Citation: Li Yuhong, Wu Xin-Ping, Liu Cong, Wang Meng, Song Benteng, Yu Guiyun, Yang Gang, Hou Wenhua, Gong Xue-Qing, Peng Luming. NMR and EPR Studies of Partially Reduced TiO2[J]. Acta Physico-Chimica Sinica, ;2020, 36(4): 190502. doi: 10.3866/PKU.WHXB201905021 shu

NMR and EPR Studies of Partially Reduced TiO2

  • Corresponding author: Peng Luming, luming@nju.edu.cn
  • Received Date: 5 May 2019
    Revised Date: 20 June 2019
    Accepted Date: 21 June 2019
    Available Online: 27 April 2019

    Fund Project: the Natural Science Foundation of Jiangsu Province, China BK20170435the National Natural Science Foundation of China 21573103the National Natural Science Foundation of China 91745202The project was supported by the Natural Science Foundation of Jiangsu Province, China (BK20170435) and the National Natural Science Foundation of China (91745202, 21573103)

  • Partially reduced TiO2 nanomaterials have attracted significant interest because of their visible-light activity for catalysis and photodegradation. Herein, we prepared a partially reduced anatase TiO2 (Re-A-TiO2) nanoparticle material using a fast combustion method, demonstrating good activity toward decomposing methyl orange under visible light irradiation. The surface structure of the prepared material, after being surface-selectively 17O-labeled with H217O (17O-enriched water), was studied via 17O and 1H solid-state magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy and electron paramagnetic resonance (EPR) spectroscopy, and the obtained results were compared to those of non-reduced anatase TiO2 (A-TiO2). The EPR results showed that the concentrations of paramagnetic species (i.e., oxygen vacancies (OV) and Ti3+) in Re-A-TiO2 were much higher than that in A-TiO2, while the former was associated with a higher OV/Ti3+ ratio. The intensities of the EPR signals were significantly affected by the adsorbed water, and this phenomenon was explored in combination with 1H NMR spectroscopy. The 1H species on Re-A-TiO2 appeared at larger chemical shifts, denoting the increased acidity of the sample, and these 1H species on Re-A-TiO2 were more difficult to remove than those on A-TiO2. On the other hand, different features were observed for the signals arising from the two-coordinated oxygen atoms (μ2-O) in 17O NMR, suggesting a typical anatase TiO2(101) surface on A-TiO2, but a more complex surface environment for Re-A-TiO2. Furthermore, a larger amount of hydroxyl groups (OH) were observed on Re-A-TiO2 compared to that on A-TiO2, indicating a larger proportion of exposed (001) facets on Re-A-TiO2. However, the μ2-O signals broadened and became similar when the drying temperature was increased to 100 ℃, indicating a non-faceted anatase TiO2 surface in such conditions. Based on the EPR and NMR results, a significant fraction of the OH species is believed to be formed from the reaction of the paramagnetic centers and adsorbed water molecules. The 1H→17O cross polarization (CP) MAS and two-dimensional heteronuclear correlation (2D HETCOR) NMR spectra were used to verify the spatial proximity of the hydrogen and oxygen species, confirming the spectral assignments of a strongly adsorbed water and one type of surface OH species. In particular, the 1H NMR signals at approximately 11 ppm were ascribed to the hydrogen species in the intramolecular hydrogen bond. In summary, this study investigated the paramagnetic species and surface structure of anatase TiO2 materials by combining EPR along with 1H and 17O solid-state NMR spectroscopy. The differences in the surface structures of Re-A-TiO2 and A-TiO2 should be closely related to their different properties toward the photodegradation of methyl orange.
  • 加载中
    1. [1]

      Liu, L.; Chen, X. B. Chem. Rev. 2014, 114, 9890. doi: 10.1021/cr400624r  doi: 10.1021/cr400624r

    2. [2]

      Zuo, F.; Wang, L.; Wu, T.; Zhang, Z. Y.; Borchardt, D.; Feng, P. Y. J. Am. Chem. Soc. 2010, 132, 11856. doi: 10.1021/ja103843d  doi: 10.1021/ja103843d

    3. [3]

      Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S. Science 2011, 331, 746. doi: 10.1126/science.1200448  doi: 10.1126/science.1200448

    4. [4]

      Wang, Z.; Yang, C. Y.; Lin, T. Q.; Yin, H.; Chen, P.; Wan, D. Y.; Xu, F. F.; Huang, F. Q.; Lin, J. H.; Xie, X. M.; et al. Adv. Funct. Mater. 2013, 23, 5444. doi: 10.1002/adfm.201300486  doi: 10.1002/adfm.201300486

