Citation: Cao Bin, Li Xifei. Recent Progress on Carbon-based Anode Materials for Na-ion Batteries[J]. Acta Physico-Chimica Sinica, ;2020, 36(5): 190500. doi: 10.3866/PKU.WHXB201905003 shu

Recent Progress on Carbon-based Anode Materials for Na-ion Batteries

  • Corresponding author: Li Xifei, xfli2011@hotmail.com
  • Received Date: 2 May 2019
    Revised Date: 26 June 2019
    Accepted Date: 31 July 2019
    Available Online: 9 May 2019

    Fund Project: The project was supported by the National Natural Science Foundation of China (51572194, 51672189) and the China Postdoctoral Science Foundation (2018M643697, 2019T120930)the China Postdoctoral Science Foundatio 2018M643697the China Postdoctoral Science Foundatio 2019T120930the National Natural Science Foundation of China 51572194the National Natural Science Foundation of China 51672189

  • Na-ion batteries are currently an emerging and low-cost energy storage technology, which have attracted enormous attention and research due to its promising potentiality for large-scale energy storage applications. As the key electrode materials for Na-ion batteries, non-graphite carbonaceous materials have been regarded as the best choice for practical application due to its high sodium storage activity, low-cost and non-toxicity. According to the current research, graphite materials are not suitable to be anode materials of Na-ion batteries for practical application due to its low sodium storage capacity in carbonate electrolytes. Hard carbons have a high capacity of ~300 mAh·g-1 with low sodium storage potential and thus are suitable for practical applications. Soft carbons have a sodium storage capacity about 200 mAh·g-1 with sodium storage potential below 1 V vs. Na+/Na. Soft carbons usually exhibit excellent rate performances and thus are suitable to be used as anode materials for power Na-ion batteries. Reduced graphene oxide (rGO) has a sodium storage capacity of about 220 mAh·g-1 and excellent rate performances. A high sodium storage capacity can be obtained by doping heteroatoms and introducing defect sites in rGO. However, the low material density, high sodium storage potential and large irreversible capacity of rGO will restrict its practical application. Porous carbons have high capacities of 300-450 mAh·g-1 with excellent rate performances because their developed porous structure can provide more defects as the active sites for sodium storage and shorten the diffusion path of Na+ to improve rate performances. Carbon nanowires/fibers have good flexibility due to their unique one-dimensional feature and stable sodium storage reversible capacity with good rate performance. These materials have advantages to be flexible electrodes for sodium-based flexible energy storage devices. By introducing N, S and other heteroatoms, heteroatom-doped carbons have more active sites for sodium storage and thus achieve higher sodium storage capacity. In summary, carbon materials with low graphitization degree are important development directions for anode materials of low cost Na-ion batteries. New carbon materials with unique microstructure and morphology have higher sodium storage capacity and rate capability, so they can be used as high power anode materials for sodium storage. Considering many factors, such as cycle life, energy density, power density and manufacturing cost, of practical application, hard carbon anodes is currently the best choice for practical application of Na-ion batteries. In the future, improving SEI stability, increasing Coulombic efficiency and improving electrical conductivity of hard carbon are urgent problems to be solved for practical application. Herein, the recent progress of carbonaceous anode materials is reviewed. The sodium storage mechanism and characteristics of carbon materials are summarized and discussed. Furthermore, the relationship between micro-structures and electrochemical performances, and remained problems of carbon anodes are discussed. This review will promote the development and understanding of carbon anode materials for sodium storage.
  • 加载中
    1. [1]

      Goodenough, J. B. Nat. Electron. 2018, 1, 204. doi: 10.1038/s41928-018-0048-6  doi: 10.1038/s41928-018-0048-6

    2. [2]

      Zhang, S.; Zheng, Y.; Huang, X.; Hong, J.; Cao, B.; Hao, J.; Fan, Q.; Zhou, T.; Guo, Z. Adv. Energy Mater. 2019, 9, 1900081. doi: 10.1002/aenm.201900081  doi: 10.1002/aenm.201900081

    3. [3]

      Liu, H.; Zhang, S.; Zhu, Q.; Cao, B.; Zhang, P.; Sun, N.; Xu, B.; Wu, F.; Chen, R. J. Mater. Chem. A 2019, 7, 11205. doi: 10.1039/c9ta02030f  doi: 10.1039/c9ta02030f

    4. [4]

      Yang, Y.; Ni, C.; Gao, M.; Wang, J.; Liu, Y.; Pan, H. Energy Storage Mater. 2018, 14, 279. doi: 10.1016/j.ensm.2018.04.008  doi: 10.1016/j.ensm.2018.04.008

    5. [5]

      Yang, Y.; Qu, X.; Zhang, L.; Gao, M.; Liu, Y.; Pan, H. ACS Appl. Mater. Inter. 2018, 10, 20591. doi: 10.1021/acsami.8b05609  doi: 10.1021/acsami.8b05609

