Citation: YIN Hongyao, YU Yue, LI Zongcheng, ZHANG Ganghong, FENG Yujun. Smart Honeycomb-Patterned Porous Films: Fabrications, Responsive Properties, and Applications[J]. Acta Physico-Chimica Sinica, ;2019, 35(12): 1341-1356. doi: 10.3866/PKU.WHXB201904042 shu

Smart Honeycomb-Patterned Porous Films: Fabrications, Responsive Properties, and Applications

  • Corresponding author: YIN Hongyao, hyyin@scu.edu.cn FENG Yujun, yjfeng@scu.edu.cn
  • Received Date: 10 April 2019
    Revised Date: 14 May 2019
    Accepted Date: 15 May 2019
    Available Online: 22 December 2019

    Fund Project: The project was supported by the China Postdoctoral Science Foundation (2017M623029)the China Postdoctoral Science Foundation 2017M623029

  • Honeycomb-patterned porous films are polymer films with regular pore arrays on their surfaces. Since the pioneering work of François et al. in 1994, in which they used the breath figure (BF) technique to prepare honeycomb films, these highly ordered porous films have been attracting increasing interest in the past decades. Researchers are interested in the well-ordered pore arrays as they show great potential for use in many areas including superhydrophobic materials, photoelectric materials, tissue engineering, biomedicine, gas sensors, micro-reactors, to name just a few. Previous studies in this area have mainly focused on the preparation of porous films with regular microstructures and the effect of polymer architecture and casting conditions (such as temperature, relative humidity, and solvents) on the morphology. During the past two decades, considerable work has been devoted to identifying the mechanism of generation of well-ordered pore arrays during the BF process. Although the exact mechanism of film formation remains unclear, highly ordered honeycomb films can be produced from various polymers or polymer blends. In other words, currently, preparation of honeycomb films is not a major challenge. More recent studies in this area have concentrated on fabricating smart honeycomb films with reversible surface morphologies and/or properties. These smart films possess not only the properties of ordinary honeycomb films but also unique "on-off" switching functions. The research on stimuli-responsive smart honeycomb films is quite interesting in terms of both fundamental research and practical applications. Theoretically, the different scales and regular pore arrays provide an ideal model for studying the surface properties of porous materials under external stimulation, which is helpful in designing structured surfaces with desirable properties. From an application perspective, the "on-off" switching behavior imparts the films with additional functions that show high potential in a wide range of applications such as cell adhesion and controlled release, protein adsorption and separation, controlled drug release, etc. Thus far, honeycomb films with stimuli-responsive reversible surface morphologies, wettability, and fluorescence spectra have been developed, and the stimulus triggers have been mainly concentrated on temperature, pH, light, solvents, and gases. The main focus of this study is to describe the recent advances in smart honeycomb films, including fabrication strategies, triggers, "on-off" switching mechanisms, responsive behaviors, and related applications. Moreover, special attention is given to discussing the advantages and disadvantages of smart honeycomb films based on different triggers and design of smart honeycomb film systems with improved response properties. This study also discusses the challenges that concern the future development of smart honeycomb films and suggests several means of addressing those challenges.
  • 加载中
    1. [1]

      Widawski, G.; Rawiso, M.; François, B. Nature 1994, 369, 387.  doi: 10.1038/369387a0

    2. [2]

      Stenzel, M. H. Aust. J. Chem. 2002, 55, 239. doi: 10.1071/CH02056  doi: 10.1071/CH02056

    3. [3]

      Hernandez-Guerrero, M.; Stenzel, M. H. Polym. Chem. 2012, 3, 563. doi: 10.1039/C1PY00219H  doi: 10.1039/C1PY00219H

    4. [4]

      Li, Z. G.; Ma, X. Y.; Hong, Q.; Guan, X. H. Acta Phys. -Chim. Sin. 2015, 31, 393.  doi: 10.3866/PKU.WHXB201412261

    5. [5]

      Escalé, P.; Rubatat, L.; Billon, L.; Save, M. Eur. Polym. J. 2012, 48, 1001. doi: 10.1016/j.eurpolymj.2012.03.001  doi: 10.1016/j.eurpolymj.2012.03.001