    5. [5]

      Liu, H.; Ma, H. T.; Li, X. Z.; Li, W. Z.; Wu, M.; Bao, X. H. Chemosphere 2003, 50, 39. doi: 10.1016/S0045-6535[02]00486-1  doi: 10.1016/S0045-6535[02]00486-1

    6. [6]

      Wang, G. M.; Wang, H. Y.; Ling, Y. C.; Tang, Y. C.; Yang, X. Y.; Fitzmorris, R. C.; Wang, C. C.; Zhang, J. Z.; Li, Y. Nano Lett. 2011, 11, 3026. doi: 10.1021/nl201766h  doi: 10.1021/nl201766h

    7. [7]

      Hoang, S.; Berglund, S. P.; Hahn, N. T.; Bard, A. J.; Mullins, C. B. J. Am. Chem. Soc. 2012, 134, 3659. doi: 10.1021/ja211369s  doi: 10.1021/ja211369s

    8. [8]

      Nakamura, I.; Negishi, N.; Kutsuna, S.; Ihara, T.; Sugihara, S.; Takeuchi, K. J. Mol. Catal. A-Chem. 2000, 161, 205. doi: 10.1016/S1381-1169[00]00362-9  doi: 10.1016/S1381-1169[00]00362-9

    9. [9]

      Bastow, T. J.; Gibson, M. A.; Forwood, C. T. Solid State Nucl. Magn. Reson. 1998, 12, 201. doi: 10.1016/S0926-2040[98]00066-6  doi: 10.1016/S0926-2040[98]00066-6

    10. [10]

      Bastow, T. J.; Whitfield, H. J. Chem. Mater. 1999, 11, 3518. doi: 10.1021/cm990248r  doi: 10.1021/cm990248r

    11. [11]

      Larsen, F. H.; Farnan, I.; Lipton, A. S. J. Magn. Reson. 2006, 178, 228. doi: 10.1016/j.jmr.2005.10.003  doi: 10.1016/j.jmr.2005.10.003

    12. [12]

      Chary, K. V. R.; Vijayakumar, V.; Rao, P. K.; Nosov, A. V.; Mastikhin, V. M. J. Mol. Catal. A-Chem. 1995, 96, L5. doi: 10.1016/1381-1169[94]00029-8  doi: 10.1016/1381-1169[94]00029-8

    13. [13]

      Crocker, M.; Herold, R. H. M.; Wilson, A. E.; Mackay, M.; Emeis, C. A.; Hoogendoorn, A. M. J. Chem. Soc.-Faraday Trans. 1996, 92, 2791. doi: 10.1039/Ft9969202791  doi: 10.1039/Ft9969202791

    14. [14]

      Soria, J.; Sanz, J.; Sobrados, I.; Coronado, J. M.; Maira, A. J.; Hernández-Alonso, M. D.; Fresno, F. J. Phys. Chem. C 2007, 111, 10590. doi: 10.1021/jp071440g  doi: 10.1021/jp071440g

    15. [15]

      Nosaka, A. Y.; Fujiwara, T.; Yagi, H.; Akutsu, H.; Nosaka, Y. J. Phys.Chem. B 2004, 108, 9121. doi: 10.1021/jp037297i  doi: 10.1021/jp037297i

    16. [16]

      Zhu, L. L.; Gu, Q.; Sun, P. C.; Chen, W.; Wang, X. L.; Xue, G. ACS Appl. Mater. Interfaces 2013, 5, 10352. doi: 10.1021/am403449j  doi: 10.1021/am403449j

    17. [17]

      Soria, J.; Sanz, J.; Sobrados, I.; Coronado, J. M.; Hernández-Alonso, M. D.; Fresno, F. J. Phys. Chem. C 2010, 114, 16534. doi: 10.1021/jp105131w  doi: 10.1021/jp105131w

    18. [18]

      Scolan, E.; Magnenet, C.; Massiot, D.; Sanchez, C. J. Mater. Chem. 1999, 9, 2467. doi: 10.1039/A903714d  doi: 10.1039/A903714d

    19. [19]

      Blanchard, J.; Bonhomme, C.; Maquet, J.; Sanchez, C. J. Mater. Chem. 1998, 8, 985. doi: 10.1039/A800118i  doi: 10.1039/A800118i

    20. [20]

      Sun, X. M.; Dyballa, M.; Yan, J. Q.; Li, L. D.; Guan, N. J.; Hunger, M. Chem. Phys. Lett. 2014, 594, 34. doi: 10.1016/j.cplett.2014.01.014  doi: 10.1016/j.cplett.2014.01.014

