Citation: Zhao Pan, Yang Bingjun, Chen Jiangtao, Lang Junwei, Zhang Tianyun, Yan Xingbin. A Safe, High-Performance, and Long-Cycle Life Zinc-Ion Hybrid Capacitor Based on Three-Dimensional Porous Activated Carbon[J]. Acta Physico-Chimica Sinica, ;2020, 36(2): 190405. doi: 10.3866/PKU.WHXB201904050 shu

A Safe, High-Performance, and Long-Cycle Life Zinc-Ion Hybrid Capacitor Based on Three-Dimensional Porous Activated Carbon

  • Corresponding author: Yang Bingjun, xbyan@licp.cas.cn Yan Xingbin, yangbj@licp.cas.cn
  • Received Date: 11 April 2019
    Revised Date: 6 May 2019
    Accepted Date: 15 May 2019
    Available Online: 27 February 2019

    Fund Project: the National Natural Science Foundation of China 21573265The project was supported by the National Natural Science Foundation of China (21573265, 21673263, 21805291)the National Natural Science Foundation of China 21805291the National Natural Science Foundation of China 21673263

  • The rapid development of electronic products has increased the demand for safe, low-cost, and high-performance energy storage devices. Lithium-ion batteries have been commercialized owing to their high energy density. However, the limited lithium resources and their uneven distribution have triggered the search for alternative energy storage systems. In this context, rechargeable aqueous zinc-ion batteries have gained immense attention owing to their low cost and environmental friendliness. Nevertheless, it is highly challenging to develop zinc-ion battery cathode materials with both high capacity and long cycle life. Hence, in this study, we prepared three-dimensional porous activated carbon (3DAC) with high specific surface area by using ethylenediaminetetraacetic acid (EDTA) tetrasodium salt hydrate as the raw material. We developed a zinc-ion hybrid capacitor (ZIHC) in 1 mol∙L−1 ZnSO4 using 3DAC as the cathode and a zinc foil as the anode. The ZIHC stored charge by the reversible deposition/dissolution of Zn2+ on the zinc anode and rapid reversible adsorption/desorption of ions on the 3DAC cathode. Owing to the large specific surface area and highly porous structure of the 3DAC cathode, the assembled ZIHC exhibited excellent electrochemical performance. It worked well over the voltage range of 0.1–1.7 V, providing a high specific capacitance of 213 mAh·g−1 at the current density of 0.5 A·g−1 (the highest value reported till date). The ZIHC showed specific capacities of 182, 160, 139, 130, 127, 122, and 116 mAh·g−1 at the current densities of 1, 2, 4, 6, 8, 10, and 20 A·g−1, respectively. Meanwhile, it exhibited the highest energy density of 164 Wh·kg−1 (at a power density of 390 W·kg−1) and still delivered the highest power density of 9.3 kW·kg−1 with a high energy density of 74 Wh·kg−1. In addition, our ZIHC also exhibited excellent cycling stability. After 20000 cycles at 10 A·g−1, it retained 90% of its initial capacity and exhibited high Coulombic efficiency (≈100%). In order to investigate the causes of capacity decay, we examined the cycled zinc foil by scanning electron microscopy and X-ray diffraction. The results showed that a large number of Zn4SO4(OH)6⋅3H2O disordered dendrites were formed on the surface of the zinc foil. These dendrites inhibited the reversible deposition/dissolution of zinc ions, resulting in the capacity decay of the ZIHC during the cycling process. This study will be helpful for developing next-generation high-performance energy storage devices.
  • 加载中
    1. [1]

      Liu, B.; Sun, Y. L.; Liu, L. Y.; Chen, J. T.; Yang, B. J.; Xu, S.; Yan, X. B. Energy Environ. Sci. 2019, 12, 887. doi: 10.1039/C8EE03417F  doi: 10.1039/C8EE03417F

    2. [2]

      Armand, M.; Tarascon, J. M. Nature 2008, 451, 652. doi: 10.1038/451652a  doi: 10.1038/451652a

    3. [3]

      Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334, 928. doi: 10.1126/science.1212741  doi: 10.1126/science.1212741

    4. [4]

      Tang, Y. P.; Yuan, S.; Guo, Y. Z.; Huang, R. A.; Wang, J. H.; Yang, B.; Dai, Y. N. Acta Phys. -Chim. Sin. 2016, 32, 2280.  doi: 10.3866/PKU.WHXB201605124

    5. [5]

      Liu, L.; Su, L.; Lang, J. W.; Hu, B.; Xu, S.; Yan, X. B. J. Mater. Chem. A 2017, 5, 5523. doi: 10.1039/c7ta00744b  doi: 10.1039/c7ta00744b

    6. [6]