    6. [6]

      Wang, X.; Chen, K.; Wang, G.; Liu, X.; Wang, H. ACS Nano 2017, 11, 11602. doi: 10.1021/acsnano.7b06625  doi: 10.1021/acsnano.7b06625

    7. [7]

      Cao, B.; Liu, H.; Xing, Z.; Lei, Y.; Song, H.; Chen, X.; Zhou, J.; Ma, Z. ACS Sustain. Chem. Eng. 2015, 3, 1786. doi: 10.1021/acssuschemeng.5b00359  doi: 10.1021/acssuschemeng.5b00359

    8. [8]

      Tarascon, J. Nat. Chem. 2010, 2, 510. doi: 10.1038/nchem.680  doi: 10.1038/nchem.680

    9. [9]

      Qin, J.; Kheimeh Sari, H. M.; He, C.; Li, X. J. Mater. Chem. A 2019, 7, 3673. doi: 10.1039/c8ta12040d  doi: 10.1039/c8ta12040d

    10. [10]

      Cao, B.; Zhang, Q.; Liu, H.; Xu, B.; Zhang, S.; Zhou, T.; Mao, J.; Pang, W. K.; Guo, Z.; Li, A.; et al. Adv. Energy Mater. 2018, 8, 1801149. doi: 10.1002/aenm.201801149  doi: 10.1002/aenm.201801149

    11. [11]

      Zhang, Q.; Mao, J.; Pang, W. K.; Zheng, T.; Sencadas, V.; Chen, Y.; Liu, Y.; Guo, Z. Adv. Energy Mater. 2018, 8, 1703288. doi: 10.1002/aenm.201703288  doi: 10.1002/aenm.201703288

    12. [12]

      Wu, X.; Leonard, D. P.; Ji, X. Chem. Mater. 2017, 29, 5031. doi: 10.1021/acs.chemmater.7b01764  doi: 10.1021/acs.chemmater.7b01764

    13. [13]

      Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Chem. Rev. 2014, 114, 11636. doi: 10.1021/cr500192f  doi: 10.1021/cr500192f

    14. [14]

      Saurel, D.; Orayech, B.; Xiao, B.; Carriazo, D.; Li, X.; Rojo, T. Adv. Energy Mater. 2018, 8, 1703268. doi: 10.1002/aenm.201703268  doi: 10.1002/aenm.201703268

    15. [15]

      Pan, H.; Hu, Y.; Chen, L. Energy Environ. Sci. 2013, 6, 2338. doi: 10.1039/c3ee40847g  doi: 10.1039/c3ee40847g

    16. [16]

      Li, L.; Zheng, Y.; Zhang, S.; Yang, J.; Shao, Z.; Guo, Z. Energy Environ. Sci. 2018, 11, 2310. doi: 10.1039/c8ee01023d  doi: 10.1039/c8ee01023d

    17. [17]

      Mao, J.; Zhou, T.; Zheng, Y.; Gao, H.; Liu, H. K.; Guo, Z. J. Mater. Chem. A 2018, 6, 3284. doi: 10.1039/c7ta10500b  doi: 10.1039/c7ta10500b

    18. [18]

      Qiu, S.; Cao, Y.; Ai, X.; Yang, H. Sci. Sin. Chim. 2017, 47, 573.  doi: 10.1360/n032016-00236

    19. [19]

      He, H.; Wang, H.; Tang, Y.; Liu, Y. Prog. Chem. 2014, 26, 572.  doi: 10.7536/pc130919

    20. [20]

      Jin, Y.; Sun, X.; Yu, Y.; Ding, C.; Chen, C.; Guan, Y. Prog. Chem. 2014, 26, 582.  doi: 10.7536/pc130914

    21. [21]

      Fang, Z.; Cao, Y.; Hu, Y.; Chen, L.; Huang, X. Energ. Stor. Sci. Technol. 2016, 5, 149.  doi: 10.3969/j.issn.2095-4239.2016.02.005

    22. [22]

      Delmas, C.; Braconnier, J.; Fouassier, C.; Hagenmuller, P. Solid State Ionics. 1981, 3, 165. doi: 10.1016/0167-2738(81)90076-x  doi: 10.1016/0167-2738(81)90076-x

    23. [23]

      Liu, T.; Zhang, Y.; Jiang, Z.; Zeng, X.; Ji, J.; Li, Z.; Gao, X.; Sun, M.; Lin, Z.; Ling, M.; et al. Energy Environ. Sci. 2019, 12, 1512. doi: 10.1039/c8ee03727b  doi: 10.1039/c8ee03727b

    24. [24]

      Zhu, Q.; Chang, X.; Sun, N.; Liu, H.; Chen, R.; Wu, F.; Xu, B. J. Mater. Chem. A 2017, 5, 9982. doi: 10.1039/c7ta02165h  doi: 10.1039/c7ta02165h

