Citation: Chen Guanghai, Bai Ying, Gao Yongsheng, Wu Feng, Wu Chuan. Chalcogenide Electrolytes for All-Solid-State Sodium Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2020, 36(5): 190500. doi: 10.3866/PKU.WHXB201905009 shu

Chalcogenide Electrolytes for All-Solid-State Sodium Ion Batteries

  • Corresponding author: Wu Chuan, chuanwu@bit.edu.cn
  • Received Date: 2 May 2019
    Revised Date: 4 June 2019
    Accepted Date: 17 June 2019
    Available Online: 24 May 2019

    Fund Project: the Beijing Natural Science Foundation-Haidian Original Innovation Collaborative Fund, China L182056The project was supported by the National Basic Research Program of China (2015CB251100) and the Beijing Natural Science Foundation-Haidian Original Innovation Collaborative Fund, China (L182056)the National Basic Research Program of China 2015CB251100

  • All-solid-state sodium ion batteries (ASIBs) are important for future large-scale energy storage applications. ASIBs have come to occupy an important position in research on advanced secondary batteries in recent years owing to their advantages of abundance in resources, low cost, long lifetime, and high safety. As the key to the success of ASIBs, solid-state electrolytes such as polymers, oxide ceramics, and sulfide glass-ceramics have always attracted immense interest. Chalcogenide electrolytes for ASIBs have high room-temperature conductivity, high elastic modulus, and can be easily pressed into a mold at room temperature; hence, they are the research focus in ASIBs. This paper summarized recent studies on the structure and properties of chalcogenide electrolytes for ASIBs. These studies demonstrate the relationship between the phase structure and ionic conductivity of sulfide-based electrolytes and selenide-based electrolytes. Besides, arguments that the sodium vacancy in the crystal structure dominates ionic conduction, and creating a sodium vacancy via cation substitution is the principal strategy to increasing ionic conduction, are discussed. Further, the intrinsic chemical stability and interface stability between the electrode and electrolyte are highlighted. Based on the soft and hard acid and base theory, some studies adopted various anion/cation ion substitution strategies to improve the chemical stability of chalcogenide electrolytes in humid air. Particularly, the inconsistency in the electrochemical stability window of a representative chalcogenide electrode, Na3PS4, as measured by a semi-blocking electrode and calculated by first-principles, is compared. Additionally, to develop all-solid-state Na-S and Na-O2 batteries with high capacity, the nonnegligible interface instability of the sulfide electrode against the sodium metal anode and feasible solutions are summarized. Next, the research progress on ASIBs using chalcogenide electrolytes is reviewed. Chalcogenide electrolytes are restricted by the electrochemical stability window and chemical compatibility with electrode materials; hence, they are expected to only be applicable to ASIBs using sulfur, sulfide, and organic matter as the cathode and Na-Sn alloy as the anode. However, these ASIBs have long cycling life (> 500 cycles), illustrating their potential applications in large-scale energy storage power stations. Finally, we comprehensively evaluate the ionic conductivity, stability against humid air, stability of the interface, electrochemical stability window, and ease of preparation of typical chalcogenide electrolytes, including Na3PS4, Na3PSe4, Na3SbS4, Na3SbSe4, Na10SnPS12, and Na11Sn2PS12. Moreover, we highlight the challenges and propose possible solutions toward the development of chalcogenide electrolytes in future. Advanced technologies in fine synthesis, in situ characterization, and surface/interface modification are essential to overcome existing challenges and promote the development of chalcogenide-electrolyte-based ASIBs.
  • 加载中
    1. [1]

      Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334, 928. doi: 10.1126/science.1212741  doi: 10.1126/science.1212741

    2. [2]

      Pan, H.; Hu, Y. S.; Chen, L. Q. Energy Environ Sci. 2013, 6, 2338. doi: 10.1039/c3ee40847g  doi: 10.1039/c3ee40847g

    3. [3]

      Yang, Z.; Zhang, W.; Shen, Y.; Yuan, L. X.; Huang, Y. H. Acta Phys. -Chim. Sin. 2016, 32 (5), 1062.  doi: 10.3866/PKU.WHXB201603231

    4. [4]

      Zuo, X.; Cai, F.; Liu, X. M.; Yang, H.; Shen, X. D. Acta Phys. -Chim. Sin. 2013, 29 (1), 64.  doi: 10.3866/PKU.WHXB201211023

