Citation: Pan Wenli, Guan Wenhao, Jiang Yinzhu. Research Advances in Polyanion-Type Cathodes for Sodium-Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2020, 36(5): 190501. doi: 10.3866/PKU.WHXB201905017 shu

Research Advances in Polyanion-Type Cathodes for Sodium-Ion Batteries

  • Corresponding author: Jiang Yinzhu, yzjiang@zju.edu.cn
  • & These authors contributed equally to this work
  • Received Date: 2 May 2019
    Revised Date: 5 June 2019
    Accepted Date: 18 June 2019
    Available Online: 24 May 2019

    Fund Project: the Zhejiang Provincial Natural Science Foundation, China LR18B030001the Fundamental Research Funds for the Central Universities, China 2018XZZX002-08the National Natural Science Foundation of China 51722105The project was supported by the National Natural Science Foundation of China (51722105), the Zhejiang Provincial Natural Science Foundation, China (LR18B030001), and the Fundamental Research Funds for the Central Universities, China (2018XZZX002-08)

  • Because of their high energy density and long cycle life, lithium-ion batteries (LIBs) have dominated the portable electronics market for over 20 years. However, with the increasing demand for large-scale energy storage systems for grid applications, the price of Li resources has increased owing to the low abundance of Li in Earth's crust and non-uniform distribution on the planet. Because Na has similar physical and chemical properties as Li and is an abundant natural resource, room-temperature sodium-ion batteries (SIBs) are expected to be among the most promising next-generation large grid energy storage devices. It is known that the cathode, anode, separator and electrolyte materials are the main components of batteries. Among these, Na-containing cathode materials are of critical importance. As a cathode material for SIBs, polyanion-type compounds have become a hot research topic owing to their versatile structural frameworks, high thermal stabilities, high ambient stabilities even in the charging state, small volume changes, tunable operating voltage by tuning the chemical environment of the polyanions, and high operating voltages owing to the inductive effects of the polyanionic groups (PO43−, SO42−, SiO44−, etc.). In particular, for Earth's abundant resources and inherent stability, polyanion-based compounds are suitable for large-scale stationary energy storage. Taking grid balancing into account, batteries with fast charge rates are in demand, which requires cathodes having high rate capability. However, despite the presence of ion diffusion channels in polyanion compounds, the electronic transport channels are blocked owing to the separation of the metal polyhedral and the strong electronegativity of the anions, leading to poor electron conductivity, which largely limits the rate capability of polyanion compounds. Therefore, it is crucial to understand the inherent limitation of the kinetics in terms of the structural aspects and to determine strategies for improving the rate capability. This review discusses the intrinsic reasons for the factors impacting ion diffusion based on the different structures of polyanion-type cathodes. From the perspectives of surface modification and morphology, strategies for enhancing the transport of sodium ions and electrons at the surface and interface are summarized and discussed. Then, from the standpoint of the hierarchical structures of materials to the design of a structural framework, which have been rarely reported, this review proposes schemes that intrinsically enhance the rate capability of polyanion compounds and provides a perspective on developments that can further improve the rate capability of cathode materials. This review provides suggestions for designing and optimizing high-rate polyanion-type and other kinds of cathodes from both academic and practical viewpoints.
  • 加载中
    1. [1]

      Evans, A.; Strezov, V.; Evans, T. J. Renew. Sust. Energ. Rev. 2012, 16, 4141. doi: 10.1016/j.rser.2012.03.048  doi: 10.1016/j.rser.2012.03.048

    2. [2]

      Liu, J.; Zhang, J. G.; Yang, Z.; Lemmon, J. P.; Imhoff, C.; Graff, G. L.; Li, L.; Hu, J.; Wang, C.; Xiao, J. Adv. Funct. Mater. 2013, 23, 929. doi: 10.1002/adfm.201200690  doi: 10.1002/adfm.201200690

    3. [3]

