Chalcogenide Electrolytes for All-Solid-State Sodium Ion Batteries
- Corresponding author: Wu Chuan, chuanwu@bit.edu.cn
Citation: Chen Guanghai, Bai Ying, Gao Yongsheng, Wu Feng, Wu Chuan. Chalcogenide Electrolytes for All-Solid-State Sodium Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2020, 36(5): 190500. doi: 10.3866/PKU.WHXB201905009
Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334, 928. doi: 10.1126/science.1212741
doi: 10.1126/science.1212741
Pan, H.; Hu, Y. S.; Chen, L. Q. Energy Environ Sci. 2013, 6, 2338. doi: 10.1039/c3ee40847g
doi: 10.1039/c3ee40847g
Yang, Z.; Zhang, W.; Shen, Y.; Yuan, L. X.; Huang, Y. H. Acta Phys. -Chim. Sin. 2016, 32 (5), 1062.
doi: 10.3866/PKU.WHXB201603231
Zuo, X.; Cai, F.; Liu, X. M.; Yang, H.; Shen, X. D. Acta Phys. -Chim. Sin. 2013, 29 (1), 64.
doi: 10.3866/PKU.WHXB201211023
Ma, Q.; Hu, Y. S.; Li, H.; Chen, L. Q.; Huang, X. J.; Zhou, Z. B. Acta Phys. -Chim. Sin. 2018, 34 (2), 213.
doi: 10.3866/PKU.WHXB201707172
Tel'nova, G. B.; Solntsev, K. A. Inorg. Mater. 2015, 51, 305. doi: 10.1134/S0020168515030176
doi: 10.1134/S0020168515030176
Noguchi, Y.; Kobayashi, E.; Plashnitsa, L. S.; Okada, S.; Yamaki, J. I. Electrochim Acta 2013, 101, 59. doi: 10.1016/j.electacta.2012.11.038
doi: 10.1016/j.electacta.2012.11.038
Santhanagopalan, D.; Qian, D.; McGilvray, T.; Wang, Z.; Wang, F.; Camino, F.; Graetz, J.; Dudney, N.; Meng, Y. S. J. Phys. Chem. Lett. 2014, 5, 298. doi: 10.1021/jz402467x
doi: 10.1021/jz402467x
Wang, Y.; Zhong, W. H. ChemElectroChem 2015, 2, 22. doi: 10.1002/celc.201402277
doi: 10.1002/celc.201402277
Nam, Y. J.; Cho, S. J.; Oh, D. Y.; Lim, J. M.; Kim, S. Y.; Song, J. H.; Lee, Y. G.; Lee, S. Y.; Jung, Y. S. Nano Lett. 2015, 15, 3317. doi: 10.1021/acs.nanolett.5b00538
doi: 10.1021/acs.nanolett.5b00538
Park, K. H.; Oh, D. Y.; Choi, Y. E.; Nam, Y. J.; Han, L.; Kim, J. Y.; Xin, H. Lin, F.; Oh, S. M.; Jung, Y. S. Adv Mater. 2016, 28, 1874. doi: 10.1002/adma.201505008
doi: 10.1002/adma.201505008
Seino, Y.; Ota, T.; Takada, K.; Hayashi, A.; Tatsumisago, M. Energy Environ. Sci. 2014, 7, 627. doi: 10.1039/c3ee41655k
doi: 10.1039/c3ee41655k
Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K.; et al. Nat. Mater. 2011, 10, 682. doi: 10.1038/NMAT3066
doi: 10.1038/NMAT3066
Jansen, M.; Henseler, U. J. Solid State Chem. 1992, 99, 110. doi: 10.1016/0022-4596(92)90295-7
doi: 10.1016/0022-4596(92)90295-7