    25. [25]

      Fang, Y.; Chen, Z.; Ai, X.; Yang, H.; Cao, Y. Acta Phys. -Chim. Sin. 2017, 33, 211.  doi: 10.3866/PKU.WHXB201610111

    26. [26]

      Cao, Y.; Xiao, L.; Sushko, M. L.; Wang, W.; Schwenzer, B.; Xiao, J.; Nie, Z.; Saraf, L. V.; Yang, Z.; Liu, J. Nano Lett. 2012, 12, 3783. doi: 10.1021/nl3016957  doi: 10.1021/nl3016957

    27. [27]

      Wen, Y.; He, K.; Zhu, Y.; Han, F.; Xu, Y.; Matsuda, I.; Ishii, Y.; Cumings, J.; Wang, C. Nat. Commun. 2014, 5, doi: 10.1038/ncomms5033  doi: 10.1038/ncomms5033

    28. [28]

      Jache, B.; Adelhelm, P. Angew. Chem. Int. Ed. 2014, 53, 10169. doi: 10.1002/anie.201403734  doi: 10.1002/anie.201403734

    29. [29]

      Jian, Z.; Luo, W.; Ji, X. J. Am. Chem. Soc. 2015, 137, 11566. doi: 10.1021/jacs.5b06809  doi: 10.1021/jacs.5b06809

    30. [30]

      Stevens, D. A.; Dahn, J. R. J. Electrochem. Soc. 2001, 148, A803. doi: 10.1149/1.1379565  doi: 10.1149/1.1379565

    31. [31]

      Moriwake, H.; Kuwabara, A.; Fisher, C. A. J.; Ikuhara, Y. RSC Adv. 2017, 7, 36550. doi: 10.1039/c7ra06777a  doi: 10.1039/c7ra06777a

    32. [32]

      Liu, Y.; Merinov, B. V.; Goddard, W. A. Proc. Natl. Acad. Sci. 2016, 113, 3735. doi: 10.1073/pnas.1602473113  doi: 10.1073/pnas.1602473113

    33. [33]

      Dresselhaus, M. S.; Dresselhaus, G. Adv. Phys. 2006, 30, 139. doi: 10.1080/00018738100101367  doi: 10.1080/00018738100101367

    34. [34]

      Sangster, J. J. Phase Equilib. Diff. 2007, 28, 571. doi: 10.1007/s11669-007-9194-7  doi: 10.1007/s11669-007-9194-7

    35. [35]

      Kim, H.; Hong, J.; Park, Y.; Kim, J.; Hwang, I.; Kang, K. Adv. Funct. Mater. 2015, 25, 534. doi: 10.1002/adfm.201402984  doi: 10.1002/adfm.201402984

    36. [36]

      Yoon, G.; Kim, H.; Park, I.; Kang, K. Adv. Energy Mater. 2016, 7, 1601519. doi: 10.1002/aenm.201601519  doi: 10.1002/aenm.201601519

    37. [37]

      Doeff, M. M.; Ma, Y.; Visco, S. J.; Jonghe, L. C. D. J. Electrochem. Soc. 1993, 140, L169. doi: 10.1149/1.2221153  doi: 10.1149/1.2221153

    38. [38]

      Alcántara, R.; Fernández Madrigal, F. J.; Lavela, P.; Tirado, J. L.; Jiménez Mateos, J. M.; Gómez De Salazar, C.; Stoyanova, R.; Zhecheva, E. Carbon 2000, 38, 1031. doi: 10.1016/S0008-6223(99)00215-8  doi: 10.1016/S0008-6223(99)00215-8

    39. [39]

      Alcántara, R.; Lavela, P.; Ortiz, G. F.; Tirado, J. L.; Menéndez, R.; Santamaría, R.; Jiménez-Mateos, J. M. Carbon 2003, 41, 3003. doi: 10.1016/S0008-6223(03)00432-9  doi: 10.1016/S0008-6223(03)00432-9

    40. [40]

      Song, L.; Liu, S.; Yu, B.; Wang, C.; Li, M. Carbon 2015, 95, 972. doi: 10.1016/j.carbon.2015.09.032  doi: 10.1016/j.carbon.2015.09.032

    41. [41]

      Cao, B.; Liu, H.; Xu, B.; Lei, Y.; Chen, X.; Song, H. J. Mater. Chem. A 2016, 4, 6472. doi: 10.1039/C6TA00950F  doi: 10.1039/C6TA00950F

    42. [42]

      Luo, W.; Jian, Z.; Xing, Z.; Wang, W.; Bommier, C.; Lerner, M. M.; Ji, X. ACS Cent. Sci. 2015, 1, 516. doi: 10.1021/acscentsci.5b00329  doi: 10.1021/acscentsci.5b00329

    43. [43]

