Citation: Sun Shangcong, Zhang Xuya, Liu Xianlong, Pan Lun, Zhang Xiangwen, Zou Jijun. Design and Construction of Cocatalysts for Photocatalytic Water Splitting[J]. Acta Physico-Chimica Sinica, ;2020, 36(3): 190500. doi: 10.3866/PKU.WHXB201905007 shu

Design and Construction of Cocatalysts for Photocatalytic Water Splitting

  • Corresponding author: Zou Jijun, jj_zou@tju.edu.cn
  • † These authors contributed equally to this work
  • Received Date: 2 May 2019
    Revised Date: 25 May 2019
    Accepted Date: 3 June 2019
    Available Online: 5 March 2019

    Fund Project: The project was supported by National Natural Science Foundation of China 21506156The project was supported by National Natural Science Foundation of China (21676193, 51661145026, 21506156)The project was supported by National Natural Science Foundation of China 21676193The project was supported by National Natural Science Foundation of China 51661145026

  • Converting solar light into chemical energy is currently a hot topic for addressing the worldwide energy and environmental crises. However, the utilization of solar energy greatly suffers from its low energy flow density and discontinuous space-time distribution, which are essential for a reasonable energy conversion strategy toward effective storage and utilization. To this end, photocatalytic water splitting is a promising method for utilizing solar light to produce environmentally friendly hydrogen energy; yet, the efficiency needs to be improved. Generally, such processes can be divided into three elementary steps: light absorption, charge separation and migration, and surface redox reaction. The overall performance is determined by the cumulative efficiencies of the above three steps. The construction of cocatalysts is among the extensive efforts taken to improve the solar conversion efficiency. First, the cocatalysts possess higher work function than the semiconductors, and the photogenerated electrons migrate from semiconductor to cocatalysts, thereby promoting the charge separation. Second, cocatalysts usually lower the activation energy and provide abundant surface reactive sites. Particularly, the addition of cocatalysts can remarkably accelerate the four-electron transfer O2 evolution kinetics, which usually requires much higher overpotential and is often considered as the bottleneck for water splitting. Third, cocatalysts can timely remove the photogenerated charges from the surface of the semiconductor and subsequently inhibit the photocorrosion and improve the stability of the photocatalysts. Moreover, the cocatalysts also retard the backward recombination of H2 and O2. In general, cocatalysts for water splitting can be classified into three categories: H2 evolution cocatalysts, O2 evolution cocatalysts, and dual cocatalysts. The H2 evolution cocatalysts mainly contain noble metals such as Pt, Au, and other transition metals such as Co, Ni, and Cu and their phosphides or sulfides, which are capable of trapping electrons and promoting proton reduction. The O2 evolution cocatalysts are often noble metal oxides and transition metal (hydro)oxides and corresponding phosphates, which are always efficient in adsorbing and dissociating water molecules. To realize the overall water splitting, H2 evolution cocatalysts and O2 evolution cocatalysts are often integrated on one photocatalyst, which results in the so-called dual cocatalyst system. Furthermore, the performance of cocatalysts can be improved by modulating the loading amount, morphology, particle size, etc. In addition, composites such as Pt/Ni(OH)2 cocatalyst can not only provide both H2 and O2 evolution sites but also accelerate the intrinsic surface redox kinetics by promoting H2O activation, thus being much more active than the conventional dual cocatalyst system. This review summarizes the important role and design principle of cocatalysts in photocatalytic systems. The construction and functional mechanism of H2 evolution cocatalyst, O2 evolution cocatalyst, and dual cocatalysts in overall water splitting photocatalysts are discussed in detail, and the design strategy of new cocatalysts toward water activation is proposed.
  • 加载中
    1. [1]

      Fu, C. F.; Wu, X. J.; Yang, J. L. Adv. Mater. 2018, 30, 1802106. doi: 10.1002/adma.201802106  doi: 10.1002/adma.201802106

    2. [2]

      Wu, W.; Jiang, C. Z.; Roy, V. A. L. Nanoscale 2015, 7, 38. doi: 10.1039/c4nr04244a  doi: 10.1039/c4nr04244a

    3. [3]