      Ellis, B. L.; Nazar, L. F. Curr. Opin. Solid State Mat. Sci. 2012, 16, 168. doi: 10.1016/j.cossms.2012.04.002  doi: 10.1016/j.cossms.2012.04.002

    4. [4]

      Xiang, X.; Zhang, K.; Chen, J. Adv. Mater. 2015, 27, 5343. doi: 10.1002/adma.201501527  doi: 10.1002/adma.201501527

    5. [5]

      Guo, S. P.; Li, J. C.; Xu, Q. T.; Ma, Z.; Xue, H. G. J. Power Sources 2017, 361, 285. doi: 10.1016/j.jpowsour.2017.07.002  doi: 10.1016/j.jpowsour.2017.07.002

    6. [6]

      Wang, P. F.; You, Y.; Yin, Y. X.; Guo, Y. G. Adv. Energy Mater. 2018, 8. doi: 10.1002/aenm.201701912  doi: 10.1002/aenm.201701912

    7. [7]

      Jiang, Y.; Yu, S.; Wang, B.; Li, Y.; Sun, W.; Lu, Y.; Yan, M.; Song, B.; Dou, S. Adv. Funct. Mater. 2016, 26, 5315. doi: 10.1002/adfm.201600747  doi: 10.1002/adfm.201600747

    8. [8]

      Wang, B.; Han, Y.; Wang, X.; Bahlawane, N.; Pan, H.; Yan, M.; Jiang, Y. iScience 2018, 3, 110. doi: 10.1016/j.isci.2018.04.008  doi: 10.1016/j.isci.2018.04.008

    9. [9]

      Barpanda, P.; Lander, L.; Nishimura, S. I.; Yamada, A. Adv. Energy Mater. 2018, 8, 1703055. doi: 10.1002/aenm.201703055  doi: 10.1002/aenm.201703055

    10. [10]

      Masquelier, C.; Croguennec, L. Chem. Rev. 2013, 113, 6552. doi: 10.1021/cr3001862  doi: 10.1021/cr3001862

    11. [11]

      Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Chem. Rev. 2014, 114, 11636. doi: 10.1021/cr500192f  doi: 10.1021/cr500192f

    12. [12]

      Ouyang, X.; Lei, M.; Shi, S.; Luo, C.; Liu, D.; Jiang, D.; Ye, Z.; Lei, M. J. Alloy. Compd. 2009, 476, 462. doi: 10.1016/j.jallcom.2008.09.028  doi: 10.1016/j.jallcom.2008.09.028

    13. [13]

      Balke, N.; Jesse, S.; Morozovska, A.; Eliseev, E.; Chung, D.; Kim, Y.; Adamczyk, L.; Garcia, R.; Dudney, N.; Kalinin, S. Nat. Nanotechnol. 2010, 5, 749. doi: 10.1038/nnano.2010.174  doi: 10.1038/nnano.2010.174

    14. [14]

      Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. J. Electrochem. Soc. 1997, 144, 1188. doi: 10.1149/1.1837571  doi: 10.1149/1.1837571

    15. [15]

      Yamada, A.; Chung, S. C.; Hinokuma, K. J. Electrochem. Soc. 2001, 148, A224. doi: 10.1149/1.1348257  doi: 10.1149/1.1348257

    16. [16]

      Huang, H.; Yin, S. C.; Nazar, L. S. Electrochem. Solid State Lett. 2001, 4, A170. doi: 10.1149/1.1396695  doi: 10.1149/1.1396695

    17. [17]

      Oh, S. M.; Myung, S. T.; Hassoun, J.; Scrosati, B.; Sun, Y. K. Electrochem. Commun. 2012, 22, 149. doi: 10.1016/j.elecom.2012.06.014  doi: 10.1016/j.elecom.2012.06.014

    18. [18]

      Zhu, Y.; Xu, Y.; Liu, Y.; Luo, C.; Wang, C. Nanoscale 2013, 5, 780. doi: 10.1039/C2NR32758A  doi: 10.1039/C2NR32758A