      Jian, Z.; Bommier, C.; Luo, L.; Li, Z.; Wang, W.; Wang, C.; Greaney, P. A.; Ji, X. Chem. Mater. 2017, 29, 2314. doi: 10.1021/acs.chemmater.6b05474  doi: 10.1021/acs.chemmater.6b05474

    44. [44]

      Thomas, P.; Billaud, D. Electrochim. Acta 2002, 47, 3303. doi: 10.1016/S0013-4686(02)00250-5  doi: 10.1016/S0013-4686(02)00250-5

    45. [45]

      Irisarri, E.; Ponrouch, A.; Palacin, M. R. J. Electrochem. Soc. 2015, 162, A2476. doi: 10.1149/2.0091514jes  doi: 10.1149/2.0091514jes

    46. [46]

      Sun, N.; Guan, Y.; Liu, Y.; Zhu, Q.; Shen, J.; Liu, H.; Zhou, S.; Xu, B. Carbon 2018, 137, 475. doi: 10.1016/j.carbon.2018.05.056  doi: 10.1016/j.carbon.2018.05.056

    47. [47]

      Wang, Y.; Xiao, N.; Wang, Z.; Li, H.; Yu, M.; Tang, Y.; Hao, M.; Liu, C.; Zhou, Y.; Qiu, J. Chem. Eng. J. 2018, 342, 52. doi: 10.1016/j.cej.2018.01.098  doi: 10.1016/j.cej.2018.01.098

    48. [48]

      Li, Y.; Hu, Y.; Li, H.; Chen, L.; Huang, X. J. Mater. Chem. A 2016, 4, 96. doi: 10.1039/c5ta08601a  doi: 10.1039/c5ta08601a

    49. [49]

      Jin, J.; Yu, B.; Shi, Z.; Wang, C.; Chong, C. J. Power Sources 2014, 272, 800. doi: 10.1016/j.jpowsour.2014.08.119  doi: 10.1016/j.jpowsour.2014.08.119

    50. [50]

      Li, Y.; Xu, S.; Wu, X.; Yu, J.; Wang, Y.; Hu, Y.; Li, H.; Chen, L.; Huang, X. J. Mater. Chem. A 2015, 3, 71. doi: 10.1039/c4ta05451b  doi: 10.1039/c4ta05451b

    51. [51]

      Tang, K.; Fu, L.; White, R. J.; Yu, L.; Titirici, M.; Antonietti, M.; Maier, J. Adv. Energy Mater. 2012, 2, 873. doi: 10.1002/aenm.201100691  doi: 10.1002/aenm.201100691

    52. [52]

      Xiao, L.; Cao, Y.; Henderson, W. A.; Sushko, M. L.; Shao, Y.; Xiao, J.; Wang, W.; Engelhard, M. H.; Nie, Z.; Liu, J. Nano Energy 2016, 19, 279. doi: 10.1016/j.nanoen.2015.10.034  doi: 10.1016/j.nanoen.2015.10.034

    53. [53]

      Rybarczyk, M. K.; Li, Y.; Qiao, M.; Hu, Y.; Titirici, M.; Lieder, M. J. Energy Chem. 2019, 29, 17. doi: 10.1016/j.jechem.2018.01.025  doi: 10.1016/j.jechem.2018.01.025

    54. [54]

      Luo, W.; Schardt, J.; Bommier, C.; Wang, B.; Razink, J.; Simonsen, J.; Ji, X. J. Mater. Chem. A 2013, 1, 10662. doi: 10.1039/c3ta12389h  doi: 10.1039/c3ta12389h

    55. [55]

      Luo, W.; Wang, B.; Heron, C. G.; Allen, M. J.; Morre, J.; Maier, C. S.; Stickle, W. F.; Ji, X. Nano Lett. 2014, 14, 2225. doi: 10.1021/nl500859p  doi: 10.1021/nl500859p

    56. [56]

      Zhu, X.; Li, Q.; Qiu, S.; Liu, X.; Xiao, L.; Ai, X.; Yang, H.; Cao, Y. JOM 2016, 68, 2579. doi: 10.1007/s11837-016-2064-1  doi: 10.1007/s11837-016-2064-1

    57. [57]

      Li, Y.; Hu, Y.; Titirici, M.; Chen, L.; Huang, X. Adv. Energy Mater. 2016, 6, 1600659. doi: 10.1002/aenm.201600659  doi: 10.1002/aenm.201600659

    58. [58]

      Li, Y.; Mu, L.; Hu, Y.; Li, H.; Chen, L.; Huang, X. Energy Storage Mater. 2016, 2, 139. doi: 10.1016/j.ensm.2015.10.003  doi: 10.1016/j.ensm.2015.10.003

    59. [59]

      Ding, J.; Wang, H.; Li, Z.; Cui, K.; Karpuzov, D.; Tan, X.; Kohandehghan, A.; Mitlin, D. Energy Environ. Sci. 2015, 8, 941. doi: 10.1039/c4ee02986k  doi: 10.1039/c4ee02986k

