Citation: Cao Xinxin, Zhou Jiang, Pan Anqiang, Liang Shuquan. Recent Advances in Phosphate Cathode Materials for Sodium-ion Batteries[J]. Acta Physico-Chimica Sinica, ;2020, 36(5): 190501. doi: 10.3866/PKU.WHXB201905018 shu

Recent Advances in Phosphate Cathode Materials for Sodium-ion Batteries

  • Corresponding author: Pan Anqiang, pananqiang@csu.edu.cn Liang Shuquan, lsq@csu.edu.cn
  • Received Date: 2 May 2019
    Revised Date: 4 June 2019
    Accepted Date: 5 June 2019
    Available Online: 17 May 2019

    Fund Project: the National Natural Science Foundation of China 51872334The project was supported by the National Natural Science Foundation of China (51872334)

  • Lithium-ion batteries have been widely used in portable electronic devices and electric vehicles because of their high energy density and long cycle life. Sodium-ion batteries have broad application prospects in the areas of large-scale electrochemical energy storage systems and low-speed electric vehicles because of their abundant raw materials, low resource cost, safety, and environmental friendliness. However, the development of sodium-ion batteries has been hindered by the low reversibility, sluggish ion diffusion, and large volume variations of the host materials. Suitable electrode materials with decent electrochemical performance must be primarily explored for the successful use of sodium-ion batteries. Since the electrochemical potential and specific capacities of cathode materials have a major impact on the energy densities of sodium-ion batteries, the development of cathode materials is critical. To date, various Na-insertable frameworks have been proposed, and some cathode materials have been reported to deliver reversible capacities approaching their theoretical values. Among them, transition metal oxides show a high reversible capacity and high working potential, but most of them still possess problems such as irreversible phase transition, air instability, and insufficient battery performance. Another type is the Prussian blue analogs. These materials exhibit a favorable operating voltage, cycling stability, and rate capability; however, the main obstacles to their practical application are the control of lattice defects, thermal instability, and low tap density. Polyanionic phosphates are the most promising cathode materials for sodium-ion batteries and have great research value and application prospects because of their stable framework structure, suitable operating voltage, and fast ion diffusion channels. However, their inherent defects, such as poor electronic conductivity and low theoretical energy density, considerably limit their practical applications. Researchers have conducted modification studies through bulk structure adjustment and micro-nano structural control with the goal of improving the performance of phosphate cathode materials and promoting the research and development of sodium-ion energy storage systems. This study reviews the recent advances in phosphate cathode materials for sodium-ion batteries, including orthophosphates, pyrophosphates, fluorophosphates, and mixed phosphate compounds. In this study, the intrinsic relationships among material composition, structure, and electrochemical properties are identified through analyses of the crystal structures, sodium storage mechanisms, and modification strategies of phosphate materials, thereby providing a reference for the continuous modification of polyanion phosphate cathode materials and exploration of high-voltage phosphate cathode materials. Some directions for future research and possible strategies for building advanced sodium-ion batteries are also proposed.
  • 加载中
    1. [1]

      Wang, K. X.; Shi, L. R.; Wang, M. Z.; Yang, H.; Liu, Z. F.; Peng, H. L. Acta Phys. -Chim. Sin. 2019, 35, 1112.  doi: 10.3866/PKU.WHXB201805032

    2. [2]

      Yang, Z.; Zhang, W.; Shen, Y.; Yuan, L. X.; Huang Y. H. Acta Phys. -Chim. Sin. 2016, 32, 1062.  doi: 10.3866/PKU.WHXB201603231

    3. [3]

      Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334, 928. doi: 10.1126/science.1212741  doi: 10.1126/science.1212741

    4. [4]

      Liu, S.; Shao, L. Y.; Zhang, X. J.; Tao, Z. L.; Chen, J. Acta Phys. -Chim. Sin. 2018, 34, 581.  doi: 10.3866/PKU.WHXB201711222

    5. [5]

      Kundu, D.; Talaie, E.; Duffort, V.; Nazar, L. F. Angew. Chem. Int. Edit. 2015, 54, 3431. doi: 10.1002/anie.201410376  doi: 10.1002/anie.201410376

    6. [6]

      Song, W. X.; Hou, H. S.; Ji, X. B. Acta Phys. -Chim. Sin. 2017, 33, 103.  doi: 10.3866/PKU.WHXB201608303

    7. [7]

      Vaalma, C.; Buchholz, D.; Weil, M.; Passerini, S. Nat. Rev. Mater. 2018, 3, 18013. doi: 10.1038/natrevmats.2018.13  doi: 10.1038/natrevmats.2018.13

    8. [8]

      Fang Y. J.; Chen, C. X.; Ai, X. P; Yang, H. X.; Cao, Y. L. Acta Phys. -Chim. Sin. 2017, 33, 211.  doi: 10.3866/PKU.WHXB201610111

    9. [9]

      Hwang, J. Y.; Myung, S. T.; Sun, Y. K. Chem. Soc. Rev. 2017, 46, 3529. doi: 10.1039/c6cs00776g  doi: 10.1039/c6cs00776g

    10. [10]

      Adelhelm, P.; Hartmann, P.; Bender, C. L.; Busche, M.; Eufinger, C.; Janek, J. Beilstein J. Nanotech. 2015, 6, 1016. doi: 10.3762/bjnano.6.105  doi: 10.3762/bjnano.6.105

    11. [11]

      Xu, Y.; Zhou, M.; Lei, Y. Adv. Energy Mater. 2016, 6, 1502514. doi: 10.1002/aenm.201502514  doi: 10.1002/aenm.201502514

    12. [12]

      Choi, J. W.; Aurbach, D. Nat. Rev. Mater. 2016, 1, 16013. doi: 10.1038/natrevmats.2016.13  doi: 10.1038/natrevmats.2016.13

    13. [13]

      Hou, H. S.; Qiu, X. Q.; Wei, W. F.; Zhang, Y.; Ji, X. B. Adv. Energy Mater. 2017, 7, 1602898. doi: 10.1002/aenm.201602898  doi: 10.1002/aenm.201602898

    14. [14]

      Wang, L.; Wei, Z.; Mao, M.; Wang, H.; Li, Y.; Ma, J. Energy Storage Mater. 2019, 16, 434. doi: 10.1016/j.ensm.2018.06.027  doi: 10.1016/j.ensm.2018.06.027

    15. [15]

      Tan, H.; Chen, D.; Rui, X.; Yu, Y. Adv. Funct. Mater. 2019, 29, 1808745. doi: 10.1002/adfm.201808745  doi: 10.1002/adfm.201808745

    16. [16]

      Guo, S.; Yi, J.; Sun, Y.; Zhou, H. Energy Environ. Sci. 2016, 9, 2978. doi: 10.1039/C6EE01807F  doi: 10.1039/C6EE01807F

    17. [17]

      Yuan, L. X.; Wang, Z. H.; Zhang, W. X.; Hu, X. L.; Chen, J. T.; Huang, Y. H.; Goodenough, J. B. Energy Environ. Sci. 2011, 4, 269. doi: 10.1039/c0ee00029a  doi: 10.1039/c0ee00029a

    18. [18]

      Senthilkumar, B.; Murugesan, C.; Sharma, L.; Lochab, S.; Barpanda, P. Small Methods 2018, 3, 1800253. doi: 10.1002/smtd.201800253  doi: 10.1002/smtd.201800253

    19. [19]