      Kong, D.; Zheng, Y.; Kobielusz, M.; Wang, Y.; Bai, Z.; Macyk, W.; Wang, X.; Tang, J. Mater. Today 2018, 21, 897. doi: 10.1016/j.mattod.2018.04.009  doi: 10.1016/j.mattod.2018.04.009

    4. [4]

      Zhou, P.; Yu, J. G.; Jaroniec, M. Adv. Mater. 2014, 26, 4920. doi: 10.1002/chin.201439243  doi: 10.1002/chin.201439243

    5. [5]

      Maeda, K. J. Photochem. Photobiol. C 2011, 12, 237. doi: 10.1016/j.jphotochemrev.2011.07.001  doi: 10.1016/j.jphotochemrev.2011.07.001

    6. [6]

      Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Chem. Rev. 2010, 110, 6503. doi: 10.1021/cr1001645  doi: 10.1021/cr1001645

    7. [7]

      Marzo, L.; Pagire, S. K.; Reiser, O.; Konig, B. Angew. Chem. Int. Ed. 2018, 57, 10034. doi: 10.1002/anie.201709766  doi: 10.1002/anie.201709766

    8. [8]

      Inoue, Y. Energy Environ. Sci. 2009, 2, 364. doi: 10.1039/b816677n  doi: 10.1039/b816677n

    9. [9]

      Wang, Z.; Li, C.; Domen, K. Chem. Soc. Rev. 2019, 48, 2109. doi: 10.1039/c8cs00542g  doi: 10.1039/c8cs00542g

    10. [10]

      Wu, L. Z.; Chen, B.; Li, Z. J.; Tung, C. H. Acc. Chem. Res. 2014, 47, 2177. doi: 10.1021/ar500140r  doi: 10.1021/ar500140r

    11. [11]

      Gong, C.; Xiang, S. W.; Zhang, Z. Y.; Sun, L.; Ye, C. Q.; Lin, C. J. Acta Phys. -Chim. Sin. 2019, 35, 616.  doi: 10.3866/PKU.WHXB201805082

    12. [12]

      Huang, Z. F.; Zou, J.-J.; Pan, L.; Wang, S. B.; Zhang, X. W.; Wang, L. Appl. Catal. B: Environ. 2014, 147, 167. doi: 10.1016/j.apcatb.2013.08.038  doi: 10.1016/j.apcatb.2013.08.038

    13. [13]

      Pan, L.; Zou, J. -J.; Zhang, X. W.; Wang, L. J. Am. Chem. Soc. 2011, 133, 10000. doi: 10.1021/ja2035927  doi: 10.1021/ja2035927

    14. [14]

      Huang, Z. F.; Song, J. -J.; Pan, L.; Wang, Z. M.; Zhang, X. Q.; Zou, J. -J.; Mi, W. B.; Zhang, X. W.; Wang, L. Nano Energy 2015, 12, 646. doi: 10.1016/j.nanoen.2015.01.043  doi: 10.1016/j.nanoen.2015.01.043

    15. [15]

      Tong, H.; Ouyang, S. X.; Bi, Y. P.; Umezawa, N.; Oshikiri, M.; Ye, J. H. Adv. Mater. 2012, 24, 229. doi: 10.1002/adma.201102752  doi: 10.1002/adma.201102752

    16. [16]

      Low, J. X.; Jiang, C.; Cheng, B.; Wageh, S.; Al-Ghamdi, A. A.; Yu, J. G. Small Methods 2017, 1, 1700080. doi: 10.1002/smtd.201700080  doi: 10.1002/smtd.201700080

    17. [17]

      Fan, K.; Jin, Z. L.; Yang, H.; Liu, D. D.; Hu, H. Y.; Bi, Y. P. Sci. Rep. 2017, 7, 7710. doi: 10.1038/s41598-017-08163-y  doi: 10.1038/s41598-017-08163-y

    18. [18]

      Hisatomi, T.; Kubota, J.; Domen, K. Chem. Soc. Rev. 2014, 43, 7520. doi: 10.1039/c3cs60378d  doi: 10.1039/c3cs60378d

    19. [19]