Hayashi, A.; Noi, K.; Sakuda, A.; Tatsumisago, M. Nat. Commun. 2012, 3, 1. doi: 10.1038/ncomms1843
doi: 10.1038/ncomms1843
Zhu, Z.Y.; Chu, I. H.; Deng, Z.; Ong, S. P. Chem. Mater. 2015, 27, 8318. doi: 10.1021/acs.chemmater.5b03656
doi: 10.1021/acs.chemmater.5b03656
Chu, I. H.; Kompella, C. S.; Nguyen, H.; Zhu, Z.; Hy, S.; Deng, Z.; Meng, Y. S.; Ong, S. P. Sci. Rep. 2016, 6, 33733. doi: 10.1038/srep33733
doi: 10.1038/srep33733
de Klerk N. J. J.; Wagemaker, M. Chem. Mater. 2016, 28, 3122. doi: 10.1021/acs.chemmater.6b00698
doi: 10.1021/acs.chemmater.6b00698
Noi, K.; Hayashi, A.; Tatsumisago, M. J. Power Sources 2014, 269, 260. doi: 0.1016/j.jpowsour.2014.06.158
doi: 10.1016/j.jpowsour.2014.06.158
Yu, C.; Ganapathy, S.; de Klerk, N. J. J.; van Eck, E. R. H.; Wagemaker, M. J. Mater. Chem. A 2016, 4, 15095. doi: 10.1039/c6ta05896e
doi: 10.1039/c6ta05896e
Hayashi, A.; Noi, K.; Tanibata, N.; Nagao, M.; Tatsumisago, M. J. Power Sources 2014, 258, 420. doi: 10.1016/j.jpowsour.2014.02.054
doi: 10.1016/j.jpowsour.2014.02.054
Takeuchi, S.; Suzuki, K.; Hirayama, M.; Kanno, R. J. Solid State Chem. 2018, 265, 353. doi: 10.1016/j.jssc.2018.06.023
doi: 10.1016/j.jssc.2018.06.023
Rao, R. P.; Chen, H.; Wong, L. L.; Adams, S. J. Mater. Chem. A 2017, 5, 3377. doi: 10.1039/c6ta09809f
doi: 10.1039/c6ta09809f
Ponrouch, A.; Marchante, E.; Courty, M.; Tarascon, J. M.; Palacín, M. R. Energy Environ. Sci. 2012, 5, 8572. doi: 10.1039/c2ee22258b
doi: 10.1039/c2ee22258b
Yu, Z. X.; Shang, S. L.; Seo, J. H.; Wang, D.; Luo, X.; Huang, Q.; Chen, S.; Lu, J.; Li, X.; Liu, Z. K.; et al. Adv Mater. 2017, 29, 16. doi: 10.1002/adma.201605561
doi: 10.1002/adma.201605561
Krebs, B. Angew. Chem. Int. Ed. Engl.1983, 22, 113. doi: 10.1002/anie.198301131|
doi: 10.1002/anie.198301131|
Kanno, R.; Murayama, M. J. Electrochem. Soc. 2001, 148, A742. doi: 10.1149/1.1379028
doi: 10.1149/1.1379028
Tanibata, N.; Noi, K.; Hayashi, A; Tatsumisago, M. RSC Adv. 2014, 4, 17120. doi: 10.1039/c4ra00996g
doi: 10.1039/c4ra00996g
Tanibata, N.; Noi, K.; Hayashi, A; Kitamura, N.; Idemoto, Y.; Tatsumisago, M. ChemElectroChem 2014, 1, 1130. doi: 10.1002/celc.201402016
doi: 10.1002/celc.201402016
Zhang, L.; Zhang, D.; Yang, K.; Yan, X.; Wang, L.; Mi, J.; Xu, B.; Li, Y. Adv. Sci. 2016, 1600089. doi: 10.1002/advs.201600089
doi: 10.1002/advs.201600089
Graf, V. H. A.; Schafer, H.; Z. Anorg. Allg. Chem. 1976, 425, 67.