    6. [6]

      Feng, X. J.; Jiang, L. Adv. Mater. 2006, 18, 3063. doi: 10.1002/adma.200501961  doi: 10.1002/adma.200501961

    7. [7]

      Li, Z.; Ma, X.; Kong, Q.; Zang, D.; Guan, X.; Ren, X. J. Phys. Chem. C 2016, 120, 18659. doi: 10.1021/acs.jpcc.6b06186  doi: 10.1021/acs.jpcc.6b06186

    8. [8]

      Chen, S.; Lu, X.; Hu, Y.; Lu, Q. Biomater. Sci. 2015, 3, 85. doi: 10.1039/C4BM00233D  doi: 10.1039/C4BM00233D

    9. [9]

      Bui, V. T.; Thuy, L. T.; Tran, Q. C.; Nguyen, V. T.; Dao, V. D.; Choi, J. S.; Choi, H. S. Chem. Eng. J. 2017, 320, 561. doi: 10.1016/j.cej.2017.03.086  doi: 10.1016/j.cej.2017.03.086

    10. [10]

      Zhu, Y.; Sheng, R.; Luo, T.; Li, H.; Sun, J.; Chen, S.; Sun, W.; Cao, A. ACS Appl. Mater. Interfaces 2011, 3, 2487. doi: 10.1021/am200371c  doi: 10.1021/am200371c

    11. [11]

      Bui, V. T.; Thuy, L. L.; Choi, J. S.; Choi, H. S. J. Colloid Interface Sci. 2018, 513, 161. doi: 10.1016/j.jcis.2017.11.024  doi: 10.1016/j.jcis.2017.11.024

    12. [12]

      Yao, B.; Zhu, Q.; Yao, L.; Hao, J. Appl. Surf. Sci. 2015, 332, 287. doi: 10.1016/j.apsusc.2015.01.170  doi: 10.1016/j.apsusc.2015.01.170

    13. [13]

      Martínez-Campos, E.; Elzein, T.; Bejjani, A.; García-Granda, M. J.; Santos-Coquillat, A.; Ramos, V.; Muñoz-Bonilla, A.; Rodríguez-Hernández, J. ACS Appl. Mater. Interfaces 2016, 8, 6344. doi: 10.1021/acsami.5b12832  doi: 10.1021/acsami.5b12832

    14. [14]

      Tu, Z.; Tang, H.; Shen, X. ACS Appl. Mater. Interfaces 2014, 6, 12931. doi: 10.1021/am502871t  doi: 10.1021/am502871t

    15. [15]

      Wu, X.; Wang, S. ACS Appl. Mater. Interfaces 2012, 4, 4966. doi: 10.1021/am301334s  doi: 10.1021/am301334s

    16. [16]

      Zhao, Y.; Shang, Q.; Yu, J.; Zhang, Y.; Liu, S. ACS Appl. Mater. Interfaces 2015, 7, 11783. doi: 10.1021/acsami.5b03254  doi: 10.1021/acsami.5b03254

    17. [17]

      Chen, S.; Gao, S.; Jing, J.; Lu, Q. Adv. Healthcare Mater. 2018, 7, 1701043. doi: 10.1002/adhm.201701043  doi: 10.1002/adhm.201701043

    18. [18]

      Zhang, H.; Liu, Y.; Luo, T.; Zhao, Q.; Cui, K.; Huang, J.; Jiang, T.; Ma, Z. Polym. Chem. 2018, 9, 3922. doi: 10.1039/C8PY00732B  doi: 10.1039/C8PY00732B

    19. [19]

      Gao, F.; Wang, W.; Li, X.; Li, L.; Lin, J.; Lin, S. J. Colloid Interface Sci. 2016, 468, 70. doi: 10.1016/j.jcis.2016.01.035  doi: 10.1016/j.jcis.2016.01.035

    20. [20]

      Yabu, H.; Shimomura, M. Chem. Mater. 2005, 17, 5231. doi: 10.1021/cm051281i  doi: 10.1021/cm051281i