    19. [19]

      Casas-Cabanas, M.; Roddatis, V. V.; Saurel, D.; Kubiak, P.; Carretero-González, J.; Palomares, V.; Serras, P.; Rojo, T. J. Mater. Chem. 2012, 22, 17421. doi: 10.1039/C2JM33639A  doi: 10.1039/C2JM33639A

    20. [20]

      Kim, J.; Seo, D. H.; Kim, H.; Park, I.; Yoo, J. K.; Jung, S. K.; Park, Y. U.; Goddard III, W. A.; Kang, K. Energy Environ. Sci. 2015, 8, 540. doi: 10.1039/C4EE03215B  doi: 10.1039/C4EE03215B

    21. [21]

      Barpanda, P.; Ye, T.; Lu, J.; Yamada, Y.; Chung, S. C.; Nishimura, S.; Okubo, M.; Zhou, H.; Yamada, A. ECS Trans. 2013, 50, 71. doi: 10.1149/05024.0071ecst  doi: 10.1149/05024.0071ecst

    22. [22]

      Barpanda, P.; Liu, G.; Ling, C. D.; Tamaru, M.; Avdeev, M.; Chung, S. C.; Yamada, Y.; Yamada, A. Chem. Mat. 2013, 25, 3480. doi: 10.1021/cm401657c  doi: 10.1021/cm401657c

    23. [23]

      Kim, H.; Park, C. S.; Choi, J. W.; Jung, Y. Angew. Chem. Int. Edit. 2016, 55, 6662. doi: 10.1002/anie.201601022  doi: 10.1002/anie.201601022

    24. [24]

      Gopalakrishnan, J.; Rangan, K. K. Chem. Mat. 1992, 4, 745. doi: 10.1021/cm00022a001  doi: 10.1021/cm00022a001

    25. [25]

      Lim, S. Y.; Kim, H.; Shakoor, R.; Jung, Y.; Choi, J. W. J. Electrochem. Soc. 2012, 159, A1393. doi: 10.1149/2.015209jes  doi: 10.1149/2.015209jes

    26. [26]

      Jian, Z.; Yuan, C.; Han, W.; Lu, X.; Gu, L.; Xi, X.; Hu, Y. S.; Li, H.; Chen, W.; Chen, D. Adv. Funct. Mater. 2014, 24, 4265. doi: 10.1002/adfm.201400173  doi: 10.1002/adfm.201400173

    27. [27]

      Zhu, C.; Song, K.; van Aken, P. A.; Maier, J.; Yu, Y. Nano Lett. 2014, 14, 2175. doi: 10.1021/nl500548a  doi: 10.1021/nl500548a

    28. [28]

      Zhou, W.; Xue, L.; Lü, X.; Gao, H.; Li, Y.; Xin, S.; Fu, G.; Cui, Z.; Zhu, Y.; Goodenough, J. B. Nano Lett. 2016, 16, 7836. doi: 10.1021/acs.nanolett.6b04044  doi: 10.1021/acs.nanolett.6b04044

    29. [29]

      Gao, H.; Seymour, I. D.; Xin, S.; Xue, L.; Henkelman, G.; Goodenough, J. B. J. Am. Chem. Soc. 2018, 140, 18192. doi: 10.1021/jacs.8b11388  doi: 10.1021/jacs.8b11388

    30. [30]

      Gover, R.; Bryan, A.; Burns, P.; Barker, J. Solid State Ion. 2006, 177, 1495. doi: 10.1016/j.ssi.2006.07.028  doi: 10.1016/j.ssi.2006.07.028

    31. [31]

      Serras, P.; Palomares, V.; Goñi, A.; de Muro, I. G.; Kubiak, P.; Lezama, L.; Rojo, T. J. Mater. Chem. 2012, 22, 22301. doi: 10.1039/c2jm35293a  doi: 10.1039/c2jm35293a