doi: 10.1002/zaac.19764250109
Wang, Y.; Richards, W. D.; Ong, S. P.; Miara, L. J.; Kim, J. C.; Mo, Y. F.; Ceder, G. Nat. Mater. 2015, 14, 1026. doi: 10.1038/NMAT4369
doi: 10.1038/NMAT4369
Zhang, D.; Cao, X.; Xu, D.; Wang, N.; Yu, C.; Hu, W.; Yan, X.; Mi, J.; Wen, B.; Wang, L.; et al. Electrochim. Acta 2018, 259, 100. doi: 10.1016/j.electacta.2017.10.173
doi: 10.1016/j.electacta.2017.10.173
Mikenda, A. Preisinger. W. Spectrochim. Acta Part A: Mol. Spectroscopy 1980, 36, 365. doi: 10.1016/0584-8539(80)80145-0
doi: 10.1016/0584-8539(80)80145-0
Wang, H.; Chen, Y.; Hood, Z. D.; Sahu, G.; Pandian, A. S.; Keum, J. K.; An, K.; Liang, C. D. Angew Chem. Int. Ed. 2016, 55, 1. doi: 10.1002/anie.201601546
doi: 10.1002/anie.201601546
Zhang, D. C.; Cao, X. T.; Xu, D.; Wang, N.; Yu, C.; Hu, W. T.; Yan, X. L.; Mi, J. L.; Wen, B.; Wang, L. M.; et al. Electrochim. Acta 2018, 259, 100. doi: 10.1016/j.electacta.2017.10.173
doi: 10.1016/j.electacta.2017.10.173
Heo, J. W.; Banerjee, A.; Park, K. H.; Jung, Y. S.; Hong, S. T. Adv. Energy Mater. 2018, 8, 1702716. doi: 10.1002/aenm.201702716
doi: 10.1002/aenm.201702716
Maier, J. Nat. Mater. 2005, 4, 805. doi: 10.1038/nmat1513
doi: 10.1038/nmat1513
Jia, H. H.; Sun, Y. L.; Zhang, Z. R.; Peng, L. F.; An, T.; Xie, J. Energy Storage Mater. 2019, in press, doi: 10.1016/j.ensm.2019.04.011
doi: 10.1016/j.ensm.2019.04.011
Ong, S. P.; Mo, Y. F.; Richards, W. D.; Miara, L.; Lee, H. S.; Ceder, G. Energy Environ. Sci. 2013, 6, 148. doi: 10.1039/c2ee23355j
doi: 10.1039/c2ee23355j
Zhang, L.; Yang, K.; Mi, J.; Lu, L.; Zhao, L.; Wang, L.; Li, Y.; Zeng, H. Adv. Energy Mater. 2015, 5, 1501294. doi: 10.1002/aenm.201501294
doi: 10.1002/aenm.201501294
Bo, S. H.; Wang, Y.; Kim, J. C.; Richards, W. D.; Ceder, G. Chem. Mat. 2016, 28, 252. doi: 10.1021/acs.chemmater.5b04013
doi: 10.1021/acs.chemmater.5b04013
Bo, S. H.; Wang, Y.; Ceder, G. J. Mater. Chem. A 2016, 4, 9044. doi: 10.1039/c6ta03027k
doi: 10.1039/c6ta03027k
Wang, N.; Yang, K.; Zhang, L.; Yan, X.; Wang, L.; Xu, B. J. Mater. Sci. 2017, 53, 1987. doi: 10.1007/s10853-017-1618-0
doi: 10.1007/s10853-017-1618-0
Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R. Nat. Energy, 2016, 1, 16030. doi: 10.1038/nenergy.2016.30
doi: 10.1038/nenergy.2016.30
Kandagal, V. S.; Bharadwaj, M. D.; Waghmare, U. V. J. Mater. Chem. A 2015, 3, 12992. doi: 10.1039/c5ta01616a
doi: 10.1039/c5ta01616a
Richards, W. D.; Tsujimura, T.; Miara, L. J.; Wang, Y.; Kim, J. C.; Ong, S. P.; Uechi, I.; Suzuki, N.; Ceder, G. Nat. Commun. 2016, 7, 11009. doi: 10.1038/ncomms11009
doi: 10.1038/ncomms11009
Kandagal, V. S.; Bharadwaj, M. D.; Waghmare, U. V. J. Mater. Chem. A 2015, 3, 12992. doi: 10.1039/c5ta01616a
doi: 10.1039/c5ta01616a