    21. [21]

      Ting, W. H.; Chen, C. C.; Dai, S. A.; Suen, S. Y.; Yang, I. K.; Liu, Y. L.; Chen, F. M. C.; Jeng, R. J. J. Mater. Chem. 2009, 19, 4819. doi: 10.1039/B900468H  doi: 10.1039/B900468H

    22. [22]

      Yu, X.; Zhong, Q. Z.; Yang, H. C.; Wan, L. S.; Xu, Z. K. J. Phys. Chem. C 2015, 119, 3667. doi: 10.1021/jp513001k  doi: 10.1021/jp513001k

    23. [23]

      Yabu, H.; Takebayashi, M.; Tanaka, M.; Shimomura, M. Langmuir 2005, 21, 3235. doi: 10.1021/la050013w  doi: 10.1021/la050013w

    24. [24]

      Fang, X.; Men, X.; Chen, H.; Zhang, Y. M.; Sun, H.; Yin, S.; Qin, W. J. Colloid Interface Sci. 2018, 512, 1. doi: 10.1016/j.jcis.2017.10.007  doi: 10.1016/j.jcis.2017.10.007

    25. [25]

      Geping, Z.; Hongxia, Z.; Mengjun, C.; Hongguang, L.; Ye, Y.; Tiantai, M.; Jingcheng, H. Chem. -Eur. J. 2017, 23, 7278. doi: 10.1002/chem.201605651  doi: 10.1002/chem.201605651

    26. [26]

      Liu, C.; Gao, C.; Yan, D. Angew. Chem. Int. Ed. 2007, 46, 4128. doi: 10.1002/anie.200604429  doi: 10.1002/anie.200604429

    27. [27]

      Bertrand, A.; Dumur, F.; Mruczkiewicz, M.; Perrin, M.; Lartigau-Dagron, C.; Bousquet, A.; Vignau, L.; Billon, L.; Fasquel, S. Org. Electron. 2018, 52, 222. doi: 10.1016/j.orgel.2017.10.022  doi: 10.1016/j.orgel.2017.10.022

    28. [28]

      Zhu, C.; Tian, L.; Liao, J.; Zhang, X.; Gu, Z. Adv. Funct. Mater. 2018, 28, 1803194. doi: 10.1002/adfm.201803194  doi: 10.1002/adfm.201803194

    29. [29]

      Li, L.; Zhong, Y.; Ma, C.; Li, J.; Chen, C.; Zhang, A.; Tang, D.; Xie, S.; Ma, Z. Chem. Mater. 2009, 21, 4977. doi: 10.1021/cm902357m  doi: 10.1021/cm902357m

    30. [30]

      Lu, Y.; Ren, Y.; Wang, L.; Wang, X.; Li, C. Polymer 2009, 50, 2035. doi: 10.1016/j.polymer.2009.02.026  doi: 10.1016/j.polymer.2009.02.026

    31. [31]

      Wang, Z.; Zhang, L.; Liu, J.; Jiang, H.; Li, C. Nanoscale 2018, 10, 10691. doi: 10.1039/C8NR01495G  doi: 10.1039/C8NR01495G

    32. [32]

      Wang, Y.; Zhou, W.; Kang, Q.; Chen, J.; Li, Y.; Feng, X.; Wang, D.; Ma, Y.; Huang, W. ACS Appl. Mater. Interfaces 2018, 10, 27001. doi: 10.1021/acsami.8b06710  doi: 10.1021/acsami.8b06710

    33. [33]

      Lin, F. W.; Xu, X. L.; Wan, L. S.; Wu, J.; Xu, Z. K. RSC Adv. 2015, 5, 30472. doi: 10.1039/C5RA01605C  doi: 10.1039/C5RA01605C

    34. [34]

      Mao, Y.; Mei, Z.; Wen, J.; Li, G.; Tian, Y.; Zhou, B.; Tian, Y. Sens. Actuators B 2018, 257, 944. doi: 10.1016/j.snb.2017.11.042  doi: 10.1016/j.snb.2017.11.042