      You, Y.; Manthiram, A. Adv. Energy Mater. 2018, 8, 1701785. doi: 10.1002/aenm.201701785  doi: 10.1002/aenm.201701785

    20. [20]

      Ponrouch, A.; Dedryvère, R.; Monti, D.; Demet, A. E.; Ateba Mba, J. M.; Croguennec, L.; Masquelier, C.; Johansson, P.; Palacín, M. R. Energy Environ. Sci. 2013, 6, 2361. doi: 10.1039/C3EE41379A  doi: 10.1039/C3EE41379A

    21. [21]

      Zu, C. X.; Li, H. Energy Environ. Sci. 2011, 4, 2614. doi: 10.1039/c0ee00777c  doi: 10.1039/c0ee00777c

    22. [22]

      Avdeev, M.; Mohamed, Z.; Ling, C. D.; Lu, J.; Tamaru, M.; Yamada, A.; Barpanda, P. Inorg. Chem. 2013, 52, 8685. doi: 10.1021/ic400870x  doi: 10.1021/ic400870x

    23. [23]

      Le Poul, N. Solid State Ionics 2003, 159, 149. doi: 10.1016/s0167-2738(02)00921-9  doi: 10.1016/s0167-2738(02)00921-9

    24. [24]

      Oh, S. M.; Myung, S. T.; Hassoun, J.; Scrosati, B.; Sun, Y. K. Electrochem. Commun. 2012, 22, 149. doi: 10.1016/j.elecom.2012.06.014  doi: 10.1016/j.elecom.2012.06.014

    25. [25]

      Tang, W.; Song, X.; Du, Y.; Peng, C.; Lin, M.; Xi, S.; Tian, B.; Zheng, J.; Wu, Y.; Pan, F.; et al. J. Mater. Chem. A 2016, 4, 4882. doi: 10.1039/c6ta01111j  doi: 10.1039/c6ta01111j

    26. [26]

      Fang, Y.; Liu, Q.; Xiao, L.; Ai, X.; Yang, H.; Cao, Y. ACS Appl. Mater. Inter. 2015, 7, 17977. doi: 10.1021/acsami.5b04691  doi: 10.1021/acsami.5b04691

    27. [27]

      Saracibar, A.; Carrasco, J.; Saurel, D.; Galceran, M.; Acebedo, B.; Anne, H.; Lepoitevin, M.; Rojo, T.; Casas Cabanas, M. Phys. Chem. Chem. Phys. 2016, 18, 13045. doi: 10.1039/c6cp00762g  doi: 10.1039/c6cp00762g

    28. [28]

      Lee, K. T.; Ramesh, T. N.; Nan, F.; Botton, G.; Nazar, L. F. Chem. Mater. 2011, 23, 3593. doi: 10.1021/cm200450y  doi: 10.1021/cm200450y

    29. [29]

      Zhu, Y.; Xu, Y.; Liu, Y.; Luo, C.; Wang, C. Nanoscale 2013, 5, 780. doi: 10.1039/c2nr32758a  doi: 10.1039/c2nr32758a

    30. [30]

      Heubner, C.; Heiden, S.; Matthey, B.; Schneider, M.; Michaelis, A. Electrochim. Acta 2016, 216, 412. doi: 10.1016/j.electacta.2016.09.041  doi: 10.1016/j.electacta.2016.09.041

    31. [31]

      Nakayama, M.; Yamada, S.; Jalem, R.; Kasuga, T. Solid State Ionics 2016, 286, 40. doi: 10.1016/j.ssi.2015.12.019  doi: 10.1016/j.ssi.2015.12.019

    32. [32]

      Ali, G.; Lee, J. H.; Susanto, D.; Choi, S. W.; Cho, B. W.; Nam, K. W.; Chung, K. Y. ACS Appl. Mater. Inter. 2016, 8, 15422. doi: 10.1021/acsami.6b04014  doi: 10.1021/acsami.6b04014

    33. [33]

      Wongittharom, N.; Wang, C. H.; Wang, Y. C.; Yang, C. H.; Chang, J. K. ACS Appl. Mater. Inter. 2014, 6, 17564. doi: 10.1021/am5033605  doi: 10.1021/am5033605

    34. [34]

      Kim, J.; Seo, D. H.; Kim, H.; Park, I.; Yoo, J. K.; Jung, S. K.; Park, Y. U.; Goddard Iii, W. A.; Kang, K. Energy Environ. Sci. 2015, 8, 540. doi: 10.1039/c4ee03215b  doi: 10.1039/c4ee03215b

    35. [35]

      Liu, Y.; Zhang, N.; Wang, F.; Liu, X.; Jiao, L.; Fan, L. Z. Adv. Funct. Mater. 2018, 28, 1801917. doi: 10.1002/adfm.201801917  doi: 10.1002/adfm.201801917

    36. [36]

      Xiong, F.; An, Q.; Xia, L.; Zhao, Y.; Mai, L.; Tao, H.; Yue, Y. Nano Energy 2019, 57, 608. doi: 10.1016/j.nanoen.2018.12.087  doi: 10.1016/j.nanoen.2018.12.087

    37. [37]

      Rahman, M. M.; Sultana, I.; Mateti, S.; Liu, J.; Sharma, N.; Chen, Y. J. Mater. Chem. A 2017, 5, 16616. doi: 10.1039/c7ta04946c  doi: 10.1039/c7ta04946c

    38. [38]

      Ma, X.; Xia, J.; Wu, X.; Pan, Z.; Shen, P. K. Carbon 2019, 146, 78. doi: 10.1016/j.carbon.2019.02.004  doi: 10.1016/j.carbon.2019.02.004

    39. [39]

      Ma, X.; Pan, Z.; Wu, X.; Shen, P. K. Chem. Eng. J. 2019, 365, 132. doi: 10.1016/j.cej.2019.01.173  doi: 10.1016/j.cej.2019.01.173

    40. [40]

      Huang, W.; Zhou, J.; Li, B.; An, L.; Cui, P.; Xia, W.; Song, L.; Xia, D.; Chu, W.; Wu, Z. Small 2015, 11, 2170. doi: 10.1002/smll.201402246  doi: 10.1002/smll.201402246

    41. [41]

      Koleva, V.; Boyadzhieva, T.; Zhecheva, E.; Nihtianova, D.; Simova, S.; Tyuliev, G.; Stoyanova, R. CrystEngComm 2013, 15, 9080. doi: 10.1039/c3ce41545g  doi: 10.1039/c3ce41545g

    42. [42]

      Gutierrez, A.; Kim, S.; Fister, T. T.; Johnson, C. S. ACS Appl. Mater. Inter. 2017, 9, 4391. doi: 10.1021/acsami.6b14341  doi: 10.1021/acsami.6b14341

    43. [43]

      Lakshmi Vijayan, G. G. NASICON Materials: structure and electrical properties. In Polycrystalline Materials-Theoretical and Practical Aspects, IntechOpen: 2012.