Tsuji, F.; Tanibata, N.; Sakuda, A.; Hayashi, A.; Tasumisago, M. Chem. Lett. 2018, 47, 13. doi: 10.1246/cl.170836
doi: 10.1246/cl.170836
Zhang, Z.; Ramos, E.; Lalère, F.; Assoud, A.; Kaup, K.; Hartman, P.; Nazar, L. F. Energy Environ. Sci. 2018, 11, 87. doi: 10.1039/c7ee03083e
doi: 10.1039/c7ee03083e
Kuhn, A.; Kohler, J.; Lotsch, B. V. Phys. Chem. Chem. Phys. 2013, 15, 11620. doi: 10.1039/c3cp51985f
doi: 10.1039/c3cp51985f
Kuhn, A.; Gerbig, O.; Zhu, C.; Falkenberg, F.; Maier, J.; Lotsch, B. V. Phys. Chem. Chem. Phys. 2014, 16, 14669. doi: 10.1039/c4cp02046d
doi: 10.1039/c4cp02046d
Duchardt, M.; Ruschewitz, U.; Adams, S.; Dehnen, S.; Roling, B. Angew. Chem. Int. Ed. 2018, 57, 1351. doi: 10.1002/ange.201712769
doi: 10.1002/ange.201712769
Ramos, E. P.; Zhang, Z. Z.; Assoud, A.; Kaup, K.; Lalere, F.; Nazar, L. F. Chem. Mater. 2018, 30, 7413. doi: 10.1021/acs.chemmater.8b02077
doi: 10.1021/acs.chemmater.8b02077
Yu, Z.; Shang, S. L.; Gao, Y.; Wang, D.; Li, X.; Liu, Z. K.; Wang, D. H. Nano Energy 2018, 47, 325. doi: 10.1016/j.nanoen.2018.01.046
doi: 10.1016/j.nanoen.2018.01.046
Yu, Z. X.; Shang, S. L.; Wang, D. W.; Li, Y. C.; Yennawar, H. P.; Li, G. X.; Huang, H.; Gao, Y.; Mallouk, T. E.; Liu, Z. K.; et al. Energy Storage Mater. 2019, 17, 70. doi: 10.1016/j.ensm.2018.11.027
doi: 10.1016/j.ensm.2018.11.027
Wang, Y.; Richards, W. D.; Bo, S. H.; Miara, L. J.; Ceder, G. Chem. Mat. 2017, 29, 7475. doi: 10.1021/acs.chemmater.7b02476
doi: 10.1021/acs.chemmater.7b02476
Han, F. D.; Westover, A. S.; Yue, J.; Fan, X. L.; Wang, F.; Chi, M. F.; Leonard, D. N.; Dudney, N. J.; Wang, H.; Wang, C. S. Nat. Energy 2019, 4, 187. doi: 10.1038/s41560-018-0312-z
doi: 10.1038/s41560-018-0312-z
Banerjee, A.; Park, K. H.; Heo, J. W.; Nam, Y. J.; Moon, C. K.; Oh, S. M.; Hong, S. T.; Jung, Y. S. Angew. Chem. Int. Ed. 2016, 55, 9634. doi: 10.1002/anie.201604158
doi: 10.1002/anie.201604158
Kim, T. W.; Park, K. H.; Choi, Y. E.; Lee, J. Y.; Jung, Y. S. J. Mater. Chem. A 2018, 6, 840. doi: 10.1039/C7TA09242C
doi: 10.1039/C7TA09242C
Moon, C. K.; Lee, H. J.; Park, K. H.; Kwak, H.; Heo, J. W.; Choi, K.; Yang, H.; Kim, M. S.; Hong, S. T.; Lee, J. H.; et al. ACS Energy Lett. 2018, 3, 2504. doi: 10.1021/acsenergylett.8b01479
doi: 10.1021/acsenergylett.8b01479
Hibi, Y.; Tanibata, N.; Hayashi, A.; Tatsumisago, M. Solid State Ion. 2015, 270, 6. doi: 10.1016/j.ssi.2014.11.024
doi: 10.1016/j.ssi.2014.11.024
Takada, K. Acta Mater. 2013, 61, 759. doi: 10.1016/j.actamat.2012.10.034
doi: 10.1016/j.actamat.2012.10.034
Sahu, G.; Lin, Z.; Li, J.; Liu, Z.; Dudney, N.; Liang, C. D. Energy Environ. Sci. 2014, 7, 1053. doi: 10.1039/c3ee43357a
doi: 10.1039/c3ee43357a