    60. [60]

      Lotfabad, E. M.; Ding, J.; Cui, K.; Kohandehghan, A.; Kalisvaart, W. P.; Hazelton, M.; Mitlin, D. ACS Nano 2014, 8, 7115. doi: 10.1021/nn502045y  doi: 10.1021/nn502045y

    61. [61]

      Hong, K.; Qie, L.; Zeng, R.; Yi, Z.; Zhang, W.; Wang, D.; Yin, W.; Wu, C.; Fan, Q.; Zhang, W.; et al. J. Mater. Chem. A 2014, 2, 12733. doi: 10.1039/c4ta02068e  doi: 10.1039/c4ta02068e

    62. [62]

      Ding, J.; Wang, H.; Li, Z.; Kohandehghan, A.; Cui, K.; Xu, Z.; Zahiri, B.; Tan, X.; Lotfabad, E. M.; Olsen, B. C.; Mitlin, D. ACS Nano 2013, 7, 11004. doi: 10.1021/nn404640c  doi: 10.1021/nn404640c

    63. [63]

      Zheng, Y.; Wang, Y.; Lu, Y.; Hu, Y.; Li, J. Nano Energy 2017, 39, 489. doi: 10.1016/j.nanoen.2017.07.018  doi: 10.1016/j.nanoen.2017.07.018

    64. [64]

      Zheng, Y.; Lu, Y.; Qi, X.; Wang, Y.; Mu, L.; Li, Y.; Ma, Q.; Li, J.; Hu, Y. Energy Storage Mater. 2019, 18, 269. doi: 10.1016/j.ensm.2018.09.002  doi: 10.1016/j.ensm.2018.09.002

    65. [65]

      Zhao, C.; Wang, Q.; Lu, Y.; Li, B.; Chen, L.; Hu, Y. Sci. Bull. 2018, 63, 1125. doi: 10.1016/j.scib.2018.07.018  doi: 10.1016/j.scib.2018.07.018

    66. [66]

      Li, Y.; Hu, Y.; Qi, X.; Rong, X.; Li, H.; Huang, X.; Chen, L. Energy Storage Mater. 2016, 5, 191. doi: 10.1016/j.ensm.2016.07.006  doi: 10.1016/j.ensm.2016.07.006

    67. [67]

      Lu, Y.; Zhao, C.; Qi, X.; Qi, Y.; Li, H.; Huang, X.; Chen, L.; Hu, Y. Adv. Energy Mater. 2018, 8, 1800108. doi: 10.1002/aenm.201800108  doi: 10.1002/aenm.201800108

    68. [68]

      Sun, N.; Liu, H.; Xu, B. J. Mater. Chem. A 2015, 3, 20560. doi: 10.1039/c5ta05118e  doi: 10.1039/c5ta05118e

    69. [69]

      Stevens, D. A.; Dahn, J. R. J. Electrochem. Soc. 2000, 147, 4428. doi: 10.1149/1.1394081  doi: 10.1149/1.1394081

    70. [70]

      Komaba, S.; Murata, W.; Ishikawa, T.; Yabuuchi, N.; Ozeki, T.; Nakayama, T.; Ogata, A.; Gotoh, K.; Fujiwara, K. Adv. Funct. Mater. 2011, 21, 3859. doi: 10.1002/adfm.201100854  doi: 10.1002/adfm.201100854

    71. [71]

      Bommier, C.; Surta, T. W.; Dolgos, M.; Ji, X. Nano Lett. 2015, 15, 5888. doi: 10.1021/acs.nanolett.5b01969  doi: 10.1021/acs.nanolett.5b01969

    72. [72]

      Qiu, S.; Xiao, L.; Sushko, M. L.; Han, K. S.; Shao, Y.; Yan, M.; Liang, X.; Mai, L.; Feng, J.; Cao, Y.; et al. Adv. Energy Mater. 2017, 7, 1700403. doi: 10.1002/aenm.201700403  doi: 10.1002/aenm.201700403

    73. [73]

      Alvin, S.; Yoon, D.; Chandra, C.; Cahyadi, H. S.; Park, J.; Chang, W.; Chung, K. Y.; Kim, J. Carbon 2019, 145, 67. doi: 10.1016/j.carbon.2018.12.112  doi: 10.1016/j.carbon.2018.12.112

    74. [74]

      Bai, P.; He, Y.; Zou, X.; Zhao, X.; Xiong, P.; Xu, Y. Adv. Energy Mater. 2018, 8, 1703217. doi: 10.1002/aenm.201703217  doi: 10.1002/aenm.201703217

    75. [75]