    44. [44]

      Zhu, C.; Kopold, P.; van Aken, P. A.; Maier, J.; Yu, Y. Adv. Mater. 2016, 28, 2409. doi: 10.1002/adma.201505943  doi: 10.1002/adma.201505943

    45. [45]

      Song, W.; Ji, X.; Wu, Z.; Zhu, Y.; Yang, Y.; Chen, J.; Jing, M.; Li, F.; Banks, C. E. J. Mater. Chem. A 2014, 2, 5358. doi: 10.1039/c4ta00230j  doi: 10.1039/c4ta00230j

    46. [46]

      Jian, Z.; Han, W.; Lu, X.; Yang, H.; Hu, Y. -S.; Zhou, J.; Zhou, Z.; Li, J.; Chen, W.; Chen, D.; et al. Adv. Energy Mater. 2013, 3, 156. doi: 10.1002/aenm.201200558  doi: 10.1002/aenm.201200558

    47. [47]

      Jian, Z.; Yuan, C.; Han, W.; Lu, X.; Gu, L.; Xi, X.; Hu, Y. -S.; Li, H.; Chen, W.; Chen, D.; et al. Adv. Funct. Mater. 2014, 24, 4265. doi: 10.1002/adfm.201400173  doi: 10.1002/adfm.201400173

    48. [48]

      Jian, Z.; Zhao, L.; Pan, H.; Hu, Y. S.; Li, H.; Chen, W.; Chen, L. Electrochem. Commun. 2012, 14, 86. doi: 10.1016/j.elecom.2011.11.009  doi: 10.1016/j.elecom.2011.11.009

    49. [49]

      Chen, S.; Wu, C.; Shen, L.; Zhu, C.; Huang, Y.; Xi, K.; Maier, J.; Yu, Y. Adv. Mater. 2017, 29, 1700431. doi: 10.1002/adma.201700431  doi: 10.1002/adma.201700431

    50. [50]

      Fang, Y.; Zhang, J.; Xiao, L.; Ai, X.; Cao, Y.; Yang, H. Adv. Sci. 2017, 4, 1600392. doi: 10.1002/advs.201600392  doi: 10.1002/advs.201600392

    51. [51]

      Jian, Z.; Hu, Y. S.; Ji, X.; Chen, W. Adv. Mater. 2017, 29, 1601925. doi: 10.1002/adma.201601925  doi: 10.1002/adma.201601925

    52. [52]

      Cao, X.; Pan, A.; Liu, S.; Zhou, J.; Li, S.; Cao, G.; Liu, J.; Liang, S. Adv. Energy Mater. 2017, 7, 1700797. doi: 10.1002/aenm.201700797  doi: 10.1002/aenm.201700797

    53. [53]

      Li, J.; Cao, X.; Pan, A.; Zhao, Y.; Yang, H.; Cao, G.; Liang, S. Chem. Eng. J. 2018, 335, 301. doi: 10.1016/j.cej.2017.10.164  doi: 10.1016/j.cej.2017.10.164

    54. [54]

      Liu, J.; Tang, K.; Song, K.; van Aken, P. A.; Yu, Y.; Maier, J. Nanoscale 2014, 6, 5081. doi: 10.1039/c3nr05329f  doi: 10.1039/c3nr05329f

    55. [55]

      Cao, X.; Pan, A.; Yin, B.; Fang, G.; Wang, Y.; Kong, X.; Zhu, T.; Zhou, J.; Cao, G.; Liang, S. Nano Energy 2019, 60, 312. doi: 10.1016/j.nanoen.2019.03.066  doi: 10.1016/j.nanoen.2019.03.066

    56. [56]

      Ren, W.; Zheng, Z.; Xu, C.; Niu, C.; Wei, Q.; An, Q.; Zhao, K.; Yan, M.; Qin, M.; Mai, L. Nano Energy 2016, 25, 145. doi: 10.1016/j.nanoen.2016.03.018  doi: 10.1016/j.nanoen.2016.03.018

    57. [57]

      Saravanan, K.; Mason, C. W.; Rudola, A.; Wong, K. H.; Balaya, P. Adv. Energy Mater. 2013, 3, 444. doi: 10.1002/aenm.201200803  doi: 10.1002/aenm.201200803

    58. [58]

      Fang, Y.; Xiao, L.; Ai, X.; Cao, Y.; Yang, H. Adv. Mater. 2015, 27, 5895. doi: 10.1002/adma.201502018  doi: 10.1002/adma.201502018

    59. [59]

      Klee, R.; Wiatrowski, M.; Aragon, M. J.; Lavela, P.; Ortiz, G. F.; Alcantara, R.; Tirado, J. L. ACS Appl. Mater. Inter. 2017, 9, 1471. doi: 10.1021/acsami.6b12688  doi: 10.1021/acsami.6b12688

    60. [60]

      Li, H.; Yu, X.; Bai, Y.; Wu, F.; Wu, C.; Liu, L.-Y.; Yang, X.-Q. J. Mater. Chem. A 2015, 3, 9578. doi: 10.1039/c5ta00277j  doi: 10.1039/c5ta00277j

    61. [61]

      Zhou, W.; Xue, L.; Lu, X.; Gao, H.; Li, Y.; Xin, S.; Fu, G.; Cui, Z.; Zhu, Y.; Goodenough, J. B. Nano Lett. 2016, 16, 7836. doi: 10.1021/acs.nanolett.6b04044  doi: 10.1021/acs.nanolett.6b04044

    62. [62]

      Gao, H.; Seymour, I. D.; Xin, S.; Xue, L.; Henkelman, G.; Goodenough, J. B. J. Am. Chem. Soc. 2018, 140, 18192. doi: 10.1021/jacs.8b11388  doi: 10.1021/jacs.8b11388

    63. [63]

      Shen, W.; Wang, C.; Xu, Q.; Liu, H.; Wang, Y. Adv. Energy Mater. 2015, 5, 1400982. doi: 10.1002/aenm.201400982  doi: 10.1002/aenm.201400982

    64. [64]

      Jiang, Y.; Wu, Y.; Chen, Y.; Qi, Z.; Shi, J.; Gu, L.; Yu, Y. Small 2018, 14, 1703471. doi: 10.1002/smll.201703471  doi: 10.1002/smll.201703471

    65. [65]

      Li, H.; Bai, Y.; Wu, F.; Ni, Q.; Wu, C. ACS Appl. Mater. Inter. 2016, 8, 27779. doi: 10.1021/acsami.6b09898  doi: 10.1021/acsami.6b09898

    66. [66]

      Liu, R.; Xu, G.; Li, Q.; Zheng, S.; Zheng, G.; Gong, Z.; Li, Y.; Kruskop, E.; Fu, R.; Chen, Z.; Amine, K.; Yang, Y. ACS Appl. Mater. Inter. 2017, 9, 43632. doi: 10.1021/acsami.7b13018  doi: 10.1021/acsami.7b13018

    67. [67]

      Zhang, X.; Rui, X.; Chen, D.; Tan, H.; Yang, D.; Huang, S.; Yu, Y. Nanoscale 2019, 11, 2556. doi: 10.1039/c8nr09391a  doi: 10.1039/c8nr09391a

    68. [68]

      Guo, S. P.; Li, J. C.; Xu, Q. T.; Ma, Z.; Xue, H. G. J. Power Sources 2017, 361, 285. doi: 10.1016/j.jpowsour.2017.07.002  doi: 10.1016/j.jpowsour.2017.07.002

    69. [69]

      Pu, X.; Wang, H.; Zhao, D.; Yang, H.; Ai, X.; Cao, S.; Chen, Z.; Cao, Y. Small 2019, 1805427. doi: 10.1002/smll.201805427  doi: 10.1002/smll.201805427

    70. [70]

