickers, J. W.; Zhu, G.; Luo, Z.; Song, J.; Lian, T.; Musaev, D. G.; Hill, C. L. Chem. Soc. Rev. 2012, 41, 7572. doi: 10.1039/C2CS35292C
doi: 10.1039/C2CS35292C
Du, X.; Zhao, J.; Mi, J.; Ding, Y.; Zhou, P.; Ma, B.; Zhao, J.; Song, J. Nano Energy 2015, 16, 247. doi: 10.1016/j.nanoen.2015.06.025
doi: 10.1016/j.nanoen.2015.06.025
Yu, L.; Ding, Y.; Zheng, M. Appl. Catal. B: Environ. 2017, 209, 45. doi: 10.1016/j.apcatb.2017.02.061
doi: 10.1016/j.apcatb.2017.02.061
Yu, L.; Lin, J.; Zheng, M.; Chen, M.; Ding, Y. Chem. Commun. 2018, 54, 354. doi: 10.1039/C7CC08301G
doi: 10.1039/C7CC08301G
Du, X.; Ding, Y.; Song, F.; Ma, B.; Zhao, J.; Song, J. Chem. Commun. 2015, 51, 13925. doi: 10.1039/c5cc04551g
doi: 10.1039/c5cc04551g
Yin, Q.; Tan, J. M.; Besson, C.; Geletii, Y. V.; Musaev, D. G.; Kuznetsov, A. E.; Luo, Z.; Hardcastle, K. I.; Hill, C. L. Science 2010, 328, 342. doi: 10.1126/science.1185372
doi: 10.1126/science.1185372
Han, Z.; Bond, A. M.; Zhao, C. Sci. China Chem. 2011, 54, 1877. doi: 10.1007/s11426-011-4442-4
doi: 10.1007/s11426-011-4442-4
Sartorel, A.; Carraro, M.; Scorrano, G.; Zorzi, R. D.; Geremia, S.; McDaniel, N. D.; Bernhard, S.; Bonchio, M. J. Am. Chem. Soc. 2008, 130, 5006. doi: 10.1021/ja077837f
doi: 10.1021/ja077837f
Geletii, Y. V.; Botar, B.; Kögerler, P.; Hillesheim, D. A.; Musaev, D. G.; Hill, C. L. Angew. Chem. Int. Ed. 2008, 47, 3896. doi: 10.1002/anie.200705652
doi: 10.1002/anie.200705652
Geletii, Y. V.; Huang, Z.; Hou, Y.; Musaev, D. G.; Lian, T.; Hill, C. L. J. Am. Chem. Soc. 2009, 131, 7522. doi: 10.1021/ja901373m
doi: 10.1021/ja901373m
Han, X. -B.; Zhang, Z. -M.; Zhang, T.; Li, Y. -G.; Lin, W.; You, W.; Su, Z. -M.; Wang, E.-B. J. Am. Chem. Soc. 2014, 136, 5359. doi: 10.1021/ja412886e
Du, P.; Kokhan, O.; Chapman, K. W.; Chupas, P. J.; Tiede, D. M. J. Am. Chem. Soc. 2012, 134, 11096. doi: 10.1021/ja303826a
doi: 10.1021/ja303826a
Wei, J.; Feng, Y.; Zhou, P.; Liu, Y.; Xu, J.; Xiang, R.; Ding, Y.; Zhao, C.; Fan, L.; Hu, C. ChemSusChem 2015, 8, 2630. doi: 10.1002/cssc.201500490
doi: 10.1002/cssc.201500490
Chen, W. C.; Wang, X. L.; Qin, C.; Shao, K. Z.; Su, Z. M.; Wang, E. B. Chem. Commun. 2016, 52, 9514. doi: 10.1039/c6cc03763a
doi: 10.1039/c6cc03763a
Al-Oweini, R.; Sartorel, A.; Bassil, B. S.; Natali, M.; Berardi, S.; Scandola, F.; Kortz, U.; Bonchio, M. Angew. Chem. Int. Ed. 2014, 53, 11182. doi: 10.1002/anie.201404664
doi: 10.1002/anie.201404664
Schwarz, B.; Forster, J.; Goetz, M. K.; Yücel, D.; Berger, C.; Jacob, T.; Streb, C. Angew. Chem. Int. Ed. 2016, 55, 6329. doi: 10.1002/anie.201601799
doi: 10.1002/anie.201601799
Han, X. -B.; Li, Y. -G.; Zhang, Z. -M.; Tan, H. -Q.; Lu, Y.; Wang, E. -B. J. Am. Chem. Soc. 2015, 137, 5486. doi: 10.1021/jacs.5b01329
Stewart, A. C.; Bendall, D. S. Biochem. J. 1980, 188. 351. doi: 10.1042/bj1880351
doi: 10.1042/bj1880351
Xiang, R.; Ding, Y.; Zhao, J. Chem. Asian J. 2014, 9, 3228. doi: 10.1002/asia.201402483
doi: 10.1002/asia.201402483
Probs, B.; Kolano, C.; Hamm, P.; Alberto, R. Inorg. Chem. 2009, 48, 1836. doi: 10.1021/ic8013255
doi: 10.1021/ic8013255
Liang, X.; Lin, J.; Cao, X.; Sun, W.; Yang, J.; Ma, B.; Ding, Y. Chem. Commun. 2019, 55, 2529. doi: 10.1039/c8cc09807g
doi: 10.1039/c8cc09807g
Ye, C.; Wang, X. -Z.; Li, J. -X.; Li, Z. -J.; Li, X. -B.; Zhang, L. -P.; Chen, B.; Tung, C. -H.; Wu, L. -Z. ACS Catal. 2016, 6, 8336. doi: 10.1021/acscatal.6b02664
Li, Y.; Kong, T.; Shen, S. Small 2019, 1900772. doi: 10.1002/smll.201900772
doi: 10.1002/smll.201900772
Chang, X. X.; Gong, J. L. Acta Phys. -Chim. Sin. 2016, 32 (1), 2.
doi: 10.3866/PKU.WHXB201510192
Wang, Y.; Li, F.; Li, H.; Bai, L.; Sun, L. Chem. Commun. 2016, 52, 3050. doi: 10.1039/c5cc09588c
doi: 10.1039/c5cc09588c
Ye, S.; Chen, R.; Xu, Y.; Fan, F.; Du, P.; Zhang, F.; Zong, X.; Chen, T.; Qi, Y.; Chen, P.; et al. J. Catal. 2016, 338, 168. doi: 10.1016/j.jcat.2016.02.024
doi: 10.1016/j.jcat.2016.02.024
Luo, Z. S.; Zhou, M.; Wang, X. C. Appl. Catal. B: Environ. 2018, 238, 664. doi: 10.1016/j.apcatb.2018.07.056
doi: 10.1016/j.apcatb.2018.07.056
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012