      Li, Y. Y.; Li, Z. S.; Shen, P. K.Adv. Mater. 2013, 25, 2474. doi: 10.1002/adma.201205332  doi: 10.1002/adma.201205332

    7. [7]

      Liu, J.; Zhang, L.; Wu, H. B.; Lin, J.; Shen, Z.; Lou, X. W. Energy Environ. Sci. 2014, 7, 3709. doi: 10.1039/C4EE01475H  doi: 10.1039/C4EE01475H

    8. [8]

      Wang, P. Y.; Wang, R. T.; Lang, J. W.; Zhang, X.; Chen, Z. T.; Yan, X. B. J. Mater. Chem. A 2016, 4, 9760. doi: 10.1039/c6ta03633c  doi: 10.1039/c6ta03633c

    9. [9]

      Wang, H.; Zhu, C.; Chao, D.; Yan, Q.; Fan, H. J. Adv. Mater. 2017, 29, 1702093. doi: 10.1002/adma.201702093  doi: 10.1002/adma.201702093

    10. [10]

      Jia, Z. Y.; Liu, M. N.; Zhao, X. L.; Wang, X. S.; Pan, Z. H.; Zhang, Y. G. Acta Phys. -Chim. Sin.2017, 33, 2510.  doi: 10.3866/PKU.WHXB201705311

    11. [11]

      Li, H. X.; Lang, J. W.; Lei, S. L.; Chen, J. T.; Wang, K. J.; Liu, L. Y.; Zhang, T. Y.; Liu, W. S.; Yan, X. B. Adv. Funct. Mater. 2018, 28, 1800757. doi: 10.1002/adfm.201800757  doi: 10.1002/adfm.201800757

    12. [12]

      Li, Y. Z.; Wang, H. W.; Wang, L. B.; Mao, Z. F.; Wang, R.; He, B. B.; Gong, Y. S.; Hu, X. L. Small2019, 15, 1804539. doi: 10.1002/smll.201804539  doi: 10.1002/smll.201804539

    13. [13]

      Zhang, Z. Y.; Li, M. L.; Gao, Y.; Wei, Z. X.; Zhang, M. N.; Wang, C. Z.; Zeng, Y.; Zou, B.; Chen, G.; Du, F. Adv. Funct. Mater. 2018, 28, 1802684. doi: 10.1002/adfm.201802684  doi: 10.1002/adfm.201802684

    14. [14]

      Fan, L.; Lin, K. Y.; Wang, J.; Ma, R. F.; Lu, B. G. Adv. Mater. 2018, 30, 1800804. doi: 10.1002/adma.201800804  doi: 10.1002/adma.201800804

    15. [15]

      Sun, G. Q.; Yang, H. S.; Zhang, G. F.; Gao, J.; Jin, X. T.; Zhao, Y.; Jiang, L.; Qu, L. T. Energy Environ. Sci. 2018, 11, 3367. doi: 10.1039/c8ee02567c  doi: 10.1039/c8ee02567c

    16. [16]

      Wu, N. Z.; Yao, W. J.; Song, X. H.; Zhang, G.; Chen, B. J.; Yang, J. H.; Tang, Y. B. Adv. Energy Mater. 2019, 1803865. doi: 10.1002/aenm.201803865  doi: 10.1002/aenm.201803865

    17. [17]

      Yang, B. J.; Chen, J. T.; Lei, S. L.; Guo, R. S.; Yan, X. B. Adv. Energy Mater. 2017, 8, 1702409. doi: 10.1002/aenm.201702409  doi: 10.1002/aenm.201702409

    18. [18]

      Chen, J. T.; Yang, B. J.; Hou, H. J.; Li, H. X.; Liu, L.; Zhang, L.; Yan, X. B. Adv. Energy Mater. 2019, 1803894. doi: 10.1016/j.carbon.2017.01.005  doi: 10.1016/j.carbon.2017.01.005

    19. [19]

      Chen, J. T.; Yang, B. J.; Li, H. X.; Ma, P. J.; Lang, J. W.; Yan, X. B. J. Mater. Chem. A 2019. doi: 10.1039/c9ta01653h  doi: 10.1039/c9ta01653h

    20. [20]

      Yamada, Y.; Usui, K.; Sodeyama, K.; Ko, S.; Tateyama, Y.; Yamada, A. Nat. Energy 2016, 1, 16129. doi: 10.1038/nenergy.2016.129  doi: 10.1038/nenergy.2016.129

    21. [21]

      Haegyeom, K.; Jihyun, H.; Kyu-Young, P.; Hyungsub, K.; Sung-Wook, K.; Kisuk, K. Chem. Rev.2014, 114, 11788. doi: 10.1021/cr500232y  doi: 10.1021/cr500232y

    22. [22]