    5. [5]

      Ma, Q.; Hu, Y. S.; Li, H.; Chen, L. Q.; Huang, X. J.; Zhou, Z. B. Acta Phys. -Chim. Sin. 2018, 34 (2), 213.  doi: 10.3866/PKU.WHXB201707172

    6. [6]

      Tel'nova, G. B.; Solntsev, K. A. Inorg. Mater. 2015, 51, 305. doi: 10.1134/S0020168515030176  doi: 10.1134/S0020168515030176

    7. [7]

      Noguchi, Y.; Kobayashi, E.; Plashnitsa, L. S.; Okada, S.; Yamaki, J. I. Electrochim Acta 2013, 101, 59. doi: 10.1016/j.electacta.2012.11.038  doi: 10.1016/j.electacta.2012.11.038

    8. [8]

      Santhanagopalan, D.; Qian, D.; McGilvray, T.; Wang, Z.; Wang, F.; Camino, F.; Graetz, J.; Dudney, N.; Meng, Y. S. J. Phys. Chem. Lett. 2014, 5, 298. doi: 10.1021/jz402467x  doi: 10.1021/jz402467x

    9. [9]

      Wang, Y.; Zhong, W. H. ChemElectroChem 2015, 2, 22. doi: 10.1002/celc.201402277  doi: 10.1002/celc.201402277

    10. [10]

      Nam, Y. J.; Cho, S. J.; Oh, D. Y.; Lim, J. M.; Kim, S. Y.; Song, J. H.; Lee, Y. G.; Lee, S. Y.; Jung, Y. S. Nano Lett. 2015, 15, 3317. doi: 10.1021/acs.nanolett.5b00538  doi: 10.1021/acs.nanolett.5b00538

    11. [11]

      Park, K. H.; Oh, D. Y.; Choi, Y. E.; Nam, Y. J.; Han, L.; Kim, J. Y.; Xin, H. Lin, F.; Oh, S. M.; Jung, Y. S. Adv Mater. 2016, 28, 1874. doi: 10.1002/adma.201505008  doi: 10.1002/adma.201505008

    12. [12]

      Seino, Y.; Ota, T.; Takada, K.; Hayashi, A.; Tatsumisago, M. Energy Environ. Sci. 2014, 7, 627. doi: 10.1039/c3ee41655k  doi: 10.1039/c3ee41655k

    13. [13]

      Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K.; et al. Nat. Mater. 2011, 10, 682. doi: 10.1038/NMAT3066  doi: 10.1038/NMAT3066

    14. [14]

      Jansen, M.; Henseler, U. J. Solid State Chem. 1992, 99, 110. doi: 10.1016/0022-4596(92)90295-7  doi: 10.1016/0022-4596(92)90295-7

    15. [15]

      Hayashi, A.; Noi, K.; Sakuda, A.; Tatsumisago, M. Nat. Commun. 2012, 3, 1. doi: 10.1038/ncomms1843  doi: 10.1038/ncomms1843

    16. [16]

      Zhu, Z.Y.; Chu, I. H.; Deng, Z.; Ong, S. P. Chem. Mater. 2015, 27, 8318. doi: 10.1021/acs.chemmater.5b03656  doi: 10.1021/acs.chemmater.5b03656

    17. [17]

      Chu, I. H.; Kompella, C. S.; Nguyen, H.; Zhu, Z.; Hy, S.; Deng, Z.; Meng, Y. S.; Ong, S. P. Sci. Rep. 2016, 6, 33733. doi: 10.1038/srep33733  doi: 10.1038/srep33733

    18. [18]

      de Klerk N. J. J.; Wagemaker, M. Chem. Mater. 2016, 28, 3122. doi: 10.1021/acs.chemmater.6b00698  doi: 10.1021/acs.chemmater.6b00698

    19. [19]

      Noi, K.; Hayashi, A.; Tatsumisago, M. J. Power Sources 2014, 269, 260. doi: 0.1016/j.jpowsour.2014.06.158  doi: 10.1016/j.jpowsour.2014.06.158

    20. [20]

      Yu, C.; Ganapathy, S.; de Klerk, N. J. J.; van Eck, E. R. H.; Wagemaker, M. J. Mater. Chem. A 2016, 4, 15095. doi: 10.1039/c6ta05896e  doi: 10.1039/c6ta05896e