    35. [35]

      Cao, T. T.; Modigunta, J. K. R.; Male, U.; Huh, D. S. Adv. Mater. Interfaces 2018, 5, 1801174. doi: 10.1002/admi.201801174  doi: 10.1002/admi.201801174

    36. [36]

      Wan, L. S.; Lv, J.; Ke, B. B.; Xu, Z. K. ACS Appl. Mater. Interfaces 2010, 2, 3759. doi: 10.1021/am1009277  doi: 10.1021/am1009277

    37. [37]

      Zhou, H. J.; Yang, G. W.; Zhang, Y. Y.; Xu, Z. K.; Wu, G. P. ACS Nano 2018, 12, 11471. doi: 10.1021/acsnano.8b06521  doi: 10.1021/acsnano.8b06521

    38. [38]

      Wan, L. S.; Li, J. W.; Ke, B. B.; Xu, Z. K. J. Am. Chem. Soc. 2012, 134, 95. doi: 10.1021/ja2092745  doi: 10.1021/ja2092745

    39. [39]

      Zhang, C.; Wang, X.; Min, K.; Lee, D.; Wei, C.; Schulhauser, H.; Gao, H. Macromol. Rapid. Commun. 2014, 35, 221. doi: 10.1002/marc.201300581  doi: 10.1002/marc.201300581

    40. [40]

      Yin, H. Y.; Feng, Y. J.; Billon, L. Chem. -Eur. J. 2018, 24, 425. doi: 10.1002/chem.201704369  doi: 10.1002/chem.201704369

    41. [41]

      Wu, B. H.; Wu, L. W.; Gao, K.; Chen, S. H.; Xu, Z. K.; Wan, L. S. J. Phys. Chem. C 2018, 122, 3926. doi: 10.1021/acs.jpcc.7b12286  doi: 10.1021/acs.jpcc.7b12286

    42. [42]

      Zhang, L.; Chen, L.; Liu, S. X.; Gong, J.; Tang, Q.; Su, Z. M. Dalton Trans. 2018, 47, 105. doi: 10.1039/C7DT03201C  doi: 10.1039/C7DT03201C

    43. [43]

      Benoot, N.; Marcasuzaa, P.; Pessoni, L.; Chasvised, S.; Reynaud, S.; Bousquet, A.; Billon, L. Soft Matter 2018, 14, 4874. doi: 10.1039/C8SM00137E  doi: 10.1039/C8SM00137E

    44. [44]

      Ji, E.; Pellerin, V.; Ehrenfeld, F.; Laffore, A.; Bousquet, A.; Billon, L. Chem. Commun. 2017, 53, 1876. doi: 10.1039/C6CC09898C  doi: 10.1039/C6CC09898C

    45. [45]

      Wu, B. H.; Zhang, C.; Zheng, N.; Wu, L. W.; Xu, Z. K.; Wan, L. S. ACS Appl. Mater. Interfaces 2019, 1, 47. doi: 10.1021/acsapm.8b00031  doi: 10.1021/acsapm.8b00031

    46. [46]

      Yin, H. Y; Bulteau, A. L.; Feng, Y. J.; Billon, L. Adv. Mater. Interfaces 2016, 3, 1500623. doi: 10.1002/admi.201500623  doi: 10.1002/admi.201500623

    47. [47]

      Bunz, U. H. F. Adv. Mater. 2006, 18, 973. doi: 10.1002/adma.200501131  doi: 10.1002/adma.200501131

    48. [48]

      Bai, H.; Du, C.; Zhang, A.; Li, L. Angew. Chem. Int. Ed. 2013, 52, 12240. doi: 10.1002/anie.201303594  doi: 10.1002/anie.201303594

    49. [49]

      Zhang, A.; Bai, H.; Li, L. Chem. Rev. 2015, 115, 9801. doi: 10.1021/acs.chemrev.5b00069  doi: 10.1021/acs.chemrev.5b00069

    50. [50]

