Citation: Wu Jiequn, Hua Weiming, Yue Yinghong, Gao Zi. Swelling Characteristics of g-C3N4 as Base Catalyst in Liquid-Phase Reaction[J]. Acta Physico-Chimica Sinica, ;2020, 36(1): 190406. doi: 10.3866/PKU.WHXB201904066 shu

Swelling Characteristics of g-C3N4 as Base Catalyst in Liquid-Phase Reaction

  • Corresponding author: Yue Yinghong, yhyue@fudan.edu.cn
  • Received Date: 17 April 2019
    Revised Date: 5 May 2019
    Accepted Date: 22 May 2019
    Available Online: 24 January 2019

    Fund Project: the National Natural Science Foundation of China 21273043the Science & Technology Commission of Shanghai Municipality, China 13DZ2275200the National Natural Science Foundation of China 91645201the National Key R&D Program of China 2017YFB0602204The project was supported by the National Natural Science Foundation of China (91645201, 21273043), the National Key R&D Program of China (2017YFB0602204), and the Science & Technology Commission of Shanghai Municipality, China (13DZ2275200)

  • Graphitic carbon nitrides (g-C3N4) with different surface areas were prepared by pyrolysis using different precursors including melamine, dicyandiamide, thiourea and urea, and subsequently characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectra (FTIR), X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA) and N2 adsorption. Their basicities were measured by temperature-programmed desorption of CO2 (CO2-TPD) and acid-base titration. The catalytic properties for the Knoevenagel condensation of benzaldehyde and malononitrile were investigated in various solvents. In non-polar toluene solution, the benzaldehyde conversions of the g-C3N4 catalysts were low and changed according to their respective surface areas and basicities. However, in polar ethanol solution, the benzaldehyde conversions of all catalysts were similar, and much higher than those in toluene. This could not be explained by the results obtained from either of the two conventional basicity measurements. Further experimental results proved that g-C3N4 catalysts swelled in polar solutions, and more basic sites were exposed on the surface of the swollen catalysts, leading to the imminent increase in catalytic activity. This was proved by the catalyst poisoning data, which showed that the g-C3N4 catalyst lost its activity completely in toluene by adding 40.9 mmol·g-1 benzoic acid, while the same catalyst was still active in ethanol until the added amount exceeded 143.3 m·g-1. Additionally, the reaction tests in various solutions showed that the swelling effect was enhanced according to the polarity of the solvent used. A similar conclusion could be reached for the Knoevenagel condensation of furfural and malononitrile in various solvents. The reusability of g-C3N4 catalyst in Knoevenagel condensation was also studied, which showed that g-C3N4 was stable in liquid-phase reactions, whose activity dropped from 74.2% to 63.8% after three regeneration processes.
  • 加载中
    1. [1]

      Tanabe, K.; Holderich, W. F. Appl. Catal. A 1999, 181, 399. doi: 10.1016/S0926-860X(98)00397-4  doi: 10.1016/S0926-860X(98)00397-4

    2. [2]

      Davis, R. J. J. Catal. 2003, 216, 396. doi: 10.1016/S0021-9517(02)00034-9  doi: 10.1016/S0021-9517(02)00034-9

    3. [3]

      Blaser, H. U. Catal. Today 2000, 60, 161. doi: 10. 1016/S0920-5861(00)00332-1  doi: 10.1016/S0920-5861(00)00332-1

    4. [4]

      Kelly, G. J.; King, F.; Kett, M. Green Chem. 2002, 4, 392. doi: 10.1039/B201982P  doi: 10.1039/B201982P

    5. [5]

      Wight, A. P.; Davis, M. E. Chem. Rev. 2002, 102, 3589. doi: 10.1021/cr010334m  doi: 10.1021/cr010334m

    6. [6]

      Diaz, U.; Garcia, T.; Velty, A.; Corma, A. J. Mater. Chem. 2009, 19, 5970. doi: 10.1039/B906821J  doi: 10.1039/B906821J

    7. [7]

      Climent, M. J.; Corma, A.; Iborra, S.; Velty, A. J. Catal. 2004, 221, 474. doi: 10.1016/j.jcat.2003.09.012  doi: 10.1016/j.jcat.2003.09.012

    8. [8]

      Sebti, S.; Solhy, A.; Tahir, R.; Smahi, A. Appl. Catal. A-Gen. 2002, 235, 273. doi: 10.1016/S0926-860X(02)00273-9  doi: 10.1016/S0926-860X(02)00273-9