      Fang, Y.; Xiao, L.; Chen, Z.; Ai, X.; Cao, Y.; Yang, H. Electrochem. Energy Rev. 2018, 1, 294. doi: 10.1007/s41918-018-0008-x  doi: 10.1007/s41918-018-0008-x

    71. [71]

      Wei, Z.; Wang, D.; Yang, X.; Wang, C.; Chen, G.; Du, F. Adv. Mater. Interfaces 2018, 5, 1800639. doi: 10.1002/admi.201800639  doi: 10.1002/admi.201800639

    72. [72]

      Mathew, V.; Kim, S.; Kang, J.; Gim, J.; Song, J.; Baboo, J. P.; Park, W.; Ahn, D.; Han, J.; Gu, L.; et al. NPG Asia Mater. 2014, 6, e138. doi: 10.1038/am.2014.98  doi: 10.1038/am.2014.98

    73. [73]

      Liu, Y.; Zhou, Y.; Zhang, J.; Zhang, S.; Ren, P. J. Power Sources 2016, 314, 1. doi: 10.1016/j.jpowsour.2016.03.003  doi: 10.1016/j.jpowsour.2016.03.003

    74. [74]

      Liu, Y.; Zhou, Y.; Zhang, J.; Zhang, S.; Xu, S. Phys. Chem. Chem. Phys. 2015, 17, 22144. doi: 10.1039/c5cp02059j  doi: 10.1039/c5cp02059j

    75. [75]

      Liu, Y.; Xu, Y.; Han, X.; Pellegrinelli, C.; Zhu, Y.; Zhu, H.; Wan, J.; Chung, A. C.; Vaaland, O.; Wang, C.; Hu, L. Nano Lett. 2012, 12, 5664. doi: 10.1021/nl302819f  doi: 10.1021/nl302819f

    76. [76]

      Fang, Y.; Xiao, L.; Qian, J.; Ai, X.; Yang, H.; Cao, Y. Nano Lett. 2014, 14, 3539. doi: 10.1021/nl501152f  doi: 10.1021/nl501152f

    77. [77]

      Liu, Y.; Xu, S.; Zhang, S.; Zhang, J.; Fan, J.; Zhou, Y. J. Mater. Chem. A 2015, 3, 5501. doi: 10.1039/c5ta00199d  doi: 10.1039/c5ta00199d

    78. [78]

      Xu, S.; Zhang, S.; Zhang, J.; Tan, T.; Liu, Y. J. Mater. Chem. A 2014, 2, 7221. doi: 10.1039/c4ta00239c  doi: 10.1039/c4ta00239c

    79. [79]

      Liu, Y.; Zhou, Y.; Zhang, S.; Zhang, J.; Ren, P.; Qian, C. J. Solid State Electrochem. 2015, 20, 479. doi: 10.1007/s10008-015-3063-9  doi: 10.1007/s10008-015-3063-9

    80. [80]

      Liu, T.; Duan, Y.; Zhang, G.; Li, M.; Feng, Y.; Hu, J.; Zheng, J.; Chen, J.; Pan, F. J. Mater. Chem. A 2016, 4, 4479. doi: 10.1039/c6ta00454g  doi: 10.1039/c6ta00454g

    81. [81]

      Zhao, J.; Jian, Z.; Ma, J.; Wang, F.; Hu, Y. S.; Chen, W.; Chen, L.; Liu, H.; Dai, S. ChemSusChem 2012, 5, 1495. doi: 10.1002/cssc.201100844  doi: 10.1002/cssc.201100844

    82. [82]

      Yang, G.; Ding, B.; Wang, J.; Nie, P.; Dou, H.; Zhang, X. Nanoscale 2016, 8, 8495. doi: 10.1039/c6nr00409a  doi: 10.1039/c6nr00409a

    83. [83]

      Li, C.; Miao, X.; Chu, W.; Wu, P.; Tong, D. G. J. Mater. Chem. A 2015, 3, 8265. doi: 10.1039/c5ta01191d  doi: 10.1039/c5ta01191d

    84. [84]

      Lin, Y. C.; Hidalgo, M. F. V.; Chu, I. H.; Chernova, N. A.; Whittingham, M. S.; Ong, S. P. J. Mater. Chem. A 2017, 5, 17421. doi: 10.1039/c7ta04558a  doi: 10.1039/c7ta04558a

    85. [85]

      He, G.; Huq, A.; Kan, W. H.; Manthiram, A. Chem. Mater. 2016, 28, 1503. doi: 10.1021/acs.chemmater.5b04992  doi: 10.1021/acs.chemmater.5b04992

    86. [86]

      Song, J.; Xu, M.; Wang, L.; Goodenough, J. B. Chem. Commun. 2013, 49, 5280. doi: 10.1039/c3cc42172d  doi: 10.1039/c3cc42172d

    87. [87]

      Aparicio, P. A.; Dawson, J. A.; Islam, M. S.; de Leeuw, N. H. J. Phys. Chem. C 2018, 122, 25829. doi: 10.1021/acs.jpcc.8b07797  doi: 10.1021/acs.jpcc.8b07797

    88. [88]

      He, G.; Kan, W. H.; Manthiram, A. Chem. Mater. 2016, 28, 682. doi: 10.1021/acs.chemmater.5b04605  doi: 10.1021/acs.chemmater.5b04605

    89. [89]

      Fang, Y.; Liu, Q.; Xiao, L.; Rong, Y.; Liu, Y.; Chen, Z.; Ai, X.; Cao, Y.; Yang, H.; Xie, J.; et al. Chem 2018, 4, 1167. doi: 10.1016/j.chempr.2018.03.006  doi: 10.1016/j.chempr.2018.03.006

    90. [90]

      Ding, J.; Lin, Y. C.; Liu, J.; Rana, J.; Zhang, H.; Zhou, H.; Chu, I. H.; Wiaderek, K. M.; Omenya, F.; Chernova, N. A.; et al. Adv. Energy Mater. 2018, 8, 1800221. doi: 10.1002/aenm.201800221  doi: 10.1002/aenm.201800221

    91. [91]

      Zhu, Y.; Peng, L.; Chen, D.; Yu, G. Nano Lett. 2016, 16, 742. doi: 10.1021/acs.nanolett.5b04610  doi: 10.1021/acs.nanolett.5b04610

    92. [92]

      Peng, L.; Zhu, Y.; Peng, X.; Fang, Z.; Chu, W.; Wang, Y.; Xie, Y.; Li, Y.; Cha, J. J.; Yu, G. Nano Lett. 2017, 17, 6273. doi: 10.1021/acs.nanolett.7b02958  doi: 10.1021/acs.nanolett.7b02958

    93. [93]

      Li, H.; Peng, L.; Zhu, Y.; Chen, D.; Zhang, X.; Yu, G. Energy Environ. Sci. 2016, 9, 3399. doi: 10.1039/c6ee00794e  doi: 10.1039/c6ee00794e

    94. [94]

      Li, H.; Ding, Y.; Ha, H.; Shi, Y.; Peng, L.; Zhang, X.; Ellison, C. J.; Yu, G. Adv. Mater. 2017, 29, 1700898. doi: 10.1002/adma.201700898  doi: 10.1002/adma.201700898

    95. [95]

      Barker, J.; Saidi, M. Y.; Swoyer, J. L. Electrochem. Solid-State Lett. 2003, 6, A1. doi: 10.1149/1.1523691  doi: 10.1149/1.1523691

    96. [96]