    21. [21]

      Hayashi, A.; Noi, K.; Tanibata, N.; Nagao, M.; Tatsumisago, M. J. Power Sources 2014, 258, 420. doi: 10.1016/j.jpowsour.2014.02.054  doi: 10.1016/j.jpowsour.2014.02.054

    22. [22]

      Takeuchi, S.; Suzuki, K.; Hirayama, M.; Kanno, R. J. Solid State Chem. 2018, 265, 353. doi: 10.1016/j.jssc.2018.06.023  doi: 10.1016/j.jssc.2018.06.023

    23. [23]

      Rao, R. P.; Chen, H.; Wong, L. L.; Adams, S. J. Mater. Chem. A 2017, 5, 3377. doi: 10.1039/c6ta09809f  doi: 10.1039/c6ta09809f

    24. [24]

      Ponrouch, A.; Marchante, E.; Courty, M.; Tarascon, J. M.; Palacín, M. R. Energy Environ. Sci. 2012, 5, 8572. doi: 10.1039/c2ee22258b  doi: 10.1039/c2ee22258b

    25. [25]

      Yu, Z. X.; Shang, S. L.; Seo, J. H.; Wang, D.; Luo, X.; Huang, Q.; Chen, S.; Lu, J.; Li, X.; Liu, Z. K.; et al. Adv Mater. 2017, 29, 16. doi: 10.1002/adma.201605561  doi: 10.1002/adma.201605561

    26. [26]

      Krebs, B. Angew. Chem. Int. Ed. Engl.1983, 22, 113. doi: 10.1002/anie.198301131|  doi: 10.1002/anie.198301131|

    27. [27]

      Kanno, R.; Murayama, M. J. Electrochem. Soc. 2001, 148, A742. doi: 10.1149/1.1379028  doi: 10.1149/1.1379028

    28. [28]

      Tanibata, N.; Noi, K.; Hayashi, A; Tatsumisago, M. RSC Adv. 2014, 4, 17120. doi: 10.1039/c4ra00996g  doi: 10.1039/c4ra00996g

    29. [29]

      Tanibata, N.; Noi, K.; Hayashi, A; Kitamura, N.; Idemoto, Y.; Tatsumisago, M. ChemElectroChem 2014, 1, 1130. doi: 10.1002/celc.201402016  doi: 10.1002/celc.201402016

    30. [30]

      Zhang, L.; Zhang, D.; Yang, K.; Yan, X.; Wang, L.; Mi, J.; Xu, B.; Li, Y. Adv. Sci. 2016, 1600089. doi: 10.1002/advs.201600089  doi: 10.1002/advs.201600089

    31. [31]

      Graf, V. H. A.; Schafer, H.; Z. Anorg. Allg. Chem. 1976, 425, 67.  doi: 10.1002/zaac.19764250109

    32. [32]

      Wang, Y.; Richards, W. D.; Ong, S. P.; Miara, L. J.; Kim, J. C.; Mo, Y. F.; Ceder, G. Nat. Mater. 2015, 14, 1026. doi: 10.1038/NMAT4369  doi: 10.1038/NMAT4369

    33. [33]

      Zhang, D.; Cao, X.; Xu, D.; Wang, N.; Yu, C.; Hu, W.; Yan, X.; Mi, J.; Wen, B.; Wang, L.; et al. Electrochim. Acta 2018, 259, 100. doi: 10.1016/j.electacta.2017.10.173  doi: 10.1016/j.electacta.2017.10.173

    34. [34]

      Mikenda, A. Preisinger. W. Spectrochim. Acta Part A: Mol. Spectroscopy 1980, 36, 365. doi: 10.1016/0584-8539(80)80145-0  doi: 10.1016/0584-8539(80)80145-0

    35. [35]

      Wang, H.; Chen, Y.; Hood, Z. D.; Sahu, G.; Pandian, A. S.; Keum, J. K.; An, K.; Liang, C. D. Angew Chem. Int. Ed. 2016, 55, 1. doi: 10.1002/anie.201601546  doi: 10.1002/anie.201601546

    36. [36]