    9. [9]

      Liu, Z.; Cortes-Concepcion, J. A.; Mustian, M.; Amiridis, M. D. Appl. Catal. A-Gen. 2006, 302, 232. doi: 10.1016/j.apcata.2006.01.007  doi: 10.1016/j.apcata.2006.01.007

    10. [10]

      Wang, X. G.; Tseng, Y. H.; Chan, J. C. C.; Cheng, S. F. J. Catal. 2005, 233, 266. doi: 10.1016/j.jcat.2005.04.007  doi: 10.1016/j.jcat.2005.04.007

    11. [11]

      Goa, Y.; Wu, P.; Tatsumi, T. J. Catal. 2004, 224, 107. doi: 10.1016/j.jcat.2004.01.021  doi: 10.1016/j.jcat.2004.01.021

    12. [12]

      Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2009, 8, 76. doi: 10.1038/nmat2317  doi: 10.1038/nmat2317

    13. [13]

      Wang, Y.; Wang, X. C.; Antonietti, M. Angew. Chem. Int. Ed. 2012, 51, 68. doi: 10.1002/anie.201101182  doi: 10.1002/anie.201101182

    14. [14]

      Praus, P.; Svoboda, L.; Ritz, M.; Troppova, I.; Sihor, M.; Koci, K. Mater. Chem. Phys. 2017, 193, 438. doi: 10.1016/j.matchemphys.2017.03.008  doi: 10.1016/j.matchemphys.2017.03.008

    15. [15]

      Chi, S. H.; Ji, C. N.; Sun, S. W.; Jiang, H.; Qu, R. J.; Sun, C. M. Ind. Eng. Chem. Res. 2016, 55, 12060. doi: 10.1021/acs.iecr.6b02178  doi: 10.1021/acs.iecr.6b02178

    16. [16]

      Zhang, G. G.; Zhang, J. S.; Zhang, M. W.; Wang, X. C. J. Mater. Chem. 2012, 22, 8083. doi: 10.1039/C2JM00097K  doi: 10.1039/C2JM00097K

    17. [17]

      Zhai, H. S.; Cao, L.; Xia, X. H. Chin. Chem. Lett. 2013, 24, 103. doi: 10.1016/j.cclet.2013.01.030  doi: 10.1016/j.cclet.2013.01.030

    18. [18]

      Yew, Y. T.; Lim, C.S.; Eng, A. Y. S.; Oh, J.; Park, S.; Pumera, M. ChemPhysChem 2016, 17, 481. doi: 10.1002/cphc.201501009  doi: 10.1002/cphc.201501009

    19. [19]

      Datta, K. K. R.; Reddy, B. V. S.; Ariga, K.; Vinu, A. Angew. Chem. Int. Ed. 2010, 49, 5961. doi: 10.1002/anie.201001699  doi: 10.1002/anie.201001699

    20. [20]

      Wang, Y.; Yao, J.; Li, H.; Su, D.; Antonietti, M. J. Am. Chem. Soc. 2011, 133, 2362. doi: 10.1021/ja109856y  doi: 10.1021/ja109856y

    21. [21]

      Goettmann, F.; Fischer, A.; Antonietti, M.; Thomas, A. Angew. Chem. Int. Ed. 2006, 45, 4467. doi: 10.1002/anie.200600412  doi: 10.1002/anie.200600412

    22. [22]

      Ansari, M. B.; Min, B. H.; Mo, Y. H.; Park, S. E. Green Chem. 2011, 13, 1416. doi: 10.1039/C0GC00951B  doi: 10.1039/C0GC00951B

    23. [23]

      Zhang, L.; Wang, H.; Shen, W. Z.; Qin, Z. F.; Wang, J. G.; Fan, W. B. J. Catal. 2016, 344, 293. doi: 10.1016/j.jact.2016.09.023  doi: 10.1016/j.jact.2016.09.023

    24. [24]

      Su, F. Z.; Antoniettia, M.; Wang, X. C. Catal. Sci. Technol. 2012, 2, 1005. doi: 10.1039/C2CY00012A  doi: 10.1039/C2CY00012A

    25. [25]

      Xu, J.; Wang, Y.; Shang, J. K.; Jiang, Q.; Li, Y. X. Catal. Sci. Technol. 2016, 6, 4192. doi:10.1039/C5CY01747E  doi: 10.1039/C5CY01747E