      Ling, M. X.; Li, F.; Yi, H. M.; Li, X. F.; Hou, G. J.; Zheng, Q.; Zhang, H. M. J. Mater. Chem. A 2018, 6, 24201. doi: 10.1039/c8ta08842j  doi: 10.1039/c8ta08842j

    97. [97]

      Ruan, Y. L.; Wang, K.; Song, S. D.; Han, X.; Cheng, B. W. Electrochim. Acta 2015, 160, 330. doi: 10.1016/j.electacta.2015.01.186  doi: 10.1016/j.electacta.2015.01.186

    98. [98]

      Lu, Y.; Zhang, S.; Li, Y.; Xue, L.; Xu, G.; Zhang, X. J. Power Sources 2014, 247, 770. doi: 10.1016/j.jpowsour.2013.09.018  doi: 10.1016/j.jpowsour.2013.09.018

    99. [99]

      Law, M.; Balaya, P. Energy Storage Mater. 2018, 10, 102. doi: 10.1016/j.ensm.2017.08.007  doi: 10.1016/j.ensm.2017.08.007

    100. [100]

      Ge, X.; Li, X.; Wang, Z.; Guo, H.; Yan, G.; Wu, X.; Wang, J. Chem. Eng. J. 2019, 357, 458. doi: 10.1016/j.cej.2018.09.099  doi: 10.1016/j.cej.2018.09.099

    101. [101]

      Jin, T.; Liu, Y. C.; Li, Y.; Cao, K. Z.; Wang, X. J.; Jiao, L. F. Adv. Energy Mater. 2017, 7, 1700087. doi: 10.1002/aenm.201700087  doi: 10.1002/aenm.201700087

    102. [102]

      Xu, M.; Cheng, C. J.; Sun, Q. Q.; Bao, S. J.; Niu, Y. B.; He, H.; Li, Y.; Song, J. RSC Adv. 2015, 5, 40065. doi: 10.1039/c5ra05161d  doi: 10.1039/c5ra05161d

    103. [103]

      Feng, P. Y.; Wang, W.; Hou, J.; Wang, K. L.; Cheng, S. J.; Jiang, K. Chem. Eng. J. 2018, 353, 25. doi: 10.1016/j.cej.2018.07.114  doi: 10.1016/j.cej.2018.07.114

    104. [104]

      Liu, Z. M.; Wang, X. Y.; Wang, Y.; Tang, A. P.; Yang, S. Y.; He, L. F. T. Nonferr. Metal. Soc. 2008, 18, 346. doi: 10.1016/s1003-6326(08)60060-6  doi: 10.1016/s1003-6326(08)60060-6

    105. [105]

      Zhuo, H.; Wang, X.; Tang, A.; Liu, Z.; Gamboa, S.; Sebastian, P. J. J. Power Sources 2006, 160, 698. doi: 10.1016/j.jpowsour.2005.12.079  doi: 10.1016/j.jpowsour.2005.12.079

    106. [106]

      Li, L.; Xu, Y.; Sun, X.; Chang, R.; Zhang, Y.; Zhang, X.; Li, J. Adv. Energy Mater. 2018, 8, 1801064. doi: 10.1002/aenm.201801064  doi: 10.1002/aenm.201801064

    107. [107]

      Song, W.; Ji, X.; Wu, Z.; Yang, Y.; Zhou, Z.; Li, F.; Chen, Q.; Banks, C. E. J. Power Sources 2014, 256, 258. doi: 10.1016/j.jpowsour.2014.01.025  doi: 10.1016/j.jpowsour.2014.01.025

    108. [108]

      Shakoor, R. A.; Seo, D. H.; Kim, H.; Park, Y. U.; Kim, J.; Kim, S.-W.; Gwon, H.; Lee, S.; Kang, K. J. Mater. Chem. 2012, 22, 20535. doi: 10.1039/c2jm33862a  doi: 10.1039/c2jm33862a

    109. [109]

      Song, W.; Cao, X.; Wu, Z.; Chen, J.; Zhu, Y.; Hou, H.; Lan, Q.; Ji, X. Langmuir 2014, 30, 12438. doi: 10.1021/la5025444  doi: 10.1021/la5025444

    110. [110]

      Bianchini, M.; Fauth, F.; Brisset, N.; Weill, F.; Suard, E.; Masquelier, C.; Croguennec, L. Chem. Mater. 2015, 27, 3009. doi: 10.1021/acs.chemmater.5b00361  doi: 10.1021/acs.chemmater.5b00361

    111. [111]

      Yan, G.; Mariyappan, S.; Rousse, G.; Jacquet, Q.; Deschamps, M.; David, R.; Mirvaux, B.; Freeland, J. W.; Tarascon, J. M. Nat Commun. 2019, 10, 585. doi: 10.1038/s41467-019-08359-y  doi: 10.1038/s41467-019-08359-y

    112. [112]

      Serras, P.; Palomares, V.; Alonso, J.; Sharma, N.; López del Amo, J. M.; Kubiak, P.; Fdez-Gubieda, M. L.; Rojo, T. Chem. Mater. 2013, 25, 4917. doi: 10.1021/cm403679b  doi: 10.1021/cm403679b

    113. [113]

      Sharma, N.; Serras, P.; Palomares, V.; Brand, H. E. A.; Alonso, J.; Kubiak, P.; Fdez-Gubieda, M. L.; Rojo, T. Chem. Mater. 2014, 26, 3391. doi: 10.1021/cm5005104  doi: 10.1021/cm5005104

    114. [114]

      Park, Y. U.; Seo, D. H.; Kim, H.; Kim, J.; Lee, S.; Kim, B.; Kang, K. Adv. Funct. Mater. 2014, 24, 4603. doi: 10.1002/adfm.201400561  doi: 10.1002/adfm.201400561

    115. [115]

      Park, Y. U.; Seo, D. H.; Kwon, H. S.; Kim, B.; Kim, J.; Kim, H.; Kim, I.; Yoo, H. I.; Kang, K. J. Am. Chem. Soc. 2013, 135, 13870. doi: 10.1021/ja406016j  doi: 10.1021/ja406016j

    116. [116]

      Xu, M.; Xiao, P.; Stauffer, S.; Song, J.; Henkelman, G.; Goodenough, J. B. Chem. Mater. 2014, 26, 3089. doi: 10.1021/cm500106w  doi: 10.1021/cm500106w

    117. [117]

      Cai, Y.; Cao, X.; Luo, Z.; Fang, G.; Liu, F.; Zhou, J.; Pan, A.; Liang, S. Adv. Sci. 2018, 5, 1800680. doi: 10.1002/advs.201800680  doi: 10.1002/advs.201800680

    118. [118]

      Liu, Q.; Meng, X.; Wei, Z.; Wang, D.; Gao, Y.; Wei, Y.; Du, F.; Chen, G. ACS Appl. Mater. Inter. 2016, 8, 31709. doi: 10.1021/acsami.6b11372  doi: 10.1021/acsami.6b11372

    119. [119]

      Chao, D. L.; Lai, C. H.; Liang, P.; Wei, Q. L.; Wang, Y. S.; Zhu, C. R.; Deng, G.; Doan-Nguyen, V. V. T.; Lin, J. Y.; Mai, L. Q.; et al. Adv. Energy Mater. 2018, 8, 1800058. doi: 10.1002/aenm.201800058  doi: 10.1002/aenm.201800058

    120. [120]