    32. [32]

      Chen, M.; Hua, W.; Xiao, J.; Cortie, D.; Chen, W.; Wang, E.; Hu, Z.; Gu, Q.; Wang, X.; Indris, S. Nat. Commun. 2019, 10, 1480. doi: 10.1038/s41467-019-09170-5  doi: 10.1038/s41467-019-09170-5

    33. [33]

      Kee, Y.; Dimov, N.; Staykov, A.; Okada, S. Mater. Chem. Phys. 2016, 171, 45. doi: 10.1016/j.matchemphys.2016.01.033  doi: 10.1016/j.matchemphys.2016.01.033

    34. [34]

      Li, S.; Guo, J.; Ye, Z.; Zhao, X.; Wu, S.; Mi, J. X.; Wang, C. Z.; Gong, Z.; McDonald, M. J.; Zhu, Z. ACS Appl. Mater. Interfaces 2016, 8, 17233. doi: 10.1021/acsami.6b03969  doi: 10.1021/acsami.6b03969

    35. [35]

      Guan, W.; Pan, B.; Zhou, P.; Mi, J.; Zhang, D.; Xu, J.; Jiang, Y. ACS Appl. Mater. Interfaces 2017, 9, 22369. doi: 10.1021/acsami.7b02385  doi: 10.1021/acsami.7b02385

    36. [36]

      Chen, C. Y.; Matsumoto, K.; Nohira, T.; Hagiwara, R. Electrochem. Commun. 2014, 45, 63. doi: 10.1016/j.elecom.2014.05.017  doi: 10.1016/j.elecom.2014.05.017

    37. [37]

      Law, M.; Ramar, V.; Balaya, P. J. Power Sources 2017, 359, 277. doi: 10.1016/j.jpowsour.2017.05.069  doi: 10.1016/j.jpowsour.2017.05.069

    38. [38]

      Zhang, D.; Ding, Z.; Yang, Y.; Zhao, S.; Huang, Q.; Chen, C.; Chen, L.; Wei, W. Electrochim. Acta 2018, 269, 694. doi: 10.1016/j.electacta.2018.03.045  doi: 10.1016/j.electacta.2018.03.045

    39. [39]

      Treacher, J. C.; Wood, S. M.; Islam, M. S.; Kendrick, E. Phys. Chem. Chem. Phys. 2016, 18, 32744. doi: 10.1039/c6cp06777h  doi: 10.1039/c6cp06777h

    40. [40]

      Rangasamy, V. S.; Thayumanasundaram, S.; Locquet, J. P. Electrochim. Acta 2018, 276, 102. doi: 10.1016/j.electacta.2018.04.166  doi: 10.1016/j.electacta.2018.04.166

    41. [41]

      Reynaud, M.; Ati, M.; Boulineau, S.; Sougrati, M. T.; Melot, B. C.; Rousse, G.; Chotard, J. N.; Tarascon, J. M. ECS Trans. 2013, 50, 11. doi: 10.1149/05024.0011ecst  doi: 10.1149/05024.0011ecst

    42. [42]

      Barpanda, P.; Oyama, G.; Ling, C. D.; Yamada, A. Chem. Mat. 2014, 26, 1297. doi: 10.1021/cm4033226  doi: 10.1021/cm4033226

    43. [43]

      Meng, Y.; Zhang, S.; Deng, C. J. Mater. Chem. A 2015, 3, 4484. doi: 10.1039/c4ta06711h  doi: 10.1039/c4ta06711h

    44. [44]

      Meng, Y.; Li, Q.; Yu, T.; Zhang, S.; Deng, C. CrystEngComm 2016, 18, 1645. doi: 10.1039/c5ce02046h  doi: 10.1039/c5ce02046h

    45. [45]