    26. [26]

      Yan, S. C.; Li, Z. S.; Zou, Z. G. Langmuir 2009, 25, 10397. doi: 10.1021/la900923z  doi: 10.1021/la900923z

    27. [27]

      Kawaguchi, M.; Nozaki, K. Chem. Mater. 1995, 7, 257. doi:10.1021/cm00050a005  doi: 10.1021/cm00050a005

    28. [28]

      Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Muller, J. O.; Schlogl, R.; Carlsson, J. M. J. Mater. Chem. 2008, 18, 4893. doi: 10.1039/B800274F  doi: 10.1039/B800274F

    29. [29]

      Kauffman, K. L.; Culp, J. T.; Goodman, A.; Matranga, C. J. Phys. Chem. C. 2011, 115, 1857. doi: 10.1021/jp102273w  doi: 10.1021/jp102273w

    30. [30]

      Komatsu, T.; Nakamura, T. J. Mater. Chem. 2001, 11, 474. doi: 10.1039/B005982J  doi: 10.1039/B005982J

    31. [31]

      Wang, X. C.; Chen, X. F.; Thomas, A.; Fu, X. Z.; Antonietti, M. Adv. Mater. 2009, 21, 1609. doi: 10.1002/adma.200802627  doi: 10.1002/adma.200802627

    32. [32]

      Pinero, E. R.; Amoros, D. C.; Solano, A. L.; Find, J.; Wild, U.; Schlogl, R. Carbon 2002, 40, 597. doi: 10.1016/S0008-6223(01)00155-5  doi: 10.1016/S0008-6223(01)00155-5

    33. [33]

      Cui, Y. J.; Zhang, J. S.; Zhang, G. G.; Huang, J. H.; Liu, P.; Antonietti, M.; Wang, X. C. J. Mater. Chem. 2011, 21, 13032. doi: 10.1039/C1JM11961C  doi: 10.1039/C1JM11961C

    34. [34]

      Yan, H. J.; Chen, Y.; Xu, S. M. Int. J. Hydrog. Energy 2012, 37, 125. doi: 10.1016/j.ijhydene.2011.09.072  doi: 10.1016/j.ijhydene.2011.09.072

    35. [35]

      Wang, Y.; Zhuang, J. Q.; Yang, G.; Zhou, D. H.; Ma, D.; Han, X. W.; Bao, X. H. J. Phys. Chem. B 2004, 108, 1386. doi: 10.1021/jp034989y  doi: 10.1021/jp034989y

    36. [36]

      Rodriguez, I.; Sastre, G.; Corma, A.; Iborra, S. J. Catal. 1999, 183, 14. doi: 10.1006/jcat.1998.2380  doi: 10.1006/jcat.1998.2380

    37. [37]

      Li, G. W.; Xiao, J.; Zhang, W. Q. Green Chem. 2011, 13, 1828. doi: 10.1039/C0GC00877J  doi: 10.1039/C0GC00877J

    38. [38]

      Burgoyne, A. R.; Meijboom, R. Catal. Lett. 2013, 143, 563. doi: 10.1007/s10562-013-0995-5  doi: 10.1007/s10562-013-0995-5

    39. [39]

      Mo, X. H.; López, D. E.; Suwannakarn, K.; Liu, Y. J.; Lotero, E.; Goodwin, J. G., Jr.; Lu, C. Q. J. Catal. 2008, 254, 332. doi: 10.1016/j.jcat.2008.01.011  doi: 10.1016/j.jcat.2008.01.011

  • 加载中
    1. [1]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    2. [2]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    3. [3]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    4. [4]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    5. [5]

      Tianze WangJunyi RenDongxiang ZhangHuan WangJianjun DuXin-Dong JiangGuiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862

    6. [6]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    7. [7]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

    8. [8]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    9. [9]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    10. [10]

      Yanghanbin Zhang Dongxiao Wen Wei Sun Jiahe Peng Dezhong Yu Xin Li Yang Qu Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469

    11. [11]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    12. [12]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    13. [13]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    14. [14]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    15. [15]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    16. [16]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    17. [17]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    18. [18]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    19. [19]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    20. [20]

      Chunyan YangQiuyu RongFengyin ShiMenghan CaoGuie LiYanjun XinWen ZhangGuangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767

Metrics
  • PDF Downloads(5)
  • Abstract views(239)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return