Shang, S. L.; Yu, Z.; Wang, Y.; Wang, D.; Liu, Z. K. ACS Appl. Mater. Interfaces 2017, 9, 16261. doi: 10.1021/acsami.7b03606
doi: 10.1021/acsami.7b03606
Han, F.; Gao, T.; Zhu, Y.; Gaskell, K. J.; Wang, C.S. Adv Mater. 2015, 27, 3473. doi: 10.1002/adma.201500180
doi: 10.1002/adma.201500180
Tian, Y. S.; Shi, T.; Richards, W. D.; Li, J.; Kim, J. C.; Bo, S. H.; Ceder, G. Energy Environ. Sci. 2017, 10, 1150. doi: 10.1039/c7ee00534b
doi: 10.1039/c7ee00534b
Han, F.; Zhu, Y.; He, X.; Mo, Y. F.; Wang, C. S. Adv. Energy Mater. 2016, 6, 1501590. doi: 10.1002/aenm.201501590
doi: 10.1002/aenm.201501590
Takada, K.; Ohta, N.; Zhang, L.; Xu, X.; Hang, B. T.; Ohnishi, T.; Osada, M.; Sasaki, T. Solid State Ion. 2012, 225, 594. doi: 10.1016/j.ssi.2012.01.009
doi: 10.1016/j.ssi.2012.01.009
Hartmann, P.; Bender, C. L.; Vracar, M.; Durr, A. K.; Garsuch, A.; Janek, J.; Adelhelm, P. Nat. Mater. 2013, 12, 228. doi: 10.1038/NMAT3486
doi: 10.1038/NMAT3486
Das, S. K.; Lau, S.; Archer, L. A. J. Mater. Chem. A 2014, 2, 12623. doi: 10.1039/c4ta02176b
doi: 10.1039/c4ta02176b
Manthiram, A.; Yu, X. W. Small 2015, 11, 2108. doi: 10.1002/smll.201403257
doi: 10.1002/smll.201403257
Yu, X. W.; Manthiram, A. Adv. Energy Mater. 2015, 5, 1500350. doi: 10.1002/aenm.201500350
doi: 10.1002/aenm.201500350
Wei, S.; Xu, S.; Agrawral, A.; Choudhury, S.; Lu, Y.; Tu, Z.; Ma, L.; Archer, L. A. Nat. Commun. 2016, 7, 11722. doi: 10.1038/ncomms11722
doi: 10.1038/ncomms11722
Wu, F.; Liu, L.; Yuan, Y. F.; Li, Y.; Bai, Y.; Lu, J.; Wu, C. ACS Appl. Mater. Interfaces 2018, 10, 32, 27030. doi: 10.1021/acsami.8b08380
doi: 10.1021/acsami.8b08380
Li, Y.; Yuan, Y. F.; Bai, Y.; Liu, Y. C.; Wang, Z. H.; Li, L. M.; Wu, F.; Khalil, A.; Wu, C.; Lu, J. Adv. Energy Mater. 2018, 25, 1702781. doi: 10.1002/aenm.201702781
doi: 10.1002/aenm.201702781
Chen, G. H.; Bai, Y.; Li, H.; Li, Y.; Wang, Z. H.; Ni, Q.; Liu, L.; Wu, F.; Yao, Y. G.; Wu, C. ACS Appl. Mater. Interfaces 2017, 9, 8, 6666. doi: 10.1021/acsami.6b16186
doi: 10.1021/acsami.6b16186
Luo, W.; Hu, L. B. ACS Cent. Sci. 2015, 1, 420. doi: 10.1021/acscentsci.5b00357
doi: 10.1021/acscentsci.5b00357
Seh, Z. W.; Sun, J.; Sun, Y.; Cui, Y. ACS Cent. Sci. 2015, 1, 449. doi: 10.1021/acscentsci.5b00328
doi: 10.1021/acscentsci.5b00328
Luo, W.; Lin, C. F.; Zhao, O.; Noked, M.; Zhang, Y.; Rubloff, G. W.; Hu, L. B. Adv. Energy Mater. 2016, 6, 1601526. doi: 10.1002/aenm.201601526
doi: 10.1002/aenm.201601526
Bertheville, B.; LowH.Bill, D.F.; Kubel, F. J. Phys. Chem. Solids 1997, 58, 1569. doi: 10.1016/S0022-3697(97)00101-7
doi: 10.1016/S0022-3697(97)00101-7
Yu, X. F.; Giorgi, G.; Ushiyama, H.; Yamashita, K. Chem. Phys. Lett. 2014, 612, 129. doi: 10.1016/j.cplett.2014.08.010
doi: 10.1016/j.cplett.2014.08.010