      Reynaud, M.; Rousse, G.; Abakumov, A. M.; Sougrati, M. T.; Van Tendeloo, G.; Chotard, J. N.; Tarascon, J. M. J. Mater. Chem. A 2014, 2, 2671. doi: 10.1039/c3ta13648e  doi: 10.1039/c3ta13648e

    46. [46]

      Singh, P.; Shiva, K.; Celio, H.; Goodenough, J. B. Energy Environ. Sci. 2015, 8, 3000. doi: 10.1039/c5ee02274f  doi: 10.1039/c5ee02274f

    47. [47]

      Yu, C. J.; Choe, S. H.; Ri, G. C.; Kim, S. C.; Ryo, H. S.; Kim, Y. J. Phys. Rev. Appl. 2017, 8, 024029. doi: 10.1103/PhysRevApplied.8.024029  doi: 10.1103/PhysRevApplied.8.024029

    48. [48]

      Chong, X. Y.; Jiang, Y.; Feng, J. J. Micromech. Mol. Phys. 2017, 2, 1750002. doi: 10.1142/S2424913017500023  doi: 10.1142/S2424913017500023

    49. [49]

      Barpanda, P.; Oyama, G.; Nishimura, S. I.; Chung, S. C.; Yamada, A. Nat. Commun. 2014, 5, 4358. doi: 10.1038/ncomms5358  doi: 10.1038/ncomms5358

    50. [50]

      Oyama, G.; Nishimura, S. I.; Suzuki, Y.; Okubo, M.; Yamada, A. ChemElectroChem 2015, 2, 1019. doi: 10.1002/celc.201500036  doi: 10.1002/celc.201500036

    51. [51]

      Meng, Y.; Yu, T.; Zhang, S.; Deng, C. J. Mater. Chem. A 2016, 4, 1624. doi: 10.1039/c5ta07696j  doi: 10.1039/c5ta07696j

    52. [52]

      Dwibedi, D.; Ling, C. D.; Araujo, R. B.; Chakraborty, S.; Duraisamy, S.; Munichandraiah, N.; Ahuja, R.; Barpanda, P. ACS Appl. Mater. Interfaces 2016, 8, 6982. doi: 10.1021/acsami.5b11302  doi: 10.1021/acsami.5b11302

    53. [53]

      Prosini, P. P.; Lisi, M.; Zane, D.; Pasquali, M. Solid State Ion. 2002, 148, 45. doi:10.1016/S0167-2738(02)00134-0  doi: 10.1016/S0167-2738(02)00134-0

    54. [54]

      Deiss, E. Electrochim. Acta 2005, 50, 2927. doi: 10.1016/j.electacta.2004.11.042  doi: 10.1016/j.electacta.2004.11.042

    55. [55]

      Yang, Z.; Feng, Y.; Li, Z.; Sang, S.; Zhou, Y.; Zeng, L. J. Electroanal. Chem. 2005, 580, 340. doi: 10.1016/j.jelechem.2005.04.004  doi: 10.1016/j.jelechem.2005.04.004

    56. [56]

      Das, S.; Majumder, S.; Katiyar, R. J. Power Sources 2005, 139, 261. doi: 10.1016/j.jpowsour.2004.06.056  doi: 10.1016/j.jpowsour.2004.06.056

    57. [57]

      Longoni, G.; Wang, J. E.; Jung, Y. H.; Kim, D. K.; Mari, C. M.; Ruffo, R. J. Power Sources 2016, 302, 61. doi: 10.1016/j.jpowsour.2015.10.033  doi: 10.1016/j.jpowsour.2015.10.033

    58. [58]

      Li, G.; Jiang, D.; Wang, H.; Lan, X.; Zhong, H.; Jiang, Y. J. Power Sources 2014, 265, 325. doi: 10.1016/j.jpowsour.2014.04.054  doi: 10.1016/j.jpowsour.2014.04.054

    59. [59]