      Shen, C.; Long, H.; Wang, G.; Lu, W.; Shao, L.; Xie, K. J. Mater. Chem. A 2018, 6, 6007. doi: 10.1039/c8ta00990b  doi: 10.1039/c8ta00990b

    121. [121]

      Deng, G.; Chao, D.; Guo, Y.; Chen, Z.; Wang, H.; Savilov, S. V.; Lin, J.; Shen, Z. X. Energy Storage Mater. 2016, 5, 198. doi: 10.1016/j.ensm.2016.07.007  doi: 10.1016/j.ensm.2016.07.007

    122. [122]

      Yi, H.; Ling, M.; Xu, W.; Li, X.; Zheng, Q.; Zhang, H. Nano Energy 2018, 47, 340. doi: 10.1016/j.nanoen.2018.02.053  doi: 10.1016/j.nanoen.2018.02.053

    123. [123]

      Peng, M. H.; Zhang, D. T.; Zheng, L. M.; Wang, X. Y.; Lin, Y.; Xia, D. G.; Sun, Y. G.; Guo, G. S. Nano Energy 2017, 31, 64. doi: 10.1016/j.nanoen.2016.11.023  doi: 10.1016/j.nanoen.2016.11.023

    124. [124]

      Zhang, Y.; Guo, S.; Xu, H. J. Mater. Chem. A 2018, 6, 4525. doi: 10.1039/c7ta11105c  doi: 10.1039/c7ta11105c

    125. [125]

      Peng, M.; Li, B.; Yan, H.; Zhang, D.; Wang, X.; Xia, D.; Guo, G. Angew. Chem. Int. Edit. 2015, 54, 6452. doi: 10.1002/anie.201411917  doi: 10.1002/anie.201411917

    126. [126]

      Yin, Y.; Xiong, F.; Pei, C.; Xu, Y.; An, Q.; Tan, S.; Zhuang, Z.; Sheng, J.; Li, Q.; Mai, L. Nano Energy 2017, 41, 452. doi: 10.1016/j.nanoen.2017.09.056  doi: 10.1016/j.nanoen.2017.09.056

    127. [127]

      Qi, Y.; Tong, Z.; Zhao, J.; Ma, L.; Wu, T.; Liu, H.; Yang, C.; Lu, J.; Hu, Y. S. Joule 2018, 2, 2348. doi: 10.1016/j.joule.2018.07.027  doi: 10.1016/j.joule.2018.07.027

    128. [128]

      Ellis, B. L.; Makahnouk, W. R.; Makimura, Y.; Toghill, K.; Nazar, L. F. Nat. Mater. 2007, 6, 749. doi: 10.1038/nmat2007  doi: 10.1038/nmat2007

    129. [129]

      Ellis, B. L.; Makahnouk, W. R. M.; Rowan-Weetaluktuk, W. N.; Ryan, D. H.; Nazar, L. F. Chem. Mater. 2010, 22, 1059. doi: 10.1021/cm902023h  doi: 10.1021/cm902023h

    130. [130]

      Tripathi, R.; Wood, S. M.; Islam, M. S.; Nazar, L. F. Energy Environ. Sci. 2013, 6, 2257. doi: 10.1039/c3ee40914g  doi: 10.1039/c3ee40914g

    131. [131]

      Deng, X.; Shi, W.; Sunarso, J.; Liu, M.; Shao, Z. ACS Appl. Mater. Inter. 2017, 9, 16280. doi: 10.1021/acsami.7b03933  doi: 10.1021/acsami.7b03933

    132. [132]

      Li, Q.; Liu, Z.; Zheng, F.; Liu, R.; Lee, J.; Xu, G. L.; Zhong, G.; Hou, X.; Fu, R.; Chen, Z.; et al. Angew. Chem. Int. Edit. 2018, 57, 11918. doi: 10.1002/anie.201805555  doi: 10.1002/anie.201805555

    133. [133]

      Kawabe, Y.; Yabuuchi, N.; Kajiyama, M.; Fukuhara, N.; Inamasu, T.; Okuyama, R.; Nakai, I.; Komaba, S. Electrochem. Commun. 2011, 13, 1225. doi: 10.1016/j.elecom.2011.08.038  doi: 10.1016/j.elecom.2011.08.038

    134. [134]

      Yan, J. H.; Liu, X. B.; Li, B. Y. Electrochem. Commun. 2015, 56, 46. doi: 10.1016/j.elecom.2015.04.009  doi: 10.1016/j.elecom.2015.04.009

    135. [135]

      Hua, S.; Cai, S.; Ling, R.; Li, Y.; Jiang, Y.; Xie, D.; Jiang, S.; Lin, Y.; Shen, K. Inorg. Chem. Commun. 2018, 95, 90. doi: 10.1016/j.inoche.2018.07.011  doi: 10.1016/j.inoche.2018.07.011

    136. [136]

      Law, M.; Ramar, V.; Balaya, P. RSC Adv. 2015, 5, 50155. doi: 10.1039/c5ra07583a  doi: 10.1039/c5ra07583a

    137. [137]

      Zou, H.; Li, S.; Wu, X.; McDonald, M. J.; Yang, Y. ECS Electrochem. Lett. 2015, 4, A53. doi: 10.1149/2.0061506eel  doi: 10.1149/2.0061506eel

    138. [138]

      Lin, X. C.; Hou, X.; Wu, X. B.; Wang, S. H.; Gao, M.; Yang, Y. RSC Adv. 2014, 4, 40985. doi: 10.1039/c4ra05336b  doi: 10.1039/c4ra05336b

    139. [139]

      Kundu, D.; Tripathi, R.; Popov, G.; Makahnouk, W. R. M.; Nazar, L. F. Chem. Mater. 2015, 27, 885. doi: 10.1021/cm504058k  doi: 10.1021/cm504058k

    140. [140]

      Swafford, S. H.; Holt, E. M. Solid State Sci. 2002, 4, 807. doi: 10.1016/s1293-2558(02)01297-9  doi: 10.1016/s1293-2558(02)01297-9

    141. [141]

      Jalem, R.; Natsume, R.; Nakayama, M.; Kasuga, T. J. Phys. Chem. C 2016, 120, 1438. doi: 10.1021/acs.jpcc.5b12115  doi: 10.1021/acs.jpcc.5b12115

    142. [142]

      Ramireddy, T.; Rahman, M. M.; Sharma, N.; Glushenkov, A. M.; Chen, Y. J. Power Sources 2014, 271, 497. doi: 10.1016/j.jpowsour.2014.08.039  doi: 10.1016/j.jpowsour.2014.08.039

    143. [143]

      Gabelica-Robert, M.; Goreaud, M.; Labbe, P.; Raveau, B. J. Solid State Chem. 1982, 45, 389. doi: 10.1016/0022-4596(82)90184-0  doi: 10.1016/0022-4596(82)90184-0

    144. [144]

      Barpanda, P.; Nishimura, S.-i.; Yamada, A. Adv. Energy Mater. 2012, 2, 841. doi: 10.1002/aenm.201100772  doi: 10.1002/aenm.201100772

    145. [145]

      Mahesh, M. J.; Gopalakrishna, G. S.; Ashamanjari. Mater. Charact. 2006, 57, 30. doi: 10.1016/j.matchar.2005.12.002  doi: 10.1016/j.matchar.2005.12.002

    146. [146]

