Citation: YANG Xiaobing, ZHAO Lei, SUI Xulei, MENG Linghui, WANG Zhenbo. Ultra-High Proton/Vanadium Selectivity of Polybenzimidazole Membrane by Incorporating Phosphotungstic Acid Functionalized Nanofibers for Vanadium Redox Flow Battery[J]. Acta Physico-Chimica Sinica, ;2019, 35(12): 1372-1381. doi: 10.3866/PKU.WHXB201905011 shu

Ultra-High Proton/Vanadium Selectivity of Polybenzimidazole Membrane by Incorporating Phosphotungstic Acid Functionalized Nanofibers for Vanadium Redox Flow Battery

  • Corresponding author: MENG Linghui, menglinh@hit.edu.cn WANG Zhenbo, wangzhb@hit.edu.cn
  • Received Date: 2 May 2019
    Revised Date: 2 June 2019
    Accepted Date: 5 June 2019
    Available Online: 13 December 2019

    Fund Project: the National Natural Science Foundation of China 51802059China Postdoctoral Science Foundation 2018M631938Fundamental Research Funds for the Central Universities, China HIT. NSRIF. 2019040Fundamental Research Funds for the Central Universities, China HIT. NSRIF. 2019041China Postdoctoral Science Foundation 2017M621284the National Natural Science Foundation of China 21673064China Postdoctoral Science Foundation 2018T110307Heilongjiang Postdoctoral Fund, China LBH-Z17074the National Natural Science Foundation of China 21503059The project was supported by the National Natural Science Foundation of China (21273058, 21673064, 51802059 and 21503059), China Postdoctoral Science Foundation (2018M631938, 2018T110307 and 2017M621284), Heilongjiang Postdoctoral Fund, China (LBH-Z17074) and Fundamental Research Funds for the Central Universities, China (HIT. NSRIF. 2019040 and HIT. NSRIF. 2019041)the National Natural Science Foundation of China 21273058

  • Proton exchange membrane (PEM) is a key component of vanadium redox flow battery (VRB), and its proton/vanadium selectivity plays an important role in the performance of a VRB single cell. Commercially available perfluorosulfonic acid (Nafion) membranes have been widely used due to their excellent proton conductivity and favorable chemical resistance. However, the large pore size micelle channels formed by the pendant sulfonic acid groups lead to the excessive penetration of vanadium ions, which seriously affects the coulombic efficiency (CE) of the single cell and accelerates the self-discharge rate of the battery. Additionally, the expensive cost of Nafion is also an important reason to limit its large-scale application. In this paper, the dense and low-cost hydrocarbon polymer polybenzimidazole (PBI) is used as the matrix material of the PEM, which is doped with phosphotungstic acid (PWA) to acquire excellent proton conductivity, and the intrinsic high resistance of PBI for vanadium ions is helpful to obtain high proton/vanadium selectivity. Considering the enormous water solubility of PWA and its easy leaching from membrane, organic polymer nano-Kevlar fibers (NKFs) are utilized as the anchoring agent of PWA, which achieves good anchoring effect and solves the problem of the poor compatibility between inorganic anchoring agent and the polymer matrix. The formation of PWA functionalized NKFs was characterized by scanning electron microscope (SEM) and Fourier transform infrared (FT-IR) spectroscopy. The anchoring stability of NKFs for PWA was evaluated by UV-Vis spectroscopy. The characterizations including water uptake, swelling ratio, ion exchange capacity, proton conductivity, vanadium ion permeability and ion selectivity were performed to evaluate the basic properties of the membranes. At the same time, the charge-discharge, self-discharge and cycle performance of single cell assembled with the composite membrane and recast Nafion were tested at various current densities from 40 to 100 mA∙cm-2. Simple tuning for the filling amount of NKFs@PWA gives the composite membrane superior ion selectivity including an optimal value of 3.26 × 105 S∙min∙cm-3, which is 8.5 times higher than that of recast Nafion (0.34 × 105 S∙min∙cm-3). As a result, the VRB single cell assembled with the composite membrane exhibits higher CE and significantly lower self-discharge rate compared with recast Nafion. Typically, the CE of the VRB based on PBI-(NKFs@PWA)-22.5% membrane is 97.31% at 100 mA∙cm-2 while the value of recast Nafion is only 90.28%. The open circuit voltage (VOC) holding time above 0.8 V of the single cell assembled with the composite membrane is 95 h, which is about 2.4 times as long as that of recast Nafion-based VRB. The utilization of PBI as a separator for VRB can effectively suppress the penetration of vanadium ions, achieve higher proton/vanadium selectivity and superior battery performance as well as reduce the cost of the PEM, which will play an active role in the promotion of VRB applications.
  • 加载中
    1. [1]