      Zhang, D. C.; Cao, X. T.; Xu, D.; Wang, N.; Yu, C.; Hu, W. T.; Yan, X. L.; Mi, J. L.; Wen, B.; Wang, L. M.; et al. Electrochim. Acta 2018, 259, 100. doi: 10.1016/j.electacta.2017.10.173  doi: 10.1016/j.electacta.2017.10.173

    37. [37]

      Heo, J. W.; Banerjee, A.; Park, K. H.; Jung, Y. S.; Hong, S. T. Adv. Energy Mater. 2018, 8, 1702716. doi: 10.1002/aenm.201702716  doi: 10.1002/aenm.201702716

    38. [38]

      Maier, J. Nat. Mater. 2005, 4, 805. doi: 10.1038/nmat1513  doi: 10.1038/nmat1513

    39. [39]

      Jia, H. H.; Sun, Y. L.; Zhang, Z. R.; Peng, L. F.; An, T.; Xie, J. Energy Storage Mater. 2019, in press, doi: 10.1016/j.ensm.2019.04.011  doi: 10.1016/j.ensm.2019.04.011

    40. [40]

      Ong, S. P.; Mo, Y. F.; Richards, W. D.; Miara, L.; Lee, H. S.; Ceder, G. Energy Environ. Sci. 2013, 6, 148. doi: 10.1039/c2ee23355j  doi: 10.1039/c2ee23355j

    41. [41]

      Zhang, L.; Yang, K.; Mi, J.; Lu, L.; Zhao, L.; Wang, L.; Li, Y.; Zeng, H. Adv. Energy Mater. 2015, 5, 1501294. doi: 10.1002/aenm.201501294  doi: 10.1002/aenm.201501294

    42. [42]

      Bo, S. H.; Wang, Y.; Kim, J. C.; Richards, W. D.; Ceder, G. Chem. Mat. 2016, 28, 252. doi: 10.1021/acs.chemmater.5b04013  doi: 10.1021/acs.chemmater.5b04013

    43. [43]

      Bo, S. H.; Wang, Y.; Ceder, G. J. Mater. Chem. A 2016, 4, 9044. doi: 10.1039/c6ta03027k  doi: 10.1039/c6ta03027k

    44. [44]

      Wang, N.; Yang, K.; Zhang, L.; Yan, X.; Wang, L.; Xu, B. J. Mater. Sci. 2017, 53, 1987. doi: 10.1007/s10853-017-1618-0  doi: 10.1007/s10853-017-1618-0

    45. [45]

      Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R. Nat. Energy, 2016, 1, 16030. doi: 10.1038/nenergy.2016.30  doi: 10.1038/nenergy.2016.30

    46. [46]

      Kandagal, V. S.; Bharadwaj, M. D.; Waghmare, U. V. J. Mater. Chem. A 2015, 3, 12992. doi: 10.1039/c5ta01616a  doi: 10.1039/c5ta01616a

    47. [47]

      Richards, W. D.; Tsujimura, T.; Miara, L. J.; Wang, Y.; Kim, J. C.; Ong, S. P.; Uechi, I.; Suzuki, N.; Ceder, G. Nat. Commun. 2016, 7, 11009. doi: 10.1038/ncomms11009  doi: 10.1038/ncomms11009

    48. [48]

      Kandagal, V. S.; Bharadwaj, M. D.; Waghmare, U. V. J. Mater. Chem. A 2015, 3, 12992. doi: 10.1039/c5ta01616a  doi: 10.1039/c5ta01616a

    49. [49]

      Tsuji, F.; Tanibata, N.; Sakuda, A.; Hayashi, A.; Tasumisago, M. Chem. Lett. 2018, 47, 13. doi: 10.1246/cl.170836  doi: 10.1246/cl.170836

    50. [50]

      Zhang, Z.; Ramos, E.; Lalère, F.; Assoud, A.; Kaup, K.; Hartman, P.; Nazar, L. F. Energy Environ. Sci. 2018, 11, 87. doi: 10.1039/c7ee03083e  doi: 10.1039/c7ee03083e

    51. [51]

      Kuhn, A.; Kohler, J.; Lotsch, B. V. Phys. Chem. Chem. Phys. 2013, 15, 11620. doi: 10.1039/c3cp51985f  doi: 10.1039/c3cp51985f

    52. [52]