      Chao, D.; Zhu, C. R.; Song, M.; Liang, P.; Zhang, X.; Tiep, N. H.; Zhao, H.; Wang, J.; Wang, R.; Zhang, H.; et al. Adv. Mater. 2018, 30, e1803181. doi: 10.1002/adma.201803181  doi: 10.1002/adma.201803181

    23. [23]

      Shi, H. Y.; Ye, Y. J.; Liu, K.; Song, Y.; Sun, X. Angew. Chem. Int. Ed. 2018, 57, 16359. doi: 10.1002/anie.201808886  doi: 10.1002/anie.201808886

    24. [24]

      Huang, J.; Wang, Z.; Hou, M.; Dong, X.; Liu, Y.; Wang, Y.; Xia, Y. Nat. Commun. 2018, 9, 2906. doi: 10.1038/s41467-018-04949-4  doi: 10.1038/s41467-018-04949-4

    25. [25]

      Yang, Y.; Tang, Y.; Fang, G.; Shan, L.; Guo, J.; Zhang, W.; Wang, C.; Wang, L.; Zhou, J.; Liang, S. Energy Environ. Sci. 2018, 11, 3157. doi: 10.1039/C8EE01651H  doi: 10.1039/C8EE01651H

    26. [26]

      Wan, F.; Zhang, L.; Dai, X.; Wang, X.; Niu, Z.; Chen, J. Nat. Commun. 2018, 9, 1656. doi: 10.1038/s41467-018-04060-8  doi: 10.1038/s41467-018-04060-8

    27. [27]

      Dong, L. B.; Ma, X. P.; Li, Y.; Zhao, L.; Liu, W. B.; Cheng, J. Y.; Xu, C. J.; Li, B. H.; Yang, Q. H.; Kang, F. Y. Energy Storage Mater. 2018, 13, 96. doi: 10.1016/j.ensm.2018.01.003  doi: 10.1016/j.ensm.2018.01.003

    28. [28]

      Wang, H.; Wang, M.; Tang, Y. B. Energy Storage Mater. 2018, 13, 1. doi: 10.1016/j.ensm.2017.12.022  doi: 10.1016/j.ensm.2017.12.022

    29. [29]

      Chen, J.; Yang, B.; Hou, H.; Li, H.; Liu, L.; Zhang, L.; Yan, X. Adv. Energy Mater. 2019, 1803894. doi: 10.1002/aenm.201803894  doi: 10.1002/aenm.201803894

    30. [30]

      Yang, B. J.; Chen, J. T.; Liu, L.; Ma, P. J.; Liu, B.; Lang, J. W.; Tang, Y.; Yan, X. B. Energy Storage Mater. 2019. doi: 10.1016/j.ensm.2019.04.008  doi: 10.1016/j.ensm.2019.04.008

    31. [31]

      Sevilla, M.; Mokaya, R. Energy Environ. Sci. 2014, 7, 1250. doi: 10.1039/C3EE43525C.  doi: 10.1039/C3EE43525C

    32. [32]

      Wang, H. L.; Mitlin, D.; Ding, J.; Li, Z.; Cui, K. J. Mater. Chem. A 2016, 4, 5149. doi: 10.1039/C6TA01392A  doi: 10.1039/C6TA01392A

    33. [33]

      Li, H. S.; Peng, L. L.; Zhu, Y.; Zhang, X. G.; Yu, G. H. Nano Lett. 2016, 16, 5938. doi: 10.1021/acs.nanolett.6b02932  doi: 10.1021/acs.nanolett.6b02932

    34. [34]

      Dong, S.; Li, Z.; Xing, Z.; Wu, X.; Ji, X.; Zhang, X. ACS Appl. Mater. Interfaces 2018, 10, 15542. doi: 10.1021/acsami.7b15314  doi: 10.1021/acsami.7b15314

  • 加载中
    1. [1]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    2. [2]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    3. [3]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    4. [4]

      Ning DINGSiyu WANGShihua YUPengcheng XUDandan HANDexin SHIChao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146

    5. [5]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    6. [6]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    7. [7]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    8. [8]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    9. [9]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    10. [10]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    11. [11]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    12. [12]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    13. [13]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    14. [14]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    15. [15]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

    16. [16]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    17. [17]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    18. [18]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    19. [19]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    20. [20]

      Shanying Chen Kangning Huo Ke Qi Jingyi Li Shuxin Li Yunchao Li . A Novel Colloid Electrophoresis Experiment with the Characteristics of Resource Recycling and Inquiry-Driven Experimental Design. University Chemistry, 2024, 39(5): 274-286. doi: 10.3866/PKU.DXHX202311067

Metrics
  • PDF Downloads(10)
  • Abstract views(951)
  • HTML views(74)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return