      Wan, L. S.; Zhu, L. W.; Ou, Y.; Xu, Z. K. Chem. Commun. 2014, 50, 4024. doi: 10.1039/C3CC49826C  doi: 10.1039/C3CC49826C

    51. [51]

      Muñoz-Bonilla, A.; Fernández-García, M.; Rodríguez-Hernández, J. Prog. Polym. Sci. 2014, 39, 510. doi: 10.1016/j.progpolymsci.2013.08.006  doi: 10.1016/j.progpolymsci.2013.08.006

    52. [52]

      Escale, P.; Save, M.; Billon, L.; Ruokolainen, J.; Rubatat, L. Soft Matter 2016, 12, 790. doi: 10.1039/C5SM01774B  doi: 10.1039/C5SM01774B

    53. [53]

      Escale, P.; Save, M.; Lapp, A.; Rubatat, L.; Billon, L. Soft Matter 2010, 6, 3202. doi: 10.1039/C0SM00029A  doi: 10.1039/C0SM00029A

    54. [54]

      Ghannam, L.; Manguian, M.; François, J.; Billon, L. Soft Matter 2007, 3, 1492. doi: 10.1039/B710282H  doi: 10.1039/B710282H

    55. [55]

      De Leon, A. S.; Malhotra, S.; Molina, M.; Calderon, M.; Munoz-Bonilla, A.; Rodriguez-Hernandez, J. Polym. Chem. 2016, 7, 4112. doi: 10.1039/C6PY00601A  doi: 10.1039/C6PY00601A

    56. [56]

      Zhang, Z.; Hughes, T. C.; Gurr, P. A.; Blencowe, A.; Uddin, H.; Hao, X.; Qiao, G. G. Polymer 2013, 54, 4446. doi: 10.1016/j.polymer.2013.06.033  doi: 10.1016/j.polymer.2013.06.033

    57. [57]

      Wu, B. H.; Zhu, L. W.; Ou, Y.; Tang, W.; Wan, L. S.; Xu, Z. K. J. Phys. Chem. C 2015, 119, 1971. doi: 10.1021/jp5119212  doi: 10.1021/jp5119212

    58. [58]

      Fei, B.; Lu, D. L.; Shen, Q. J. Adhes. Sci. Technol. 2018, 32, 1027. doi: 10.1080/01694243.2017.1393918  doi: 10.1080/01694243.2017.1393918

    59. [59]

      Yabu, H.; Hirai, Y.; Kojima, M.; Shimomura, M. Chem. Mater. 2009, 21, 1787. doi: 10.1021/cm803476m  doi: 10.1021/cm803476m

    60. [60]

      Fukuhira, Y.; Yabu, H.; Ijiro, K.; Shimomura, M. Soft Matter 2009, 5, 2037. doi: 10.1039/B821183C  doi: 10.1039/B821183C

    61. [61]

      Cui, L.; Li, B.; Han, Y. Langmuir 2007, 23, 3349. doi: 10.1021/la061769d  doi: 10.1021/la061769d

    62. [62]

      Cheng, C. X.; Tian, Y.; Shi, Y. Q.; Tang, R. P.; Xi, F. Langmuir 2005, 21, 6576. doi: 10.1021/la050187d  doi: 10.1021/la050187d

    63. [63]

      Xu, W. Z.; Kadla, J. F. Langmuir 2012, 29, 727. doi: 10.1021/la303835e  doi: 10.1021/la303835e

    64. [64]

      Jang, J. H.; Orbán, M.; Wang, S.; Huh, D. S. Phys. Chem. Chem. Phys. 2014, 16, 25296. doi: 10.1039/C4CP03083D  doi: 10.1039/C4CP03083D

    65. [65]

      Chen, S.; Lu, X.; Zhu, D.; Lu, Q. Soft Matter 2015, 11, 7420. doi: 10.1039/C5SM01769F  doi: 10.1039/C5SM01769F

    66. [66]

      Min, E. H.; Ting, S. R. S.; Billon, L.; Stenzel, M. H. J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 3440. doi: 10.1002/pola.24129  doi: 10.1002/pola.24129