      Kuhn, A.; Gerbig, O.; Zhu, C.; Falkenberg, F.; Maier, J.; Lotsch, B. V. Phys. Chem. Chem. Phys. 2014, 16, 14669. doi: 10.1039/c4cp02046d  doi: 10.1039/c4cp02046d

    53. [53]

      Duchardt, M.; Ruschewitz, U.; Adams, S.; Dehnen, S.; Roling, B. Angew. Chem. Int. Ed. 2018, 57, 1351. doi: 10.1002/ange.201712769  doi: 10.1002/ange.201712769

    54. [54]

      Ramos, E. P.; Zhang, Z. Z.; Assoud, A.; Kaup, K.; Lalere, F.; Nazar, L. F. Chem. Mater. 2018, 30, 7413. doi: 10.1021/acs.chemmater.8b02077  doi: 10.1021/acs.chemmater.8b02077

    55. [55]

      Yu, Z.; Shang, S. L.; Gao, Y.; Wang, D.; Li, X.; Liu, Z. K.; Wang, D. H. Nano Energy 2018, 47, 325. doi: 10.1016/j.nanoen.2018.01.046  doi: 10.1016/j.nanoen.2018.01.046

    56. [56]

      Yu, Z. X.; Shang, S. L.; Wang, D. W.; Li, Y. C.; Yennawar, H. P.; Li, G. X.; Huang, H.; Gao, Y.; Mallouk, T. E.; Liu, Z. K.; et al. Energy Storage Mater. 2019, 17, 70. doi: 10.1016/j.ensm.2018.11.027  doi: 10.1016/j.ensm.2018.11.027

    57. [57]

      Wang, Y.; Richards, W. D.; Bo, S. H.; Miara, L. J.; Ceder, G. Chem. Mat. 2017, 29, 7475. doi: 10.1021/acs.chemmater.7b02476  doi: 10.1021/acs.chemmater.7b02476

    58. [58]

      Han, F. D.; Westover, A. S.; Yue, J.; Fan, X. L.; Wang, F.; Chi, M. F.; Leonard, D. N.; Dudney, N. J.; Wang, H.; Wang, C. S. Nat. Energy 2019, 4, 187. doi: 10.1038/s41560-018-0312-z  doi: 10.1038/s41560-018-0312-z

    59. [59]

      Banerjee, A.; Park, K. H.; Heo, J. W.; Nam, Y. J.; Moon, C. K.; Oh, S. M.; Hong, S. T.; Jung, Y. S. Angew. Chem. Int. Ed. 2016, 55, 9634. doi: 10.1002/anie.201604158  doi: 10.1002/anie.201604158

    60. [60]

      Kim, T. W.; Park, K. H.; Choi, Y. E.; Lee, J. Y.; Jung, Y. S. J. Mater. Chem. A 2018, 6, 840. doi: 10.1039/C7TA09242C  doi: 10.1039/C7TA09242C

    61. [61]

      Moon, C. K.; Lee, H. J.; Park, K. H.; Kwak, H.; Heo, J. W.; Choi, K.; Yang, H.; Kim, M. S.; Hong, S. T.; Lee, J. H.; et al. ACS Energy Lett. 2018, 3, 2504. doi: 10.1021/acsenergylett.8b01479  doi: 10.1021/acsenergylett.8b01479

    62. [62]

      Hibi, Y.; Tanibata, N.; Hayashi, A.; Tatsumisago, M. Solid State Ion. 2015, 270, 6. doi: 10.1016/j.ssi.2014.11.024  doi: 10.1016/j.ssi.2014.11.024

    63. [63]

      Takada, K. Acta Mater. 2013, 61, 759. doi: 10.1016/j.actamat.2012.10.034  doi: 10.1016/j.actamat.2012.10.034

    64. [64]

      Sahu, G.; Lin, Z.; Li, J.; Liu, Z.; Dudney, N.; Liang, C. D. Energy Environ. Sci. 2014, 7, 1053. doi: 10.1039/c3ee43357a  doi: 10.1039/c3ee43357a

    65. [65]

      Shang, S. L.; Yu, Z.; Wang, Y.; Wang, D.; Liu, Z. K. ACS Appl. Mater. Interfaces 2017, 9, 16261. doi: 10.1021/acsami.7b03606  doi: 10.1021/acsami.7b03606

    66. [66]