      Leclaire, A.; Benmoussa, A.; Borel, M. M.; Grandin, A.; Raveau, B. J. Solid State Chem. 1988, 77, 299. doi: 10.1016/0022-4596(88)90252-6  doi: 10.1016/0022-4596(88)90252-6

    147. [147]

      Wang, Y. P.; Lii, K. H.; Wang, S. L. Acta Crystallogr. C 1989, 45, 1417. doi: 10.1107/s010827018900346x  doi: 10.1107/s010827018900346x

    148. [148]

      Kee, Y.; Dimov, N.; Staikov, A.; Barpanda, P.; Lu, Y.-C.; Minami, K.; Okada, S. RSC Adv. 2015, 5, 64991. doi: 10.1039/c5ra12158b  doi: 10.1039/c5ra12158b

    149. [149]

      Vellaisamy, M.; Reddy, M. V.; Chowdari, B. V. R.; Kalaiselvi, N. J. Phys. C 2018, 122, 24609. doi: 10.1021/acs.jpcc.8b09451  doi: 10.1021/acs.jpcc.8b09451

    150. [150]

      Barpanda, P.; Ye, T.; Nishimura, S. -I.; Chung, S. -C.; Yamada, Y.; Okubo, M.; Zhou, H.; Yamada, A. Electrochem. Commun. 2012, 24, 116. doi: 10.1016/j.elecom.2012.08.028  doi: 10.1016/j.elecom.2012.08.028

    151. [151]

      Barpanda, P.; Liu, G.; Ling, C. D.; Tamaru, M.; Avdeev, M.; Chung, S. -C.; Yamada, Y.; Yamada, A. Chem. Mater. 2013, 25, 3480. doi: 10.1021/cm401657c  doi: 10.1021/cm401657c

    152. [152]

      Kim, H.; Shakoor, R. A.; Park, C.; Lim, S. Y.; Kim, J. -S.; Jo, Y. N.; Cho, W.; Miyasaka, K.; Kahraman, R.; Jung, Y.; et al. Adv. Funct. Mater. 2013, 23, 1147. doi: 10.1002/adfm.201201589  doi: 10.1002/adfm.201201589

    153. [153]

      Longoni, G.; Wang, J. E.; Jung, Y. H.; Kim, D. K.; Mari, C. M.; Ruffo, R. J. Power Sources 2016, 302, 61. doi: 10.1016/j.jpowsour.2015.10.033  doi: 10.1016/j.jpowsour.2015.10.033

    154. [154]

      Shakoor, R. A.; Park, C. S.; Raja, A. A.; Shin, J.; Kahraman, R. Phys. Chem. Chem. Phys. 2016, 18, 3929. doi: 10.1039/c5cp06836c  doi: 10.1039/c5cp06836c

    155. [155]

      Chen, X.; Du, K.; Lai, Y.; Shang, G.; Li, H.; Xiao, Z.; Chen, Y.; Li, J.; Zhang, Z. J. Power Sources 2017, 357, 164. doi: 10.1016/j.jpowsour.2017.04.075  doi: 10.1016/j.jpowsour.2017.04.075

    156. [156]

      Barpanda, P.; Liu, G.; Mohamed, Z.; Ling, C. D.; Yamada, A. Solid State Ionics 2014, 268, 305. doi: 10.1016/j.ssi.2014.03.011  doi: 10.1016/j.ssi.2014.03.011

    157. [157]

      Chen, C. Y.; Kiko, T.; Hosokawa, T.; Matsumoto, K.; Nohira, T.; Hagiwara, R. J. Power Sources 2016, 332, 51. doi: 10.1016/j.jpowsour.2016.09.099  doi: 10.1016/j.jpowsour.2016.09.099

    158. [158]

      Park, C. S.; Kim, H.; Shakoor, R. A.; Yang, E.; Lim, S. Y.; Kahraman, R.; Jung, Y.; Choi, J. W. J. Am. Chem. Soc. 2013, 135, 2787. doi: 10.1021/ja312044k  doi: 10.1021/ja312044k

    159. [159]

      Barpanda, P.; Ye, T.; Avdeev, M.; Chung, S. C.; Yamada, A. J. Mater. Chem. A 2013, 1, 4194. doi: 10.1039/c3ta10210f  doi: 10.1039/c3ta10210f

    160. [160]

      Li, H.; Chen, X.; Jin, T.; Bao, W.; Zhang, Z.; Jiao, L. Energy Storage Mater. 2019, 16, 383. doi: 10.1016/j.ensm.2018.06.013  doi: 10.1016/j.ensm.2018.06.013

    161. [161]

      Barpanda, P.; Lu, J.; Ye, T.; Kajiyama, M.; Chung, S. C.; Yabuuchi, N.; Komaba, S.; Yamada, A. RSC Adv. 2013, 3, 3857. doi: 10.1039/c3ra23026k  doi: 10.1039/c3ra23026k

    162. [162]

      Kim, H.; Park, C. S.; Choi, J. W.; Jung, Y. Angew. Chem. Int. Edit. 2016, 55, 6662. doi: 10.1002/anie.201601022  doi: 10.1002/anie.201601022

    163. [163]

      Ha, K. -H.; Woo, S. H.; Mok, D.; Choi, N. S.; Park, Y.; Oh, S. M.; Kim, Y.; Kim, J.; Lee, J.; Nazar, L. F.; et al. Adv. Energy Mater. 2013, 3, 770. doi: 10.1002/aenm.201200825  doi: 10.1002/aenm.201200825

    164. [164]

      Chen, M.; Chen, L.; Hu, Z.; Liu, Q.; Zhang, B.; Hu, Y.; Gu, Q.; Wang, J. L.; Wang, L. Z.; Guo, X.; et al. Adv. Mater. 2017, 29, 1605535. doi: 10.1002/adma.201605535  doi: 10.1002/adma.201605535

    165. [165]

      Niu, Y.; Xu, M.; Bao, S. J.; Li, C. M. Chem. Commun. 2015, 51, 13120. doi: 10.1039/c5cc04422g  doi: 10.1039/c5cc04422g

    166. [166]

      Niu, Y.; Xu, M.; Cheng, C.; Bao, S.; Hou, J.; Liu, S.; Yi, F.; He, H.; Li, C. M. J. Mater. Chem. A 2015, 3, 17224. doi: 10.1039/c5ta03127c  doi: 10.1039/c5ta03127c

    167. [167]

      Niu, Y.; Xu, M.; Dai, C.; Shen, B.; Li, C. M. Phys. Chem. Chem. Phys. 2017, 19, 17270. doi: 10.1039/c7cp02483e  doi: 10.1039/c7cp02483e

    168. [168]

      Lin, B.; Li, Q.; Liu, B.; Zhang, S.; Deng, C. Nanoscale 2016, 8, 8178. doi: 10.1039/c6nr00680a  doi: 10.1039/c6nr00680a

    169. [169]

      Lin, B.; Zhang, S.; Deng, C. J. Mater. Chem. A 2016, 4, 2550. doi: 10.1039/c5ta09403h  doi: 10.1039/c5ta09403h

    170. [170]

      Kim, J.; Park, I.; Kim, H.; Park, K. Y.; Park, Y. U.; Kang, K. Adv. Energy Mater. 2016, 6, 1502147. doi: 10.1002/aenm.201502147  doi: 10.1002/aenm.201502147

    171. [171]

      Deng, C.; Zhang, S.; Zhao, B. Energy Storage Mater. 2016, 4, 71. doi: 10.1016/j.ensm.2016.03.001  doi: 10.1016/j.ensm.2016.03.001