      Wang, H. L.; Zhang, L. S.; Chen, Z. G.; Hu, J. Q.; Li, S. J.; Wang, Z. H.; Liu, J. S.; Wang, X. C. Chem. Soc. Rev. 2014, 43, 5234. doi: 10.1039/c4cs00126e  doi: 10.1039/c4cs00126e

    20. [20]

      Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0  doi: 10.1038/238037a0

    21. [21]

      Li, X.; Yu, J. G.; Low, J. X.; Fang, Y. P.; Xiao, J.; Chen, X. B. J. Mater. Chem. A 2015, 3, 2485. doi: 10.1039/c4ta04461d  doi: 10.1039/c4ta04461d

    22. [22]

      Moniz, S. J. A.; Shevlin, S. A.; Martin, D. J.; Guo, Z. X.; Tang, J. W. Energy Environ. Sci. 2015, 8, 731. doi: 10.1039/c4ee03271c  doi: 10.1039/c4ee03271c

    23. [23]

      Low, J. X.; Yu, J. G.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A. A. Adv. Mater. 2017, 29, 1601694. doi: 10.1002/adma.201601694  doi: 10.1002/adma.201601694

    24. [24]

      Huang, J. H.; Shang, Q. C.; Huang, Y. Y.; Tang, F. M.; Zhang, Q.; Liu, Q. H.; Jiang, S.; Hu, F. C.; Liu, W.; Luo, Y.; et al. Angew. Chem. Int. Ed. 2016, 55, 2137. doi: 10.1002/anie.201510642

    25. [25]

      Gao, Y. J.; Li, X. B.; Wu, H. L.; Meng, S. L.; Fan, X. B.; Huang, M. Y.; Guo, Q.; Tung, C. H.; Wu, L. Z. Adv. Funct. Mater. 2018, 28, 1801769. doi: 10.1002/adfm.201801769  doi: 10.1002/adfm.201801769

    26. [26]

      Martin, D. J.; Qiu, K. P.; Shevlin, S. A.; Handoko, A. D.; Chen, X. W.; Guo, Z. X.; Tang, J. W. Angew. Chem. Int. Ed. 2014, 53, 9240. doi: 10.1002/anie.201403375  doi: 10.1002/anie.201403375

    27. [27]

      Shi, R.; Ye, H. F.; Liang, F.; Wang, Z.; Li, K.; Weng, Y. X.; Lin, Z. S.; Fu, W. F.; Che, C. M.; Chen, Y. Adv. Mater. 2017, 30, 1705941. doi: 10.1002/adma.201705941  doi: 10.1002/adma.201705941

    28. [28]

      Ning, X. F.; Zhen, W. L.; Wu, Y. Q.; Lu, G. X. Appl. Catal. B: Environ. 2018, 226, 373. doi: 10.1016/j.apcatb.2017.12.067  doi: 10.1016/j.apcatb.2017.12.067

    29. [29]

      Wang, M.; Zhen, W. L.; Tian, B.; Ma, J. T.; Lu, G. X. Appl. Catal. B: Environ. 2018, 236, 240. doi: 10.1016/j.apcatb.2018.05.031  doi: 10.1016/j.apcatb.2018.05.031

    30. [30]

      Li, Y. H.; Xing, J.; Chen, Z. J.; Li, Z.; Tian, F.; Zheng, L. R.; Wang, H. F.; Hu, P.; Zhao, H. J.; Yang, H. G. Nat. Commun. 2013, 4, 2500. doi: 10.1038/ncomms3500  doi: 10.1038/ncomms3500

    31. [31]

      Chen, S. S.; Takata, T.; Domen, K. Nat. Rev. Mater. 2017, 2, 17050. doi: 10.1038/natrevmats.2017.50  doi: 10.1038/natrevmats.2017.50

    32. [32]

      Qi, J.; Zhang, W.; Cao, R. Adv. Energy Mater. 2018, 8, 1701620. doi: 10.1002/aenm.201701620  doi: 10.1002/aenm.201701620

    33. [33]

      Xu, X. T.; Pan, L.; Zhang, X. W.; Wang, L.; Zou, J.-J. Adv. Sci. 2019, 6, 1801505. doi: 10.1002/advs.201801505  doi: 10.1002/advs.201801505