      Han, F.; Gao, T.; Zhu, Y.; Gaskell, K. J.; Wang, C.S. Adv Mater. 2015, 27, 3473. doi: 10.1002/adma.201500180  doi: 10.1002/adma.201500180

    67. [67]

      Tian, Y. S.; Shi, T.; Richards, W. D.; Li, J.; Kim, J. C.; Bo, S. H.; Ceder, G. Energy Environ. Sci. 2017, 10, 1150. doi: 10.1039/c7ee00534b  doi: 10.1039/c7ee00534b

    68. [68]

      Han, F.; Zhu, Y.; He, X.; Mo, Y. F.; Wang, C. S. Adv. Energy Mater. 2016, 6, 1501590. doi: 10.1002/aenm.201501590  doi: 10.1002/aenm.201501590

    69. [69]

      Takada, K.; Ohta, N.; Zhang, L.; Xu, X.; Hang, B. T.; Ohnishi, T.; Osada, M.; Sasaki, T. Solid State Ion. 2012, 225, 594. doi: 10.1016/j.ssi.2012.01.009  doi: 10.1016/j.ssi.2012.01.009

    70. [70]

      Hartmann, P.; Bender, C. L.; Vracar, M.; Durr, A. K.; Garsuch, A.; Janek, J.; Adelhelm, P. Nat. Mater. 2013, 12, 228. doi: 10.1038/NMAT3486  doi: 10.1038/NMAT3486

    71. [71]

      Das, S. K.; Lau, S.; Archer, L. A. J. Mater. Chem. A 2014, 2, 12623. doi: 10.1039/c4ta02176b  doi: 10.1039/c4ta02176b

    72. [72]

      Manthiram, A.; Yu, X. W. Small 2015, 11, 2108. doi: 10.1002/smll.201403257  doi: 10.1002/smll.201403257

    73. [73]

      Yu, X. W.; Manthiram, A. Adv. Energy Mater. 2015, 5, 1500350. doi: 10.1002/aenm.201500350  doi: 10.1002/aenm.201500350

    74. [74]

      Wei, S.; Xu, S.; Agrawral, A.; Choudhury, S.; Lu, Y.; Tu, Z.; Ma, L.; Archer, L. A. Nat. Commun. 2016, 7, 11722. doi: 10.1038/ncomms11722  doi: 10.1038/ncomms11722

    75. [75]

      Wu, F.; Liu, L.; Yuan, Y. F.; Li, Y.; Bai, Y.; Lu, J.; Wu, C. ACS Appl. Mater. Interfaces 2018, 10, 32, 27030. doi: 10.1021/acsami.8b08380  doi: 10.1021/acsami.8b08380

    76. [76]

      Li, Y.; Yuan, Y. F.; Bai, Y.; Liu, Y. C.; Wang, Z. H.; Li, L. M.; Wu, F.; Khalil, A.; Wu, C.; Lu, J. Adv. Energy Mater. 2018, 25, 1702781. doi: 10.1002/aenm.201702781  doi: 10.1002/aenm.201702781

    77. [77]

      Chen, G. H.; Bai, Y.; Li, H.; Li, Y.; Wang, Z. H.; Ni, Q.; Liu, L.; Wu, F.; Yao, Y. G.; Wu, C. ACS Appl. Mater. Interfaces 2017, 9, 8, 6666. doi: 10.1021/acsami.6b16186  doi: 10.1021/acsami.6b16186

    78. [78]

      Luo, W.; Hu, L. B. ACS Cent. Sci. 2015, 1, 420. doi: 10.1021/acscentsci.5b00357  doi: 10.1021/acscentsci.5b00357

    79. [79]

      Seh, Z. W.; Sun, J.; Sun, Y.; Cui, Y. ACS Cent. Sci. 2015, 1, 449. doi: 10.1021/acscentsci.5b00328  doi: 10.1021/acscentsci.5b00328

    80. [80]

      Luo, W.; Lin, C. F.; Zhao, O.; Noked, M.; Zhang, Y.; Rubloff, G. W.; Hu, L. B. Adv. Energy Mater. 2016, 6, 1601526. doi: 10.1002/aenm.201601526  doi: 10.1002/aenm.201601526

    81. [81]

      Bertheville, B.; LowH.Bill, D.F.; Kubel, F. J. Phys. Chem. Solids 1997, 58, 1569. doi: 10.1016/S0022-3697(97)00101-7  doi: 10.1016/S0022-3697(97)00101-7