Wenzel, S.; Leichtweiss, T.; Krüger, D.; Sann, J.; Janek, J. Solid State Ion. 2015, 278, 98. doi: 10.1016/j.ssi.2015.06.001
doi: 10.1016/j.ssi.2015.06.001
Wu, E. A.; Kompella, C. S.; Zhu, Z.; Lee, J. Z.; Lee, S. C.; Chu, I. H.; Nguyen, H.; Ong, S. P.; Banerjee, A.; Meng, Y. S. ACS Appl. Mater. Interfaces 2018, 10, 12. doi: 10.1021/acsami.7b19037
doi: 10.1021/acsami.7b19037
Hartmann, P.; Leichtweiss, T.; Busche, M. R.; Schneider, M.; Reich, M.; Sann, J.; Adelhelm, P.; Janek, J. J. Phys. Chem. C 2013, 117, 21064. doi: 10.1021/jp4051275
doi: 10.1021/jp4051275
Hu, P.; Zhang, Y.; Chi, X.; Kumar Rao, K.; Hao, F.; Dong, H.; Guo, F.; Ren, Y.; Grabow, L. C.; Yao, Y. ACS Appl. Mater. Interfaces 2019, 11, 9672. doi: 10.1021/acsami.8b19984
doi: 10.1021/acsami.8b19984
Tian, Y.; Sun, Y.; Hannah, D. C.; Xiao, Y.; Liu, H.; Chapman, K. W.; Bo, S. H.; Ceder, G. Joule 2019, 3, 1. doi: 10.1016/j.joule.2018.12.019
doi: 10.1016/j.joule.2018.12.019
Kim, J. K.; Lim, Y. J.; Kim, H. J.; Cho, G. B.; Kim, Y. Energy Environ. Sci. 2015, 8, 3589. doi: 10.1016/j.joule.2018.12.019
doi: 10.1016/j.joule.2018.12.019
Li, H.; Bai, Y.; Wu, F.; Li, Y.; Wu, C. J. Power Sources 2015, 273, 784. doi: 10.1016/j.jpowsour.2014.09.153
doi: 10.1016/j.jpowsour.2014.09.153
Li, H.; Yu, X.; Bai, Y.; Wu, F.; Wu, C.; Liu, L. Y.; Yang, X. Q. J. Mater. Chem. A 2015, 3, 9578. doi: 10.1039/c5ta00277j
doi: 10.1039/c5ta00277j
Li, H.; Wu, C.; Bai, Y.; Wu, F.; Wang, M. Z. J. Power Sources 2016, 326, 14. doi: 10.1016/j.jpowsour.2016.06.096
doi: 10.1016/j.jpowsour.2016.06.096
Zhang, Z.; Zhang, Q.; Shi, J.; Chu, Y. S.; Yu, X.; Xu, K.; Ge, M.; Yan, H.; Li, W.; Gu, L.; et al. Adv. Energy Mater. 2017, 7, 1601196. doi: 10.1002/aenm.201601196
doi: 10.1002/aenm.201601196
Ni, Q.; Bai, Y.; Li, Y.; Ling, L. M.; Li, L.; Chen, G. H.; Wang, Z. H.; Ren, H. X.; Wu, F.; Wu, C. Small 2018, 14, 1702864. doi: 10.1002/smll.201702864
doi: 10.1002/smll.201702864
Ni'mah, Y. L.; Cheng, M. Y.; Cheng, J. H.; Rick, J.; Hwang, B. J. J. Power Sources. 2015, 278, 375. doi: 10.1016/j.jpowsour.2014.11.047
doi: 10.1016/j.jpowsour.2014.11.047
Tatsumisago, M.; Hayashi, A. Int. J. Appl. Glass Sci. 2014, 5, 226. doi: 10.1111/ijag.12084
doi: 10.1111/ijag.12084
Wan, H.; Mwizerwa, J. P.; Qi, X.; Liu, X.; Xu, X.; Li, H.; Hu, Y. S.; Yao, X. Y. ACS Nano 2018, 12, 2809. doi: 10.1021/acsnano.8b00073
doi: 10.1021/acsnano.8b00073
Tanibata, N.; Deguchi, M.; Hayashi, A.; Tatsumisago, M. Chem. Mat. 2017, 29, 5232. doi: 10.1021/acs.chemmater.7b01116
doi: 10.1021/acs.chemmater.7b01116
Tanibata, N.; Tsukasaki, H.; Deguchi, M.; Mori, S.; Hayashi, A.; Tatsumisago, M. Solid State Ion. 2017, 311, 6. doi: 10.1016/j.ssi.2017.08.022
doi: 10.1016/j.ssi.2017.08.022