    67. [67]

      Hernandez-Guerrero, M.; Min, E.; Barner-Kowollik, C.; Muller, A. H. E.; Stenzel, M. H. J. Mater. Chem. 2008, 18, 4718. doi: 10.1039/B807495J  doi: 10.1039/B807495J

    68. [68]

      Pan, Y. V.; Wesley, R. A.; Luginbuhl, R.; Denton, D. D.; Ratner, B. D. Biomacromolecules 2001, 2, 32. doi: 10.1021/bm0000642  doi: 10.1021/bm0000642

    69. [69]

      Hirvonen, S. P.; Rossi, T.; Karesoja, M.; Karjalainen, E.; Tenhu, H. Colloid. Polym. Sci. 2015, 293, 2957. doi: 10.1007/s00396-015-3693-6  doi: 10.1007/s00396-015-3693-6

    70. [70]

      Nykänen, A.; Hirvonen, S. P.; Tenhu, H.; Mezzenga, R.; Ruokolainen, J. Polym. Int. 2014, 63, 37. doi: 10.1002/pi.4559  doi: 10.1002/pi.4559

    71. [71]

      Zhou, Y.; Huang, J.; Sun, W.; Ju, Y.; Yang, P.; Ding, L.; Chen, Z. R.; Kornfield, J. A. ACS Appl. Mater. Interfaces 2017, 9, 4177. doi: 10.1021/acsami.6b13525  doi: 10.1021/acsami.6b13525

    72. [72]

      Wang, C.; Mao, Y.; Wang, D.; Qu, Q.; Yang, G.; Hu, X. J. Mater. Chem. 2008, 18, 683. doi: 10.1039/B715520D  doi: 10.1039/B715520D

    73. [73]

      Escale, P.; Van Camp, W.; Du Prez, F.; Rubatat, L.; Billon, L.; Save, M. Polym. Chem. 2013, 4, 4710. doi: 10.1039/C3PY00643C  doi: 10.1039/C3PY00643C

    74. [74]

      Escalé, P.; Rubatat, L.; Derail, C.; Save, M.; Billon, L. Macromol. Rapid. Comm. 2011, 32, 1072. doi: 10.1002/marc.201100296  doi: 10.1002/marc.201100296

    75. [75]

      Marcasuzaa, P.; Pearson, S.; Bosson, K.; Pessoni, L.; Dupin, J. C.; Billon, L. Chem. Commun. 2018, 54, 13068. doi: 10.1039/C8CC05333B  doi: 10.1039/C8CC05333B

    76. [76]

      Yin, H. Y.; Feng, Y. J.; Liu, H. B.; Mu, M.; Fei, C. H. Langmuir 2014, 30, 9911. doi: 10.1021/la501461n  doi: 10.1021/la501461n

    77. [77]

      Jochum, F. D.; Theato, P. Chem. Soc. Rev. 2013, 42, 7468. doi: 10.1039/C2CS35191A  doi: 10.1039/C2CS35191A

    78. [78]

      Li, L.; Chen, C.; Li, J.; Zhang, A.; Liu, X.; Xu, B.; Gao, S.; Jin, G.; Ma, Z. J. Mater. Chem. 2009, 19, 2789. doi: 10.1039/B820279F  doi: 10.1039/B820279F

    79. [79]

      Wang, W.; Du, C.; Wang, X.; He, X.; Lin, J.; Li, L.; Lin, S. Angew. Chem. Int. Ed. 2014, 53, 12116. doi: 10.1002/anie.201407230  doi: 10.1002/anie.201407230

    80. [80]

      Wei, W.; Dingfeng, S.; Xiao, L.; Yuan, Y.; Jiaping, L.; Aurelia, W.; Jiwoo, Y.; Lin, W. Z.; Won, H. S.; Zhiqun, L.; et al. Angew. Chem. Int. Ed. 2018, 57, 2139. doi: 10.1002/anie.201712100  doi: 10.1002/anie.201712100

    81. [81]