    172. [172]

      Ke, L.; Yu, T.; Lin, B.; Liu, B.; Zhang, S.; Deng, C. Nanoscale 2016, 8, 19120. doi: 10.1039/c6nr07012d  doi: 10.1039/c6nr07012d

    173. [173]

      Li, Q. F.; Lin, B.; Zhang, S.; Deng, C. J. Mater. Chem. A 2016, 4, 5719. doi: 10.1039/c6ta01465h  doi: 10.1039/c6ta01465h

    174. [174]

      Liu, G.; Nishimura, S.-i.; Chung, S. C.; Fujii, K.; Yashima, M.; Yamada, A. J. Mater. Chem. A 2014, 2, 18353. doi: 10.1039/c4ta03356f  doi: 10.1039/c4ta03356f

    175. [175]

      Niu, Y.; Xu, M.; Shen, B.; Dai, C.; Li, C. M. J. Mater. Chem. A 2016, 4, 16531. doi: 10.1039/c6ta05780b  doi: 10.1039/c6ta05780b

    176. [176]

      Barpanda, P.; Liu, G.; Avdeev, M.; Yamada, A. ChemElectroChem 2014, 1, 1488. doi: 10.1002/celc.201402095  doi: 10.1002/celc.201402095

    177. [177]

      Sanz, F.; Parada, C.; Rojo, J. M.; Ruíz-Valero, C. Chem. Mater. 2001, 13, 1334. doi: 10.1021/cm001210d  doi: 10.1021/cm001210d

    178. [178]

      Kim, H.; Park, I.; Seo, D. H.; Lee, S.; Kim, S. W.; Kwon, W. J.; Park, Y. U.; Kim, C. S.; Jeon, S.; Kang, K. J. Am. Chem. Soc. 2012, 134, 10369. doi: 10.1021/ja3038646  doi: 10.1021/ja3038646

    179. [179]

      Wu, X.; Zhong, G.; Yang, Y. J. Power Sources 2016, 327, 666. doi: 10.1016/j.jpowsour.2016.07.061  doi: 10.1016/j.jpowsour.2016.07.061

    180. [180]

      Chen, M.; Hua, W.; Xiao, J.; Cortie, D.; Chen, W.; Wang, E.; Hu, Z.; Gu, Q.; Wang, X.; Indris, S.; et al. Nat. Commun. 2019, 10, 1480. doi: 10.1038/s41467-019-09170-5  doi: 10.1038/s41467-019-09170-5

    181. [181]

      Yuan, T. C.; Wang, Y. X.; Zhang, J. X.; Pu, X. J.; Ai, X. P.; Chen, Z. X.; Yang, H. X.; Cao, Y. L. Nano Energy 2019, 56, 160. doi: 10.1016/j.nanoen.2018.11.011  doi: 10.1016/j.nanoen.2018.11.011

    182. [182]

      Pu, X.; Wang, H.; Yuan, T.; Cao, S.; Liu, S.; Xu, L.; Yang, H.; Ai, X.; Chen, Z.; Cao, Y. Energy Storage Mater. 2019. doi: 10.1016/j.ensm.2019.02.017  doi: 10.1016/j.ensm.2019.02.017

    183. [183]

      Nose, M.; Nakayama, H.; Nobuhara, K.; Yamaguchi, H.; Nakanishi, S.; Iba, H. J. Power Sources 2013, 234, 175. doi: 10.1016/j.jpowsour.2013.01.162  doi: 10.1016/j.jpowsour.2013.01.162

    184. [184]

      Nose, M.; Shiotani, S.; Nakayama, H.; Nobuhara, K.; Nakanishi, S.; Iba, H. Electrochem. Commun. 2013, 34, 266. doi: 10.1016/j.elecom.2013.07.004  doi: 10.1016/j.elecom.2013.07.004

    185. [185]

      Kim, H.; Yoon, G.; Park, I.; Park, K. Y.; Lee, B.; Kim, J.; Park, Y. U.; Jung, S. K.; Lim, H. D.; Ahn, D.; et al. Energy Environ. Sci. 2015, 8, 3325. doi: 10.1039/c5ee01876e  doi: 10.1039/c5ee01876e

    186. [186]

      Zhang, H.; Hasa, I.; Buchholz, D.; Qin, B. S.; Geiger, D.; Jeong, S.; Kaiser, U.; Passerini, S. NPG Asia Mater. 2017, 9, e370. doi: 10.1038/am.2017.41  doi: 10.1038/am.2017.41

    187. [187]

      Lim, S.; Kim, H.; Chung, J.; Lee, J.; Kim, B.; Choi, J.; Chung, K.; Cho, W.; Kim, S.; Goddard, W.; Jung, Y.; Choi, J. Proc. Natl. Acad. Sci. 2014, 111, 599. doi: 10.1073/pnas.1316557110  doi: 10.1073/pnas.1316557110

    188. [188]

      Deng, C.; Zhang, S. ACS Appl. Mater. Inter. 2014, 6, 9111. doi: 10.1021/am501072j  doi: 10.1021/am501072j

    189. [189]

      Zhang, S.; Deng, C.; Meng, Y. J. Mater. Chem. A 2014, 2, 20538. doi: 10.1039/c4ta04499a  doi: 10.1039/c4ta04499a

    190. [190]

      Deng, C.; Zhang, S.; Wu, Y. Nanoscale 2015, 7, 487. doi: 10.1039/c4nr05175k  doi: 10.1039/c4nr05175k

    191. [191]

      Chen, H. L.; Hao, Q.; Zivkovic, O.; Hautier, G.; Du, L. S.; Tang, Y. Z.; Hu, Y. Y.; Ma, X. H.; Grey, C. P.; Ceder, G. Chem. Mater. 2013, 25, 2777. doi: 10.1021/cm400805q  doi: 10.1021/cm400805q

    192. [192]

      Kosova, N. V.; Shindrov, A. A.; Slobodyuk, A. B.; Kellerman, D. G. Electrochim. Acta 2019, 302, 119. doi: 10.1016/j.electacta.2019.02.001  doi: 10.1016/j.electacta.2019.02.001

    193. [193]

      Hassanzadeh, N.; Sadrnezhaad, S. K.; Chen, G. Electrochim. Acta 2016, 220, 683. doi: 10.1016/j.electacta.2016.10.160  doi: 10.1016/j.electacta.2016.10.160

    194. [194]

      Shiva, K.; Singh, P.; Zhou, W.; Goodenough, J. B. Energy Environ. Sci. 2016, 9, 3103. doi: 10.1039/c6ee01093h  doi: 10.1039/c6ee01093h

    195. [195]

      Kim, J.; Yoon, G.; Lee, M. H.; Kim, H.; Lee, S.; Kang, K. Chem. Mater. 2017, 29, 7826. doi: 10.1021/acs.chemmater.7b0247  doi: 10.1021/acs.chemmater.7b0247

  • 加载中
    1. [1]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    4. [4]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    5. [5]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    6. [6]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    7. [7]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    8. [8]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    9. [9]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    10. [10]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    11. [11]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    12. [12]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    13. [13]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    14. [14]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    15. [15]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    16. [16]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    17. [17]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    18. [18]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    19. [19]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    20. [20]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

Metrics
  • PDF Downloads(116)
  • Abstract views(2452)
  • HTML views(785)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return