    82. [82]

      Yu, X. F.; Giorgi, G.; Ushiyama, H.; Yamashita, K. Chem. Phys. Lett. 2014, 612, 129. doi: 10.1016/j.cplett.2014.08.010  doi: 10.1016/j.cplett.2014.08.010

    83. [83]

      Wenzel, S.; Leichtweiss, T.; Krüger, D.; Sann, J.; Janek, J. Solid State Ion. 2015, 278, 98. doi: 10.1016/j.ssi.2015.06.001  doi: 10.1016/j.ssi.2015.06.001

    84. [84]

      Wu, E. A.; Kompella, C. S.; Zhu, Z.; Lee, J. Z.; Lee, S. C.; Chu, I. H.; Nguyen, H.; Ong, S. P.; Banerjee, A.; Meng, Y. S. ACS Appl. Mater. Interfaces 2018, 10, 12. doi: 10.1021/acsami.7b19037  doi: 10.1021/acsami.7b19037

    85. [85]

      Hartmann, P.; Leichtweiss, T.; Busche, M. R.; Schneider, M.; Reich, M.; Sann, J.; Adelhelm, P.; Janek, J. J. Phys. Chem. C 2013, 117, 21064. doi: 10.1021/jp4051275  doi: 10.1021/jp4051275

    86. [86]

      Hu, P.; Zhang, Y.; Chi, X.; Kumar Rao, K.; Hao, F.; Dong, H.; Guo, F.; Ren, Y.; Grabow, L. C.; Yao, Y. ACS Appl. Mater. Interfaces 2019, 11, 9672. doi: 10.1021/acsami.8b19984  doi: 10.1021/acsami.8b19984

    87. [87]

      Tian, Y.; Sun, Y.; Hannah, D. C.; Xiao, Y.; Liu, H.; Chapman, K. W.; Bo, S. H.; Ceder, G. Joule 2019, 3, 1. doi: 10.1016/j.joule.2018.12.019  doi: 10.1016/j.joule.2018.12.019

    88. [88]

      Kim, J. K.; Lim, Y. J.; Kim, H. J.; Cho, G. B.; Kim, Y. Energy Environ. Sci. 2015, 8, 3589. doi: 10.1016/j.joule.2018.12.019  doi: 10.1016/j.joule.2018.12.019

    89. [89]

      Li, H.; Bai, Y.; Wu, F.; Li, Y.; Wu, C. J. Power Sources 2015, 273, 784. doi: 10.1016/j.jpowsour.2014.09.153  doi: 10.1016/j.jpowsour.2014.09.153

    90. [90]

      Li, H.; Yu, X.; Bai, Y.; Wu, F.; Wu, C.; Liu, L. Y.; Yang, X. Q. J. Mater. Chem. A 2015, 3, 9578. doi: 10.1039/c5ta00277j  doi: 10.1039/c5ta00277j

    91. [91]

      Li, H.; Wu, C.; Bai, Y.; Wu, F.; Wang, M. Z. J. Power Sources 2016, 326, 14. doi: 10.1016/j.jpowsour.2016.06.096  doi: 10.1016/j.jpowsour.2016.06.096

    92. [92]

      Zhang, Z.; Zhang, Q.; Shi, J.; Chu, Y. S.; Yu, X.; Xu, K.; Ge, M.; Yan, H.; Li, W.; Gu, L.; et al. Adv. Energy Mater. 2017, 7, 1601196. doi: 10.1002/aenm.201601196  doi: 10.1002/aenm.201601196

    93. [93]

      Ni, Q.; Bai, Y.; Li, Y.; Ling, L. M.; Li, L.; Chen, G. H.; Wang, Z. H.; Ren, H. X.; Wu, F.; Wu, C. Small 2018, 14, 1702864. doi: 10.1002/smll.201702864  doi: 10.1002/smll.201702864

    94. [94]

      Ni'mah, Y. L.; Cheng, M. Y.; Cheng, J. H.; Rick, J.; Hwang, B. J. J. Power Sources. 2015, 278, 375. doi: 10.1016/j.jpowsour.2014.11.047  doi: 10.1016/j.jpowsour.2014.11.047

    95. [95]