      Song, W.; Ji, X.; Wu, Z.; Yang, Y.; Zhou, Z.; Li, F.; Chen, Q.; Banks, C. E. J. Power Sources 2014, 256, 258. doi: 10.1016/j.jpowsour.2014.01.025  doi: 10.1016/j.jpowsour.2014.01.025

    60. [60]

      Deng, G.; Chao, D.; Guo, Y.; Chen, Z.; Wang, H.; Savilov, S. V.; Lin, J.; Shen, Z. X. Energy Storage Mater. 2016, 5, 198. doi: 10.1016/j.ensm.2016.07.007  doi: 10.1016/j.ensm.2016.07.007

    61. [61]

      Lu, J.; Yamada, A. ChemElectroChem 2016, 3, 902. doi: 10.1002/celc.201500535  doi: 10.1002/celc.201500535

    62. [62]

      Rahman, M. M.; Sultana, I.; Mateti, S.; Liu, J.; Sharma, N.; Chen, Y. J. Mater. Chem. A 2017, 5, 16616. doi: 10.1039/C7TA04946C  doi: 10.1039/C7TA04946C

    63. [63]

      Liu, Y.; Zhang, N.; Wang, F.; Liu, X.; Jiao, L.; Fan, L. Z. Adv. Funct. Mater. 2018, 28, 1801917. doi: 10.1002/adfm.201801917  doi: 10.1002/adfm.201801917

    64. [64]

      Ali, G.; Lee, J. H.; Susanto, D.; Choi, S. W.; Cho, B. W.; Nam, K. W.; Chung, K. Y. ACS Appl. Mater. Interfaces 2016, 8, 15422. doi: 10.1016/j.elecom.2012.06.014  doi: 10.1016/j.elecom.2012.06.014

    65. [65]

      Barpanda, P.; Ye, T.; Nishimura, S. I.; Chung, S. C.; Yamada, Y.; Okubo, M.; Zhou, H.; Yamada, A. Electrochem. Commun. 2012, 24, 116. doi: 10.1021/acsami.6b04014  doi: 10.1021/acsami.6b04014

    66. [66]

      Jian, Z.; Zhao, L.; Pan, H.; Hu, Y. S.; Li, H.; Chen, W.; Chen, L. Electrochem. Commun. 2012, 14, 86. doi: 10.1016/j.elecom.2011.11.009  doi: 10.1016/j.elecom.2011.11.009

    67. [67]

      Rui, X.; Sun, W.; Wu, C.; Yu, Y.; Yan, Q. Adv. Mater. 2015, 27, 6670. doi: 10.1002/adma.201502864  doi: 10.1002/adma.201502864

    68. [68]

      Liu, Q.; Meng, X.; Wei, Z.; Wang, D.; Gao, Y.; Wei, Y.; Du, F.; Chen, G. ACS Appl. Mater. Interfaces 2016, 8, 31709. doi: 10.1021/acsami.6b11372  doi: 10.1021/acsami.6b11372

    69. [69]

      Serras, P.; Palomares, V.; Kubiak, P.; Lezama, L.; Rojo, T. Electrochem. Commun. 2013, 34, 344. doi: 10.1016/j.elecom.2013.07.010  doi: 10.1016/j.elecom.2013.07.010

    70. [70]

      Ali, B.; Ghafoor, F.; Shahzad, M. I.; Shah, S. K.; Abbas, S. M. J. Power Sources 2018, 396, 467. doi: 10.1016/j.jpowsour.2018.06.049  doi: 10.1016/j.jpowsour.2018.06.049

    71. [71]

      Pan, W.; Guan, W.; Liu, S.; Xu, B. B.; Liang, C.; Pan, H.; Yan, M.; Jiang, Y. J. Mater. Chem. A 2019, 7, 13197. doi: 10.1039/C9TA02188D  doi: 10.1039/C9TA02188D

    72. [72]