      Wang, W.; Yao, Y.; Luo, T.; Chen, L.; Lin, J.; Li, L.; Lin, S. ACS Appl. Mater. Interfaces 2017, 9, 4223. doi: 10.1021/acsami.6b14024  doi: 10.1021/acsami.6b14024

    82. [82]

      Wei, W.; Fei, G.; Yuan, Y.; Shaoliang, L. Chin. J. Polym. Sci. 2018, 36, 297. doi: 10.1007/s10118-018-2087-x  doi: 10.1007/s10118-018-2087-x

    83. [83]

      Xu, Y. Y.; Wang, W.; Chen, J. H.; Lin, S. L. Chin. J. Org. Chem. 2018, 38, 2161.  doi: 10.6023/cjoc201803037

    84. [84]

      Cui, L.; Xuan, Y.; Li, X.; Ding, Y.; Li, B.; Han, Y. Langmuir 2005, 21, 11696. doi: 10.1021/la051376z  doi: 10.1021/la051376z

    85. [85]

      Cui, L.; Peng, J.; Ding, Y.; Li, X.; Han, Y. Polymer 2005, 46, 5334. doi: 10.1016/j.polymer.2005.04.018  doi: 10.1016/j.polymer.2005.04.018

    86. [86]

      Chen, L.; Liu, R.; Hao, X.; Yan, Q. Angew. Chem. Int. Ed. 2019, 58, 264. doi: 10.1002/anie.201812365  doi: 10.1002/anie.201812365

    87. [87]

      Jie, K.; Zhou, Y.; Yao, Y.; Shi, B.; Huang, F. J. Am. Chem. Soc. 2015, 137, 10472. doi: 10.1021/jacs.5b05960  doi: 10.1021/jacs.5b05960

    88. [88]

      Yin, H. Y; Liu, H. B.; Wang, W.; Feng, Y. J. Langmuir 2015, 31, 12260. doi: 10.1021/acs.langmuir.5b02831  doi: 10.1021/acs.langmuir.5b02831

    89. [89]

      Su, X.; Cunningham, M. F.; Jessop, P. G. Chem. Commun. 2013, 49, 2655. doi: 10.1039/C3cc37816k  doi: 10.1039/C3cc37816k

    90. [90]

      Jessop, P. G.; Mercer, S. M.; Heldebrant, D. J. Energy Environ. Sci. 2012, 5, 7240. doi: 10.1039/C2ee02912j  doi: 10.1039/C2ee02912j

    91. [91]

      De León, A. S.; Molina, M.; Wedepohl, S.; Muñoz-Bonilla, A.; Rodríguez-Hernández, J.; Calderón, M. Langmuir 2016, 32, 1854. doi: 10.1021/acs.langmuir.5b04166  doi: 10.1021/acs.langmuir.5b04166

    92. [92]

      Heng, L.; Li, J.; Li, M.; Tian, D.; Fan, L. Z.; Jiang, L.; Tang, B. Z. Adv. Funct. Mater. 2014, 24, 7241. doi: 10.1002/adfm.201401342  doi: 10.1002/adfm.201401342

    93. [93]

      Yu, X.; Xie, D.; Lan, H.; Li, Y.; Zhen, X.; Ren, J.; Yi, T. J. Mater. Chem. C 2017, 5, 5910. doi: 10.1039/C7TC01331K  doi: 10.1039/C7TC01331K

  • 加载中
    1. [1]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    2. [2]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    3. [3]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    4. [4]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    5. [5]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    6. [6]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    7. [7]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    8. [8]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    9. [9]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    10. [10]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    11. [11]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    12. [12]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    13. [13]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    14. [14]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    15. [15]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    16. [16]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    17. [17]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    18. [18]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    19. [19]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    20. [20]

      Yonghui Wang Weilin Chen Yangguang Li . Knowledge Construction of “Solubility of Inorganic Substances” in Elemental Chemistry Teaching. University Chemistry, 2024, 39(4): 261-267. doi: 10.3866/PKU.DXHX202312102

Metrics
  • PDF Downloads(10)
  • Abstract views(971)
  • HTML views(119)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return