      Tatsumisago, M.; Hayashi, A. Int. J. Appl. Glass Sci. 2014, 5, 226. doi: 10.1111/ijag.12084  doi: 10.1111/ijag.12084

    96. [96]

      Wan, H.; Mwizerwa, J. P.; Qi, X.; Liu, X.; Xu, X.; Li, H.; Hu, Y. S.; Yao, X. Y. ACS Nano 2018, 12, 2809. doi: 10.1021/acsnano.8b00073  doi: 10.1021/acsnano.8b00073

    97. [97]

      Tanibata, N.; Deguchi, M.; Hayashi, A.; Tatsumisago, M. Chem. Mat. 2017, 29, 5232. doi: 10.1021/acs.chemmater.7b01116  doi: 10.1021/acs.chemmater.7b01116

    98. [98]

      Tanibata, N.; Tsukasaki, H.; Deguchi, M.; Mori, S.; Hayashi, A.; Tatsumisago, M. Solid State Ion. 2017, 311, 6. doi: 10.1016/j.ssi.2017.08.022  doi: 10.1016/j.ssi.2017.08.022

    99. [99]

      Yue, J.; Han, F. D.; Fan, X. L.; Zhu, X. Y.; Ma, Z. H.; Yang, J.; Wang, C. S. ACS Nano 2017, 11, 4885. doi: 10.1021/acsnano.7b01445  doi: 10.1021/acsnano.7b01445

    100. [100]

      Chi, X. W.; Liang, Y. L.; Hao, F.; Zhang, Y.; Whiteley, J.; Dong, H.; Hu, P.; Lee, S.; Yao, Y. Angew Chem. Int. Ed. 2018, 57, 2630. doi: 10.1002/anie.201712895  doi: 10.1002/anie.201712895

    101. [101]

      Sakuda, A.; Hayashi, A.; Tatsumisago, M. Sci. Rep. 2013, 3, 2261. doi: 10.1038/srep02261  doi: 10.1038/srep02261

    102. [102]

      Minami, T.; Hayashi, A.; Tatsumisago, M. Solid State Ion. 2006, 177, 2715. doi: 10.1016/j.ssi.2006.07.017  doi: 10.1016/j.ssi.2006.07.017

    103. [103]

      Nagao, M.; Hayashi, A.; Tatsumisago, M. Electrochimica Acta 2011, 56, 6055. doi: 10.1016/j.electacta.2011.04.084  doi: 10.1016/j.electacta.2011.04.084

    104. [104]

      Noi, K.; Nagata, Y.; Hakari, T.; Suzuki, K.; Yubuchi, S.; Ito, Y.; Sakuda, A.; Hayashi, A.; Tatsumisago, M. ACS Appl. Mater. Interfaces 2018, 10, 19605. doi: 10.1021/acsami.8b02427  doi: 10.1021/acsami.8b02427

    105. [105]

      Yue, J.; Zhu, X. Y.; Han, F. D.; Fan, X. L.; Wang, L. N.; Yang, J.; Wang, C. S. ACS Appl. Mater. Interfaces 2018, 10, 39645. doi: 10.1021/acsami.8b12610  doi: 10.1021/acsami.8b12610

    106. [106]

      Wu, F.; Fitzhugh, W.; Ye, L. H.; Ning, J. X.; Li, X. Nat. Commun. 2018, 9, 4037. doi: 10.1038/s41467-018-06123-2  doi: 10.1038/s41467-018-06123-2

  • 加载中
    1. [1]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    2. [2]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    3. [3]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    4. [4]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    5. [5]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    6. [6]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    7. [7]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    8. [8]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    9. [9]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    10. [10]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    11. [11]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    12. [12]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    13. [13]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    14. [14]

      Yanhui Sun Junmin Nan Guozheng Ma Xiaoxi Zuo Guoliang Li Xiaoming Lin . Exploration and Teaching Practice of Ideological and Political Elements in Interface Physical Chemistry: Taking “Additional Pressure on Curved Surfaces” as an Teaching Example. University Chemistry, 2024, 39(11): 20-27. doi: 10.3866/PKU.DXHX202402023

    15. [15]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    16. [16]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    17. [17]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    18. [18]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    19. [19]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    20. [20]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

Metrics
  • PDF Downloads(24)
  • Abstract views(1305)
  • HTML views(281)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return