    34. [34]

      Yang, J. H.; Wang, D. G.; Han, H. X.; Li, C. Acc. Chem. Res. 2013, 46, 1900. doi: 10.1021/ar300227e  doi: 10.1021/ar300227e

    35. [35]

      Al Azri, Z. H. N.; Al-Oufi, M.; Chan, A.; Waterhouse, G. I. N.; Idriss, H. ACS Catal. 2019, 9, 3946. doi: 10.1021/acscatal.8b05070  doi: 10.1021/acscatal.8b05070

    36. [36]

      Lu, X.; Han, Y.; Lu, T. Acta Phys. -Chim. Sin. 2018, 34, 1014.  doi: 10.3866/PKU.WHXB201801171

    37. [37]

      Zhang, Z.; Yates, J. T. Chem. Rev. 2012, 112, 5520. doi: 10.1021/cr3000626  doi: 10.1021/cr3000626

    38. [38]

      Zhang, G. G.; Lan, Z. A.; Wang, X. C. Chem. Sci. 2017, 8, 5261. doi: 10.1039/c7sc01747b  doi: 10.1039/c7sc01747b

    39. [39]

      Guan, J. Q.; Duan, Z. Y.; Zhang, F. X.; Kelly, S. D.; Si, R.; Dupuis, M.; Huang, Q. G.; Chen, J. Q.; Tang, C. H.; Li, C. Nat. Catal. 2018, 1, 870. doi: 10.1038/s41929-018-0158-6  doi: 10.1038/s41929-018-0158-6

    40. [40]

      Ran, J. R.; Zhang, J.; Yu, J. G.; Jaroniec, M.; Qiao, S. Z. Chem. Soc. Rev. 2014, 43, 7787. doi: 10.1039/c3cs60425j  doi: 10.1039/c3cs60425j

    41. [41]

      Subbaraman, R.; Tripkovic, D.; Strmcnik, D.; Chang, K. C.; Uchimura, M.; Paulikas, A. P.; Stamenkovic, V.; Markovic, N. M. Science 2011, 334, 1256. doi: 10.1126/science.1211934  doi: 10.1126/science.1211934

    42. [42]

      Wang, L.; Zhu, Y. H.; Zeng, Z. H.; Lin, C.; Giroux, M.; Jiang, L.; Han, Y.; Greeley, J.; Wang, C.; Jin, J. Nano Energy 2017, 31, 456. doi: 10.1016/j.nanoen.2016.11.048  doi: 10.1016/j.nanoen.2016.11.048

    43. [43]

      Tahir, M.; Pan, L.; Idrees, F.; Zhang, X. W.; Wang, L.; Zou, J. -J.; Wang, Z. L. Nano Energy 2017, 37, 136. doi: 10.1016/j.nanoen.2017.05.022  doi: 10.1016/j.nanoen.2017.05.022

    44. [44]

      Mahmood, N.; Yao, Y. D.; Zhang, J. W.; Pan, L.; Zhang, X. W.; Zou, J. -J. Adv. Sci. 2018, 5, 1700464. doi: 10.1002/advs.201700464  doi: 10.1002/advs.201700464

    45. [45]

      Huang, Z. F.; Song, J. J.; Li, K.; Tahir, M.; Wang, Y. T.; Pan, L.; Wang, L.; Zhang, X. W.; Zou, J. -J. J. Am. Chem. Soc. 2016, 138, 1359. doi: 10.1021/jacs.5b11986  doi: 10.1021/jacs.5b11986

    46. [46]

      Zhang, R. R.; Zhang, Y. C.; Pan, L.; Shen, G. Q.; Mahmood, N.; Ma, Y. H.; Shi, Y.; Jia, W. Y.; Wang, L.; Zhang, X. W.; et al. ACS Catal. 2018, 8, 3803. doi: 10.1021/acscatal.8b01046

    47. [47]

      Lin, Z.; Shen, L. F.; Qu, X. M.; Zhang, J. M.; Jiang, Y. X.; Sun, S. G. Acta Phys. -Chim. Sin. 2019, 35, 523.  doi: 10.3866/PKU.WHXB201806191