    21. [21]

      Li, Y. H.; Wu, X. P.; Jiang, N. X.; Lin, M.; Shen, L.; Sun, H. C.; Wang, Y. Z.; Wang, M.; Ke, X. K.; Yu, Z. W.; et al. Nat. Commun. 2017, 8, 581. doi: 10.1038/s41467-017-00603-7  doi: 10.1038/s41467-017-00603-7

    22. [22]

      Shen, L.; Peng, L. M. Chin. J. Catal. 2015, 36, 1494. doi: 10.1016/S1872-2067[15]60931-7  doi: 10.1016/S1872-2067[15]60931-7

    23. [23]

      Wang, M.; Wu, X. -P.; Zheng, S. J.; Zhao, L.; Li, L.; Shen, L.; Gao, Y. X.; Xue, N. H.; Guo, X. F.; Huang, W. X.; et al. Sci. Adv. 2015, 1, e1400133. doi: 10.1126/sciadv.1400133  doi: 10.1126/sciadv.1400133

    24. [24]

      Du, J.-H.; Peng, L. M. Chin. Chem. Lett. 2018, 29, 747. doi: 10.1016/j.cclet.2018.02.012  doi: 10.1016/j.cclet.2018.02.012

    25. [25]

      Shen, L.; Wu, X. P.; Wang, Y.; Wang, M.; Chen, J. C.; Li, Y. H.; Huo, H.; Hou, W. H.; Ding, W. P.; Gong, X. Q.; et al. J. Phys. Chem. C 2019, 123, 4158. doi: 10.1021/acs.jpcc.8b11091  doi: 10.1021/acs.jpcc.8b11091

    26. [26]

      Hou, W. H. Acta Phys. -Chim. Sin. 2018, 34, 329.  doi: 10.3866/PKU.WHXB201709251

    27. [27]

      Chen, C. C.; Hu, S. H.; Fu, Y. P. J. Alloys Compd. 2015, 632, 326. doi: 10.1016/j.jallcom.2015.01.206  doi: 10.1016/j.jallcom.2015.01.206

    28. [28]

      Niu, F.; Jiang, Y.; Song, W. G. Nano Res. 2010, 3, 757. doi: 10.1007/s12274-010-0043-3  doi: 10.1007/s12274-010-0043-3

    29. [29]

      Wang, J. J.; Liu, X. N.; Li, R. H.; Qiao, P. S.; Xiao, L. P.; Fan, J. Catal. Commun. 2012, 19, 96. doi: 10.1016/j.catcom.2011.12.028  doi: 10.1016/j.catcom.2011.12.028

    30. [30]

      Munuera, G. J. Catal. 1970, 18, 19. doi: 10.1016/0021-9517[70]90306-4  doi: 10.1016/0021-9517[70]90306-4

    31. [31]

      Primet, M.; Pichat, P.; Mathieu, M. V. J. Phys. Chem. 1971, 75, 1221. doi: 10.1021/j100679a008  doi: 10.1021/j100679a008

    32. [32]

      Chary, K. V. R.; Bhaskar, T.; Seela, K. K.; Lakshmi, K. S.; Reddy, K. R. Appl. Catal. A-Gen. 2001, 208, 291. doi: 10.1016/S0926-860x[00]00724-9  doi: 10.1016/S0926-860x[00]00724-9

    33. [33]

      Bakhmutov, V. I. Chem. Rev. 2011, 111, 530. doi: 10.1021/Cr100144r  doi: 10.1021/Cr100144r

    34. [34]

      Namai, Y.; Matsuoka, O. J. Phys. Chem. B 2005, 109, 23948. doi: 10.1021/Jp058210r  doi: 10.1021/Jp058210r

    35. [35]

      Conesa, J. C.; Soria, J. J. Phys. Chem. 1982, 86, 1392. doi: 10.1021/J100397a035  doi: 10.1021/J100397a035

    36. [36]

      Zhang, H. L.; Yu, H. G.; Zheng, A. M.; Li, S. H.; Shen, W. L.; Deng, F. Environ. Sci. Technol. 2008, 42, 5316. doi: 10.1021/es800917e  doi: 10.1021/es800917e

    37. [37]

      Wang, N.; Ru, G. Y.; Wang, L. Y.; Feng, J. W. Langmuir 2009, 25, 5898. doi: 10.1021/La8038363  doi: 10.1021/La8038363

    38. [38]