      Li, X.; Zhang, H.; Mai, Z.; Zhang, H.; Vankelecom, I. Energy Environ. Sci. 2011, 4, 1147. doi: 10.1039/c0ee00770f  doi: 10.1039/c0ee00770f

    2. [2]

      Winardi, S.; Raghu, S. C.; Oo, M. O.; Yan, Q.; Wai, N.; Lim, T. M.; Skyllas-Kazacos, M. J. Membr. Sci. 2014, 450, 313. doi: 10.1016/j.memsci.2013.09.024  doi: 10.1016/j.memsci.2013.09.024

    3. [3]

      Ulaganathan, M.; Aravindan, V.; Yan, Q.; Madhavi, S.; Skyllas-Kazacos M.; Lim, T. M. Adv. Mater. Interfaces 2016, 3, 1500309. doi: 10.1002/admi.201500309  doi: 10.1002/admi.201500309

    4. [4]

      Wang, W.; Luo, Q.; Li, B.; Wei, X.; Li, L.; Yang, Z. Adv. Funct. Mater. 2013, 23, 970. doi: 10.1002/adfm.201200694  doi: 10.1002/adfm.201200694

    5. [5]

      Aziz, M. A.; Shanmugam, S. J. Power Sources 2017, 337, 36. doi: 10.1016/j.jpowsour.2016.10.113  doi: 10.1016/j.jpowsour.2016.10.113

    6. [6]

      Jang, J.; Kim, T.; Yoon, S. J.; Lee, J. Y.; Lee, J.; Hong, Y. T. J. Mater. Chem. A 2016, 4, 14342. doi: 10.1039/c6ta05080h  doi: 10.1039/c6ta05080h

    7. [7]

      Li, J.; Yuan, X.; Liu, S.; He, Z.; Zhou, Z.; Li, A. ACS Appl. Mater. Interfaces 2017, 9, 32643. doi: 10.1021/acsami.7b07437  doi: 10.1021/acsami.7b07437

    8. [8]

      Lin, C.; Yang, M.; Wei, H. J. Power Sources 2015, 282, 562. doi: 10.1016/j.jpowsour.2015.02.102  doi: 10.1016/j.jpowsour.2015.02.102

    9. [9]

      Li, Q.; Jensen, J. O.; Savinell, R. F.; Bjerrum, N. J. Prog. Polym. Sci. 2009, 34, 449. doi: 10.1016/j.progpolymsci.2008.12.003  doi: 10.1016/j.progpolymsci.2008.12.003

    10. [10]

      Zhang, H.; Shen, P. K. Chem. Rev. 2012, 112, 2780. doi: 10.1021/cr200035s  doi: 10.1021/cr200035s

    11. [11]

      Bose, S.; Kuila, T.; Nguyen, T. X. H.; Kim, N. H.; Lau, K.; Lee, J. H. Prog. Polym. Sci. 2011, 36, 813. doi: 10.1016/j.progpolymsci.2011.01.003  doi: 10.1016/j.progpolymsci.2011.01.003

    12. [12]

      Winoto, H. P.; Fikri, Z. A.; Ha, J.; Park, Y.; Lee, H.; Suh, D. J.; Jae, J. Appl. Catal. B 2019, 241, 588. doi: 10.1016/j.apcatb.2018.09.031  doi: 10.1016/j.apcatb.2018.09.031

    13. [13]

      Abdul Aziz, M.; Oh, K.; Shanmugam, S. Chem. Commun. 2017, 53, 917. doi: 10.1039/c6cc08855d  doi: 10.1039/c6cc08855d

    14. [14]

      Kim, Y.; Shanmugam, S. ACS Appl. Mater. Interfaces 2013, 5, 12197. doi: 10.1021/am4043245  doi: 10.1021/am4043245

    15. [15]