      Xu, B.; Wang, H.; Zhu, Q.; Sun, N.; Anasori, B.; Hu, L.; Wang, F.; Guan, Y.; Gogotsi, Y. Energy Storage Mater. 2018, 12, 128. doi: 10.1016/j.ensm.2017.12.006  doi: 10.1016/j.ensm.2017.12.006

    76. [76]

      Guo, P.; Song, H.; Chen, X. Electrochem. Commun. 2009, 11, 1320. doi: 10.1016/j.elecom.2009.04.036  doi: 10.1016/j.elecom.2009.04.036

    77. [77]

      Liu, H.; Jia, M.; Zhu, Q.; Cao, B.; Chen, R.; Wang, Y.; Wu, F.; Xu, B. ACS Appl. Mater. Inter. 2016, 8, 26878. doi: 10.1021/acsami.6b09496  doi: 10.1021/acsami.6b09496

    78. [78]

      Wang, Y.; Chou, S.; Liu, H.; Dou, S. Carbon 2013, 57, 202. doi: 10.1016/j.carbon.2013.01.064  doi: 10.1016/j.carbon.2013.01.064

    79. [79]

      Yan, Y.; Yin, Y.; Guo, Y.; Wan, L. Adv. Energy Mater. 2014, 4, 1301584. doi: 10.1002/aenm.201301584  doi: 10.1002/aenm.201301584

    80. [80]

      Zhou, X.; Zhu, X.; Liu, X.; Xu, Y.; Liu, Y.; Dai, Z.; Bao, J. J. Phys. Chem. C 2014, 118, 22426. doi: 10.1021/jp5064403  doi: 10.1021/jp5064403

    81. [81]

      Xu, J.; Wang, M.; Wickramaratne, N. P.; Jaroniec, M.; Dou, S.; Dai, L. Adv. Mater. 2015, 27, 2042. doi: 10.1002/adma.201405370  doi: 10.1002/adma.201405370

    82. [82]

      Yun, Y. S.; Park, Y.; Chang, S.; Kim, B. H.; Choi, J.; Wang, J.; Zhang, D.; Braun, P. V.; Jin, H.; Kang, K. Carbon 2016, 99, 658. doi: 10.1016/j.carbon.2015.12.047  doi: 10.1016/j.carbon.2015.12.047

    83. [83]

      Yang, Y.; Tang, D.; Zhang, C.; Zhang, Y.; Liang, Q.; Chen, S.; Weng, Q.; Zhou, M.; Xue, Y.; Liu, J.; et al. Energy Environ. Sci. 2017, 10, 979. doi: 10.1039/c7ee00329c  doi: 10.1039/c7ee00329c

    84. [84]

      Wenzel, S.; Hara, T.; Janek, J.; Adelhelm, P. Energy Environ. Sci. 2011, 4, 3342. doi: 10.1039/c1ee01744f  doi: 10.1039/c1ee01744f

    85. [85]

      Liu, H.; Jia, M.; Yue, S.; Cao, B.; Zhu, Q.; Sun, N.; Xu, B. J. Mater. Chem. A 2017, 5, 9572. doi: 10.1039/c7ta01891f  doi: 10.1039/c7ta01891f

    86. [86]

      Yun, Y. S.; Cho, S. Y.; Kim, H.; Jin, H.; Kang, K. ChemElectroChem 2015, 2, 359. doi: 10.1002/celc.201402359  doi: 10.1002/celc.201402359

    87. [87]

      Hou, H.; Banks, C. E.; Jing, M.; Zhang, Y.; Ji, X. Adv. Mater. 2015, 27, 7861. doi: 10.1002/adma.201503816  doi: 10.1002/adma.201503816

    88. [88]

      Kado, Y.; Soneda, Y.; Yoshizawa, N. ECS Electrochem. Lett. 2014, 4, A22. doi: 10.1149/2.0051502eel  doi: 10.1149/2.0051502eel

    89. [89]

      Qu, Q.; Yun, J.; Wan, Z.; Zheng, H.; Gao, T.; Shen, M.; Shao, J.; Zheng, H. RSC Adv. 2014, 4, 64692. doi: 10.1039/c4ra11009a  doi: 10.1039/c4ra11009a

    90. [90]

      Zhou, D.; Peer, M.; Yang, Z.; Pol, V. G.; Key, F. D.; Jorne, J.; Foley, H. C.; Johnson, C. S. J. Mater. Chem. A 2016, 4, 6271. doi: 10.1039/c6ta00242k  doi: 10.1039/c6ta00242k

    91. [91]

      Prabakar, S. J. R.; Jeong, J.; Pyo, M. Electrochim. Acta 2015, 161, 23. doi: 10.1016/j.electacta.2015.02.086  doi: 10.1016/j.electacta.2015.02.086

    92. [92]

      Stratford, J. M.; Allan, P. K.; Pecher, O.; Chater, P. A.; Grey, C. P. Chem. Commun. 2016, 52, 12430. doi: 10.1039/c6cc06990h  doi: 10.1039/c6cc06990h