      Zhang, Y.; Xia, X.; Liu, B.; Deng, S.; Xie, D.; Liu, Q.; Wang, Y.; Wu, J.; Wang, X.; Tu, J. Adv. Energy Mater. 2019, 9, 1803342. doi: 10.1002/aenm.201803342  doi: 10.1002/aenm.201803342

    73. [73]

      Jung, Y. H.; Lim, C. H.; Kim, D. K. J. Mater. Chem. A 2013, 1, 11350. doi: 10.1039/c3ta12116j  doi: 10.1039/c3ta12116j

    74. [74]

      Zhang, J.; Yuan, T.; Wan, H.; Qian, J.; Ai, X.; Yang, H.; Cao, Y. Sci. China Chem. 2017, 60, 1546. doi: 10.1007/s11426-017-9125-y  doi: 10.1007/s11426-017-9125-y

    75. [75]

      Li, S.; Dong, Y.; Xu, L.; Xu, X.; He, L.; Mai, L. Adv. Mater. 2014, 26, 3545. doi: 10.1002/adma.201305522  doi: 10.1002/adma.201305522

    76. [76]

      Xu, Y.; Wei, Q.; Xu, C.; Li, Q.; An, Q.; Zhang, P.; Sheng, J.; Zhou, L.; Mai, L. Adv. Energy Mater. 2016, 6, 1600389. doi: 10.1002/aenm.201600389  doi: 10.1002/aenm.201600389

    77. [77]

      An, Q.; Xiong, F.; Wei, Q.; Sheng, J.; He, L.; Ma, D.; Yao, Y.; Mai, L. Adv. Energy Mater. 2015, 5, 1401963. doi: 10.1002/aenm.201401963  doi: 10.1002/aenm.201401963

    78. [78]

      Fang, Y.; Xiao, L.; Ai, X.; Cao, Y.; Yang, H. Adv. Mater. 2015, 27, 5895. doi: 10.1002/adma.201502018  doi: 10.1002/adma.201502018

    79. [79]

      Jiang, T.; Wei, Y.; Pan, W.; Li, Z.; Ming, X.; Chen, G.; Wang, C. J. Alloy. Compd. 2009, 488, L26. doi: 10.1016/j.jallcom.2009.08.134  doi: 10.1016/j.jallcom.2009.08.134

    80. [80]

      Ni, J.; Zhang, L.; Fu, S.; Savilov, S.; Aldoshin, S.; Lu, L. Carbon 2015, 92, 15. doi: 10.1016/j.carbon.2015.02.047  doi: 10.1016/j.carbon.2015.02.047

    81. [81]

      Li, Y. D.; Deng, Y. F.; Pan, Z. Y.; Wei, Y. P.; Zhao, S. X.; Gan, L. Acta Phys. -Chim. Sin. 2017, 33, 2293.  doi: 10.3866/PKU.WHXB201705294

    82. [82]

      Zhang, S.; Gu, H.; Pan, H.; Yang, S.; Du, W.; Li, X.; Gao, M.; Liu, Y.; Zhu, M.; Ouyang, L. Adv. Energy Mater. 2017, 7, 1601066. doi: 10.1002/aenm.201601066  doi: 10.1002/aenm.201601066

    83. [83]

      Zhang, S.; Chen, J.; Tang, T.; Jiang, Y.; Chen, G.; Shao, Q.; Yan, C.; Zhu, T.; Gao, M.; Liu, Y. J. Mater. Chem. A 2018, 6, 3610. doi: 10.1039/C7TA10887G  doi: 10.1039/C7TA10887G

  • 加载中
    1. [1]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    2. [2]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    3. [3]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    4. [4]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    5. [5]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    6. [6]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    7. [7]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    8. [8]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    9. [9]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    10. [10]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    11. [11]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    12. [12]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    13. [13]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    14. [14]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    15. [15]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    16. [16]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    17. [17]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    18. [18]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    19. [19]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    20. [20]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

Metrics
  • PDF Downloads(66)
  • Abstract views(1614)
  • HTML views(545)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return