    48. [48]

      Luo, P.; Sun, F.; Deng, J.; Xu, H. T.; Zhang, H. J.; Wang, Y. Acta Phys. -Chim. Sin. 2018, 34, 1397.  doi: 10.3866/PKU.WHXB201804022

    49. [49]

      Han, G. Q.; Jin, Y. H.; Burgess, R. A.; Dickenson, N. E.; Cao, X. M.; Sun, Y. J. J. Am. Chem. Soc. 2017, 139, 15584. doi: 10.1021/jacs.7b08657  doi: 10.1021/jacs.7b08657

    50. [50]

      Zhao, Q.; Sun, J.; Li, S. C.; Huang, C. P.; Yao, W. F.; Chen, W.; Zeng, T.; Wu, Q.; Xu, Q. J. ACS Catal. 2018, 8, 11863. doi: 10.1021/acscatal.8b03737  doi: 10.1021/acscatal.8b03737

    51. [51]

      Zhang, K.; Ran, J. R.; Zhu, B. C.; Ju, H. X.; Yu, J. G.; Song, L.; Qiao, S. Z. Small 2018, 14, 1801705. doi: 10.1002/smll.201801705  doi: 10.1002/smll.201801705

    52. [52]

      Lin, H. Y.; Yang, H. C.; Wang, W. L. Catal. Today 2011, 174, 106. doi: 10.1016/j.cattod.2011.01.052  doi: 10.1016/j.cattod.2011.01.052

    53. [53]

      Liu, J. N.; Jia, Q. H.; Long, J. L.; Wang, X. X.; Gao, Z. W.; Gu, Q. Appl. Catal. B: Environ. 2018, 222, 35. doi: 10.1016/j.apcatb.2017.09.073  doi: 10.1016/j.apcatb.2017.09.073

    54. [54]

      Xu, Y.; Gong, Y. Y.; Ren, H.; Liu, W. B.; Li, C.; Liu, X. J.; Niu, L. Y. J. Alloys Compd. 2017, 735, 2551. doi: 10.1016/j.jallcom.2017.11.388  doi: 10.1016/j.jallcom.2017.11.388

    55. [55]

      Foo, W. J.; Zhang, C.; Ho, G. W. Nanoscale 2013, 5, 759. doi: 10.1039/c2nr33004k  doi: 10.1039/c2nr33004k

    56. [56]

      Wang, X. J.; Tian, X.; Sun, Y. J.; Zhu, J. Y.; Li, F. T.; Mu, H. Y.; Zhao, J. Nanoscale 2018, 10, 12315. doi: 10.1039/c8nr03846e  doi: 10.1039/c8nr03846e

    57. [57]

      Wang, P. F.; Zhan, S. H.; Wang, H. T.; Xia, Y. G.; Hou, Q. L.; Zhou, Q. X.; Li, Y.; Kumar, R. R. Appl. Catal. B: Environ. 2018, 230, 210. doi: 10.1016/j.apcatb.2018.02.043  doi: 10.1016/j.apcatb.2018.02.043

    58. [58]

      Chen, Y. B.; Qin, Z. X. Catal. Sci. Technol. 2016, 6, 8212. doi: 10.1039/c6cy01653g  doi: 10.1039/c6cy01653g

    59. [59]

      Indra, A.; Acharjya, A.; Menezes, P. W.; Merschjann, C.; Hollmann, D.; Schwarze, M.; Aktas, M.; Friedrich, A.; Lochbrunner, S.; Thomas, A.; et al. Angew. Chem. Int. Ed. 2017, 56, 1653. doi: 10.1002/anie.201611605

    60. [60]

      Kumar, D. P.; Choi, J.; Hong, S.; Reddy, D. A.; Lee, S.; Kim, T. K. ACS Sustain. Chem. Eng. 2016, 4, 7158. doi: 10.1021/acssuschemeng.6b02032  doi: 10.1021/acssuschemeng.6b02032

    61. [61]

      Yin, L. S.; Hai, X.; Chang, K.; Ichihara, F.; Ye, J. H. Small 2018, 14, 1704153. doi: 10.1002/smll.201704153  doi: 10.1002/smll.201704153