    93. [93]

      Wang, X.; Liu, X.; Wang, G.; Xia, Y.; Wang, H. J. Mater. Chem. A 2016, 4, 18532. doi: 10.1039/c6ta07452a  doi: 10.1039/c6ta07452a

    94. [94]

      Zhu, J.; Chen, C.; Lu, Y.; Ge, Y.; Jiang, H.; Fu, K.; Zhang, X. Carbon 2015, 94, 189. doi: 10.1016/j.carbon.2015.06.076  doi: 10.1016/j.carbon.2015.06.076

    95. [95]

      Yang, H.; Xu, R.; Yu, Y. Energy Storage Mater. 2019. doi: 10.1016/j.ensm.2019.01.003  doi: 10.1016/j.ensm.2019.01.003

    96. [96]

      Sun, X.; Wang, C.; Gong, Y.; Gu, L.; Chen, Q.; Yu, Y. Small 2018, 14, 1802218. doi: 10.1002/smll.201802218  doi: 10.1002/smll.201802218

    97. [97]

      Yuan, B.; Zeng, L.; Sun, X.; Yu, Y.; Wang, Q. Nano Res. 2018, 11, 2256. doi: 10.1007/s12274-017-1847-1  doi: 10.1007/s12274-017-1847-1

    98. [98]

      Wang, M.; Yang, Z.; Li, W.; Gu, L.; Yu, Y. Small 2016, 12, 2559. doi: 10.1002/smll.201600101  doi: 10.1002/smll.201600101

    99. [99]

      Li, W.; Zeng, L.; Yang, Z.; Gu, L.; Wang, J.; Liu, X.; Cheng, J.; Yu, Y. Nanoscale 2014, 6, 693. doi: 10.1039/c3nr05022j  doi: 10.1039/c3nr05022j

    100. [100]

      Fu, L.; Tang, K.; Song, K.; A Van Aken, P.; Yu, Y.; Maier, J. Nanoscale 2014, 6, 1384. doi: 10.1039/c3nr05374a  doi: 10.1039/c3nr05374a

    101. [101]

      Xu, B.; Hou, S.; Cao, G.; Wu, F.; Yang, Y. J. Mater. Chem. 2012, 22, 19088. doi: 10.1039/c2jm32759g  doi: 10.1039/c2jm32759g

    102. [102]

      Mao, Y.; Duan, H.; Xu, B.; Zhang, L.; Hu, Y.; Zhao, C.; Wang, Z.; Chen, L.; Yang, Y. Energy Environ. Sci. 2012, 5, 7950. doi: 10.1039/c2ee21817h  doi: 10.1039/c2ee21817h

    103. [103]

      Guan, Z.; Liu, H.; Xu, B.; Hao, X.; Wang, Z.; Chen, L. J. Mater. Chem. A 2015, 3, 7849. doi: 10.1039/c5ta01446h  doi: 10.1039/c5ta01446h

    104. [104]

      Xu, B.; Yue, S.; Sui, Z.; Zhang, X.; Hou, S.; Cao, G.; Yang, Y. Energy Environ. Sci. 2011, 4, 2826. doi: 10.1039/c1ee01198g  doi: 10.1039/c1ee01198g

    105. [105]

      Shen, W.; Wang, C.; Xu, Q.; Liu, H.; Wang, Y. Adv. Energy Mater. 2015, 5, 1400982. doi: 10.1002/aenm.201400982  doi: 10.1002/aenm.201400982

    106. [106]

      Liu, H.; Jia, M.; Sun, N.; Cao, B.; Chen, R.; Zhu, Q.; Wu, F.; Qiao, N.; Xu, B. ACS Appl. Mater. Inter. 2015, 7, 27124. doi: 10.1021/acsami.5b06898  doi: 10.1021/acsami.5b06898

    107. [107]

      Liu, H.; Jia, M.; Cao, B.; Chen, R.; Lv, X.; Tang, R.; Wu, F.; Xu, B. J. Power Sources 2016, 319, 195. doi: 10.1016/j.jpowsour.2016.04.040  doi: 10.1016/j.jpowsour.2016.04.040

    108. [108]

      Zhou, C.; Li, A.; Cao, B.; Chen, X.; Jia, M.; Song, H. J. Electrochem. Soc. 2018, 165, A1447. doi: 10.1149/2.1061807jes  doi: 10.1149/2.1061807jes

    109. [109]

      Wang, H.; Wu, Z.; Meng, F.; Ma, D.; Huang, X.; Wang, L.; Zhang, X. ChemSusChem 2013, 6, 56. doi: 10.1002/cssc.201200680  doi: 10.1002/cssc.201200680

    110. [110]