Yue, J.; Han, F. D.; Fan, X. L.; Zhu, X. Y.; Ma, Z. H.; Yang, J.; Wang, C. S. ACS Nano 2017, 11, 4885. doi: 10.1021/acsnano.7b01445
doi: 10.1021/acsnano.7b01445
Chi, X. W.; Liang, Y. L.; Hao, F.; Zhang, Y.; Whiteley, J.; Dong, H.; Hu, P.; Lee, S.; Yao, Y. Angew Chem. Int. Ed. 2018, 57, 2630. doi: 10.1002/anie.201712895
doi: 10.1002/anie.201712895
Sakuda, A.; Hayashi, A.; Tatsumisago, M. Sci. Rep. 2013, 3, 2261. doi: 10.1038/srep02261
doi: 10.1038/srep02261
Minami, T.; Hayashi, A.; Tatsumisago, M. Solid State Ion. 2006, 177, 2715. doi: 10.1016/j.ssi.2006.07.017
doi: 10.1016/j.ssi.2006.07.017
Nagao, M.; Hayashi, A.; Tatsumisago, M. Electrochimica Acta 2011, 56, 6055. doi: 10.1016/j.electacta.2011.04.084
doi: 10.1016/j.electacta.2011.04.084
Noi, K.; Nagata, Y.; Hakari, T.; Suzuki, K.; Yubuchi, S.; Ito, Y.; Sakuda, A.; Hayashi, A.; Tatsumisago, M. ACS Appl. Mater. Interfaces 2018, 10, 19605. doi: 10.1021/acsami.8b02427
doi: 10.1021/acsami.8b02427
Yue, J.; Zhu, X. Y.; Han, F. D.; Fan, X. L.; Wang, L. N.; Yang, J.; Wang, C. S. ACS Appl. Mater. Interfaces 2018, 10, 39645. doi: 10.1021/acsami.8b12610
doi: 10.1021/acsami.8b12610
Wu, F.; Fitzhugh, W.; Ye, L. H.; Ning, J. X.; Li, X. Nat. Commun. 2018, 9, 4037. doi: 10.1038/s41467-018-06123-2
doi: 10.1038/s41467-018-06123-2
Jiayu Tang , Jichuan Pang , Shaohua Xiao , Xinhua Xu , Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021
Tao Jiang , Yuting Wang , Lüjin Gao , Yi Zou , Bowen Zhu , Li Chen , Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
Shitao Fu , Jianming Zhang , Cancan Cao , Zhihui Wang , Chaoran Qin , Jian Zhang , Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
Xiaoning TANG , Junnan LIU , Xingfu YANG , Jie LEI , Qiuyang LUO , Shu XIA , An XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191
Jiaxi Xu , Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
Xuan Zhou , Yi Fan , Zhuoqi Jiang , Zhipeng Li , Guowen Yuan , Laiying Zhang , Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
Aidang Lu , Yunting Liu , Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029
Yanhui Sun , Junmin Nan , Guozheng Ma , Xiaoxi Zuo , Guoliang Li , Xiaoming Lin . Exploration and Teaching Practice of Ideological and Political Elements in Interface Physical Chemistry: Taking “Additional Pressure on Curved Surfaces” as an Teaching Example. University Chemistry, 2024, 39(11): 20-27. doi: 10.3866/PKU.DXHX202402023
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
Jinfeng Chu , Lan Jin , Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
Yihao Zhao , Jitian Rao , Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050
Hao Wu , Zhen Liu , Dachang Bai . 1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020