    62. [62]

      Garcia-Esparza, A. T.; Cha, D.; Ou, Y. W.; Kubota, J.; Domen, K.; Takanabe, K. ChemSusChem 2013, 6, 168. doi: 10.1002/cssc.201200780  doi: 10.1002/cssc.201200780

    63. [63]

      Nurlaela, E.; Wang, H.; Shinagawa, T.; Flanagan, S.; Ould-Chikh, S.; Qureshi, M.; Mics, Z.; Sautet, P.; Le Bahers, T.; Cánovas, E.; et al. ACS Catal. 2016, 6, 4117. doi: 10.1021/acscatal.6b00508

    64. [64]

      Li, M.; Bai, L.; Wu, S. J.; Wen, X. D.; Guan, J. Q. ChemSusChem 2018, 11, 1722. doi: 10.1002/cssc.201800489  doi: 10.1002/cssc.201800489

    65. [65]

      Zhang, H. Y.; Tian, W. J.; Zhou, L.; Sun, H. Q.; Tade, M.; Wang, S. B. Appl. Catal. B: Environ. 2017, 223, 2. doi: 10.1016/j.apcatb.2017.03.028  doi: 10.1016/j.apcatb.2017.03.028

    66. [66]

      Zhang, G. G.; Zang, S. H.; Wang, X. C. ACS Catal. 2015, 5, 941. doi: 10.1021/cs502002u  doi: 10.1021/cs502002u

    67. [67]

      Zhang, L. Z.; Yang, C.; Xi, Z. L.; Wang, X. C. Appl. Catal. B: Environ. 2018, 224, 886. doi: 10.1016/j.apcatb.2017.11.023  doi: 10.1016/j.apcatb.2017.11.023

    68. [68]

      Yoshinaga, T.; Saruyama, M.; Xiong, A.; Ham, Y.; Kuang, Y. B.; Niishiro, R.; Akiyama, S.; Sakamoto, M.; Hisatomi, T.; Domen, K.; et al. Nanoscale 2018, 10, UNSP10420. doi: 10.1039/c8nr00377g

    69. [69]

      Ye, C.; Li, J. X.; Li, Z. J.; Li, X. B.; Fan, X. B.; Zhang, L. P.; Chen, B.; Tung, C. H.; Wu, L. Z. ACS Catal. 2015, 5, 6973. doi: 10.1021/acscatal.5b02185  doi: 10.1021/acscatal.5b02185

    70. [70]

      Wang, D. E.; Li, R. G.; Zhu, J.; Shi, J. Y.; Han, J. F.; Zong, X.; Li, C. J. Phys. Chem. C 2012, 116, 5082. doi: 10.1021/jp210584b  doi: 10.1021/jp210584b

    71. [71]

      Yan, H. J.; Yang, J. H.; Ma, G. J.; Wu, G. P.; Zong, X.; Lei, Z. B.; Shi, J. Y.; Li, C. J. Catal. 2009, 266, 165. doi: 10.1016/j.jcat.2009.06.024  doi: 10.1016/j.jcat.2009.06.024

    72. [72]

      Maeda, K.; Xiong, A. K.; Yoshinaga, T.; Ikeda, T.; Sakamoto, N.; Hisatomi, T.; Takashima, M.; Lu, D. L.; Kanehara, M.; Setoyama, T.; et al. Angew. Chem. Int. Ed. 2010, 49, 4096. doi: 10.1002/anie.201001259  doi: 10.1002/anie.201001259

    73. [73]

      Maeda, K.; Lu, D. L.; Domen, K. Chemistry 2013, 19, 4986. doi: 10.1002/chem.201300158  doi: 10.1002/chem.201300158

    74. [74]

      Chen, S. S.; Qi, Y.; Hisatomi, T.; Ding, Q.; Asai, T.; Li, Z.; Ma, S. S. K.; Zhang, F. X.; Domen, K.; Li, C. Angew. Chem. Int. Ed. 2015, 54, 8498. doi: 10.1002/anie.201502686  doi: 10.1002/anie.201502686

    75. [75]