      Fan, Q.; Zhang, W.; Duan, J.; Hong, K.; Xue, L.; Huang, Y. Electrochim. Acta 2015, 174, 970. doi: 10.1016/j.electacta.2015.06.039  doi: 10.1016/j.electacta.2015.06.039

    111. [111]

      Lin, Z.; Xiong, X.; Zheng, J.; Wang, G.; Yang, C. Mater. Lett. 2017, 202, 123. doi: 10.1016/j.matlet.2017.05.046  doi: 10.1016/j.matlet.2017.05.046

    112. [112]

      Liu, Y.; Gao, Z. ChemElectroChem 2017, 4, 1059. doi: 10.1002/celc.201600834  doi: 10.1002/celc.201600834

    113. [113]

      Xu, D.; Chen, C.; Xie, J.; Zhang, B.; Miao, L.; Cai, J.; Huang, Y.; Zhang, L. Adv. Energy Mater. 2016, 6, 1501929. doi: 10.1002/aenm.201501929  doi: 10.1002/aenm.201501929

    114. [114]

      Wang, S.; Xia, L.; Yu, L.; Zhang, L.; Wang, H.; Lou, X. W. D. Adv. Energy Mater. 2016, 6, doi: 10.1002/aenm.201502217  doi: 10.1002/aenm.201502217

    115. [115]

      Yang, F.; Zhang, Z.; Du, K.; Zhao, X.; Chen, W.; Lai, Y.; Li, J. Carbon 2015, 91, 88. doi: 10.1016/j.carbon.2015.04.049  doi: 10.1016/j.carbon.2015.04.049

    116. [116]

      Li, W.; Zhou, M.; Li, H.; Wang, K.; Cheng, S.; Jiang, K. Energy Environ. Sci. 2015, 8, 2916. doi: 10.1039/c5ee01985k  doi: 10.1039/c5ee01985k

    117. [117]

      Zhang, S.; Yao, F.; Yang, L.; Zhang, F.; Xu, S. Carbon 2015, 93, 143. doi: 10.1016/j.carbon.2015.04.091  doi: 10.1016/j.carbon.2015.04.091

    118. [118]

      Deng, X.; Xie, K.; Li, L.; Zhou, W.; Sunarso, J.; Shao, Z. Carbon 2016, 107, 67. doi: 10.1016/j.carbon.2016.05.052  doi: 10.1016/j.carbon.2016.05.052

    119. [119]

      Qie, L.; Chen, W.; Xiong, X.; Hu, C.; Zou, F.; Hu, P.; Huang, Y. Adv. Sci. 2015, 2, 1500195. doi: 10.1002/advs.201500195  doi: 10.1002/advs.201500195

    120. [120]

      Sun, N.; Guan, Z.; Liu, Y.; Cao, Y.; Zhu, Q.; Liu, H.; Wang, Z.; Zhang, P.; Xu, B. Adv. Energy Mater. 2019. doi: 10.1002/aenm.201901351  doi: 10.1002/aenm.201901351

    121. [121]

      Yang, H.; Zhang, X.; Hong, Y.; Maleki Kheimeh Sari, H.; Zhou, Z.; Sun, S.; Li, X. ChemSusChem 2019. doi: 10.1002/cssc.201901330  doi: 10.1002/cssc.201901330

    122. [122]

      Guo, N.; Zhang, S.; Wang, L.; Jia, D. Acta Phys. -Chim. Sin. 2020, 36, 1903055.  doi: 10.3866/PKU.WHXB201903055

    123. [123]

      Liu, H.; Zhang, X.; Zhu, Y.; Cao, B.; Zhu, Q.; Zhang, P.; Xu, B.; Wu, F.; Chen, R. Nano-Micro Lett. 2019. doi: 10.1007/s40820-019-0296-7  doi: 10.1007/s40820-019-0296-7

    124. [124]

      Wang, D.; Zhou, C.; Cao, B.; Xu, Y.; Zhang, D.; Li, A.; Zhou, J.; Ma, Z.; Chen, X.; Song, H. Energy Storage Mater. 2019. doi: 10.1016/j.ensm.2019.07.045  doi: 10.1016/j.ensm.2019.07.045

  • 加载中
    1. [1]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    2. [2]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    3. [3]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    4. [4]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    5. [5]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    6. [6]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    7. [7]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    8. [8]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    9. [9]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    10. [10]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    11. [11]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    12. [12]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    13. [13]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    14. [14]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    15. [15]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    16. [16]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    17. [17]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    18. [18]

      Yan Yuan Haitao Wu Yi Zhang Li Jiang Feng Cao Yanmao Dong . Research on the Talent Training System to Enhance the Core Competence of Employment for Undergraduate Students Majoring in Materials Chemistry. University Chemistry, 2024, 39(11): 52-56. doi: 10.12461/PKU.DXHX202402015

    19. [19]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    20. [20]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

Metrics
  • PDF Downloads(159)
  • Abstract views(2517)
  • HTML views(595)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return