      Gong, X. Q.; Selloni, A. J. Phys. Chem. B 2005, 109, 19560. doi: 10.1021/jp055311g  doi: 10.1021/jp055311g

    39. [39]

      He, Y. B.; Tilocca, A.; Dulub, O.; Selloni, A.; Diebold, U. Nat. Mater. 2009, 8, 585. doi: 10.1038/NMAT2466  doi: 10.1038/NMAT2466

    40. [40]

      Tilocca, A.; Selloni, A. J. Phys. Chem. B 2004, 108, 4743. doi: 10.1021/jp037685k  doi: 10.1021/jp037685k

    41. [41]

      Bastow, T. J.; Moodie, A. F.; Smith, M. E.; Whitfield, H. J. J. Mater. Chem. 1993, 3, 697. doi: 10.1039/jm9930300697  doi: 10.1039/jm9930300697

    42. [42]

      Day, V. W.; Eberspacher, T. A.; Klemperer, W. G.; Park, C. W.; Rosenberg, F. S. J. Am. Chem. Soc. 1991, 113, 8190. doi: 10.1021/Ja00021a068  doi: 10.1021/Ja00021a068

    43. [43]

      Zhao, L.; Qi, Z.; Blanc, F.; Yu, G. Y.; Wang, M.; Xue, N. H.; Ke, X. K.; Guo, X. F.; Ding, W. P.; Grey, C. P.; et al. Adv. Funct. Mater. 2014, 24, 1696. doi: 10.1002/adfm.201301157  doi: 10.1002/adfm.201301157

    44. [44]

      Harris, T. K.; Zhao, Q.; Mildvan, A. S. J. Mol. Struct. 2000, 552, 97. doi: 10.1016/S0022-2860[00]00469-5  doi: 10.1016/S0022-2860[00]00469-5

    45. [45]

      Eckert, H.; Yesinowski, J. P.; Silver, L. A.; Stolper, E. M. J.Phys. Chem. 1988, 92, 2055. doi: 10.1021/J100318a070  doi: 10.1021/J100318a070

    46. [46]

      Bertolasi, V.; Gilli, P.; Ferretti, V.; Gilli, G. J. Chem. Soc.-Perkin Trans. 1997, 2, 945. doi: 10.1039/A606862f  doi: 10.1039/A606862f

  • 加载中
    1. [1]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    2. [2]

      Huixin ChenChen ZhaoHongjun YueGuiming ZhongXiang HanLiang YinDing Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650

    3. [3]

      Ling-Hao ZhaoHai-Wei YanJian-Shuang JiangXu ZhangXiang YuanYa-Nan YangPei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863

    4. [4]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    5. [5]

      Xiao-Ming ChenLianhui SongJun PanFei ZengYi XieWei WeiDong Yi . Visible-light-induced four-component difunctionalization of alkenes to construct phosphorodithioate-containing quinoxalin-2(1H)-ones. Chinese Chemical Letters, 2024, 35(11): 110112-. doi: 10.1016/j.cclet.2024.110112

    6. [6]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    7. [7]

      Xin Wang Changzhao Chen Qishen Wang Kai Dai . Graphene quantum dot modified Bi2MoO6 nanoflower for efficient degradation of BPA under visible light. Chinese Journal of Structural Chemistry, 2024, 43(12): 100473-100473. doi: 10.1016/j.cjsc.2024.100473

    8. [8]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    9. [9]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    10. [10]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

    11. [11]

      Chaochao WeiRu WangZhongkai WuQiyue LuoZiling JiangLiang MingJie YangLiping WangChuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717

    12. [12]

      Shuai LiLiuting ZhangFuying WuYiqun JiangXuebin Yu . Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chinese Chemical Letters, 2025, 36(1): 109566-. doi: 10.1016/j.cclet.2024.109566

    13. [13]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    14. [14]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    15. [15]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

    16. [16]

      Sikai Wu Xuefei Wang Huogen Yu . Hydroxyl-enriched hydrous tin dioxide-coated BiVO4 with boosted photocatalytic H2O2 production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100457-100457. doi: 10.1016/j.cjsc.2024.100457

    17. [17]

      Wen-Tao OuyangJun JiangYan-Fang JiangTing LiYuan-Yuan LiuHong-Tao JiLi-Juan OuWei-Min He . Sono-photocatalytic amination of quinoxalin-2(1H)-ones with aliphatic amines. Chinese Chemical Letters, 2024, 35(10): 110038-. doi: 10.1016/j.cclet.2024.110038

    18. [18]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    19. [19]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    20. [20]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

Metrics
  • PDF Downloads(17)
  • Abstract views(524)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return