      Lu, S.; Xu, X.; Zhang, J.; Peng, S.; Liang, D.; Wang, H.; Xiang, Y. Adv. Energy Mater. 2014, 4, 1400842. doi: 10.1002/aenm.201400842  doi: 10.1002/aenm.201400842

    16. [16]

      Martínez-Morlanes, M. J.; Martos, A. M.; Várez, A.; Levenfeld, B. J. Membr. Sci. 2015, 492, 371. doi: 10.1016/j.memsci.2015.05.031  doi: 10.1016/j.memsci.2015.05.031

    17. [17]

      Kim, Y.; Ketpang, K.; Jaritphun, S.; Park J. S.; Shanmugam, S. J. Mater. Chem. A 2015, 3, 8148. doi: 10.1039/c5ta00182j  doi: 10.1039/c5ta00182j

    18. [18]

      Leroux, F.; Taviot-Guého, C. J. Mater. Chem. 2005, 15, 3628. doi: 10.1039/b505014f  doi: 10.1039/b505014f

    19. [19]

      Lu, K.; Lin, Y.; Lu, H.; Ho, Y.; Weng, S.; Tsai, M.; Mi, F. Carbohyd. Polym. 2019, 206, 664. doi: 10.1016/j.carbpol.2018.11.050  doi: 10.1016/j.carbpol.2018.11.050

    20. [20]

      Mai, Z.; Zhang, H.; Li, X.; Xiao S.; Zhang, H. J. Power Sources 2011, 196, 5737. doi: 10.1016/j.jpowsour.2011.02.048  doi: 10.1016/j.jpowsour.2011.02.048

    21. [21]

      Liu, F.; Yi, B.; Xing, D.; Yu. J.; Zhang, H. J. Membr. Sci. 2003, 212, 213. doi: 10.1016/j.memsci.2013.09.024  doi: 10.1016/j.memsci.2013.09.024

    22. [22]

      Kim, S.; Yuk, S.; Kim, H. G.; Choi, C.; Kim, R.; Lee, J. Y.; Hong, Y. T.; Kim, H. T. J. Mater. Chem. A 2017, 5, 17279. doi: 10.1039/c7ta02921g  doi: 10.1039/c7ta02921g

    23. [23]

      Aziz, M. A.; Shanmugam, S. J. Mater. Chem. A 2017, 5, 16663. doi: 10.1039/c7ta05155g  doi: 10.1039/c7ta05155g

    24. [24]

      Zhao, Q.; Wei, Y.; Ni, C.; Wang, L.; Liu, B.; Liu, J.; Zhang, M.; Men, Y.; Sun, Z.; Xie, H.; et al. Appl. Surf. Sci. 2019, 466, 691. doi: 10.1016/j.apsusc.2018.10.063  doi: 10.1016/j.apsusc.2018.10.063

    25. [25]

      Agudelo, N. A.; Palacio, J.; López, B. L. J. Mater. Sci. 2019, 54, 4135. doi: 10.1007/s10853-018-3115-5  doi: 10.1007/s10853-018-3115-5

    26. [26]

      Abouzari-lotf, E.; Nasef, M. M.; Ghassemi, H.; Zakeri, M.; Ahmad, A.; Abdollahi, Y. ACS Appl. Mater. Interfaces 2015, 7, 17008. doi: 10.1021/acsami.5b02268  doi: 10.1021/acsami.5b02268

    27. [27]

      Li, Z.; Dai, W.; Yu, L.; Liu, L.; Xi, J.; Qiu, X.; Chen, L. ACS Appl. Mater. Interfaces 2014, 6, 18885. doi: 10.1021/acsami.5b02268  doi: 10.1021/acsami.5b02268

    28. [28]

      Zheng, L.; Wang, H.; Niu, R.; Zhang, Y.; Shi, H. Electrochim. Acta 2018, 282, 437. doi: 10.1016/j.electacta.2018.06.083  doi: 10.1016/j.electacta.2018.06.083

  • 加载中
    1. [1]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    2. [2]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    3. [3]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    4. [4]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    5. [5]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    6. [6]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    7. [7]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    8. [8]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    9. [9]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    10. [10]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    11. [11]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    12. [12]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    13. [13]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    14. [14]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    15. [15]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    16. [16]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    17. [17]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    18. [18]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    19. [19]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    20. [20]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

Metrics
  • PDF Downloads(10)
  • Abstract views(1191)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return