      Wang, Q.; Hisatomi, T.; Jia, Q. X.; Tokudome, H.; Zhong, M.; Wang, C. Z.; Pan, Z. H.; Takata, T.; Nakabayashi, M.; Shibata, N.; et al. Nat. Mater. 2016, 15, 611. doi: 10.1038/nmat4589

    76. [76]

      Lin, L. H.; Yu, Z. Y.; Wang, X. C. Angew. Chem. Int. Ed. 2018, 58, 6164. doi: 10.1002/anie.201809897  doi: 10.1002/anie.201809897

    77. [77]

      Niu, W. H.; Yang, Y. ACS Energy Lett. 2018, 3, 2796. doi: 10.1021/acsenergylett.8b01594  doi: 10.1021/acsenergylett.8b01594

    78. [78]

      Zhang, J. W.; Gong, S.; Mahmood, N.; Pan, L.; Zhang, X. W.; Zou, J. -J. Appl. Catal. B: Environ. 2018, 221, 9. doi: 10.1016/j.apcatb.2017.09.003  doi: 10.1016/j.apcatb.2017.09.003

    79. [79]

      Zheng, Y.; Lin, L. H.; Wang, B.; Wang, X. C. Angew. Chem. Int. Ed. 2015, 54, 12868. doi: 10.1002/anie.201501788  doi: 10.1002/anie.201501788

    80. [80]

      Pan, Z. M.; Zhang, G. G.; Wang, X. C. Angew. Chem. Int. Ed. 2019. doi: 10.1002/anie.201902634  doi: 10.1002/anie.201902634

    81. [81]

      Huang, Z. F.; Song, J. J.; Wang, X.; Pan, L.; Li, K.; Zhang, X. W.; Wang, L.; Zou, J. -J. Nano Energy 2017, 40, 308. doi: 10.1016/j.nanoen.2017.08.032  doi: 10.1016/j.nanoen.2017.08.032

    82. [82]

      Zheng, Y.; Yu, Z. H.; Ou, H. H.; Asiri, A. M.; Chen, Y. L.; Wang, X. C. Adv. Funct. Mater. 2018, 28, 1705407. doi: 10.1002/adfm.201705407  doi: 10.1002/adfm.201705407

    83. [83]

      Liu, N. Y.; Han, M. M.; Sun, Y.; Zhu, C.; Zhou, Y. J.; Zhang, Y. L.; Huang, H.; Kremnican, V.; Liu, Y.; Lifshitz, Y.; et al. Energy Environ. Sci. 2018, 11, 1841. doi: 10.1039/c7ee03459h

    84. [84]

      Zhang, G. G.; Lan, Z. A.; Lin, L. H.; Lin, S.; Wang, X. C. Chem. Sci. 2016, 7, 3062. doi: 10.1039/c5sc04572j  doi: 10.1039/c5sc04572j

    85. [85]

      Pan, Z. M.; Zheng, Y.; Guo, F. S.; Niu, P. P.; Wang, X. C. ChemSusChem 2017, 10, 87. doi: 10.1002/cssc.201600850  doi: 10.1002/cssc.201600850

    86. [86]

      Zheng, D. D.; Cao, X. N.; Wang, X. C. Angew. Chem. Int. Ed. 2016, 55, 11512. doi: 10.1002/anie.201606102  doi: 10.1002/anie.201606102

    87. [87]

      Sun, S. C.; Zhang, Y. C.; Shen, G. Q.; Wang, Y. T.; Liu, X. L.; Duan, Z. W.; Pan, L.; Zhang, X. W.; Zou, J. -J. Appl. Catal. B: Environ. 2019, 243, 253. doi: 10.1016/j.apcatb.2018.10.051  doi: 10.1016/j.apcatb.2018.10.051

  • 加载中
    1. [1]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    2. [2]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    3. [3]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    4. [4]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    5. [5]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    6. [6]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    7. [7]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    8. [8]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    11. [11]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    12. [12]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    13. [13]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    14. [14]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    15. [15]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    16. [16]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    17. [17]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    18. [18]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    19. [19]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    20. [20]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

Metrics
  • PDF Downloads(16)
  • Abstract views(870)
  • HTML views(204)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return