Citation: Zhang Ming, Zhao Fengqi, Yang Yanjing, Li Hui, Zhang Jiankan, Ma Wenzhe, Gao Hongxu, Li Na. Shape-Dependent Catalytic Activity of Nano-Fe2O3 on the Thermal Decomposition of TKX-50[J]. Acta Physico-Chimica Sinica, ;2020, 36(6): 190402. doi: 10.3866/PKU.WHXB201904027 shu

Shape-Dependent Catalytic Activity of Nano-Fe2O3 on the Thermal Decomposition of TKX-50

  • Corresponding author: Zhao Fengqi, zhaofqi@163.com
  • Received Date: 6 April 2019
    Revised Date: 22 April 2019
    Accepted Date: 22 April 2019
    Available Online: 24 June 2019

    Fund Project: the National Natural Science Foundation of China 21503163the National Natural Science Foundation of China 21173163The project was supported by the National Natural Science Foundation of China (21173163, 21503163)

  • Energy components used in solid rocket propellants are beneficial for improving the energy performance, and their thermal decomposition characteristics significantly affect the combustion properties of the propellants. As a kind of energetic material with both high energy and low sensitivity (impact and friction), 5, 5'-bistetrazole-1, 1'-diolate (TKX-50) can effectively improve the energy and safety characteristics of solid propellants. Burning catalyst is another important component of solid propellants, which can significantly improve the burning rate of the propellant and reduce the pressure exponent. Among various burning catalysts, nanoscale transition metal oxides can promote the thermal decomposition of the energetic component, thus enhancing the combustion properties of the solid propellant. However, the catalytic effects of nanoscale transition metal oxides with different morphologies on the thermal decomposition of TKX-50 have rarely been studied. Based on the excellent catalytic activity of Fe2O3 for TKX-50 thermal decomposition, nano-Fe2O3 particles with spherical and tubular microstructures were used for TKX-50 thermal decomposition. The Fe2O3 nanoparticles were successfully fabricated via the solvothermal method and characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) analyses. The XRD, FT-IR, and XPS results confirmed the successful fabrication of spherical and tubular Fe2O3 samples. The SEM and TEM images showed that the spherical Fe2O3 samples are composed of agglomerated Fe2O3 nanoparticles with an average particle size of 110 nm. In addition, the average diameter and length of hollow tubular Fe2O3 nanoparticles are 120 nm and 200 nm, respectively. The catalytic activities of spherical and tubular Fe2O3 for TKX-50 decomposition were studied by thermogravimetric analysis (TG) and differential scanning calorimetry (DSC) methods. The DSC and TG-DTG curves showed that both tubular and spherical Fe2O3 could effectively promote TKX-50 thermal decomposition. The first thermal decomposition peak temperature (TFDP) of TKX-50 was reduced by 36.5 K and 26.3 K in the presence of tubular and spherical Fe2O3, respectively, at 10 K·min1. The activation energy (Ea) of TKX-50, determined by the iso-conversional method, was significantly reduced in the presence of both tubular and spherical Fe2O3. The results indicated that the microstructure of the catalyst has a significant effect on its catalytic performance for TKX-50 thermal decomposition, and that tubular Fe2O3 with hollow microstructure possesses better catalytic activity than spherical Fe2O3. The excellent catalytic activity of tubular Fe2O3 can be attributed to the hollow microstructure, which has more active sites for TKX-50 thermal decomposition.
  • 加载中
    1. [1]

      Li X., Liu X., Cheng Y., Li Y., Mei X., J. Therm. Anal. Calorim. 2014, 115(1), 887. doi: 10.1007/s10973-013-3266-1  doi: 10.1007/s10973-013-3266-1

    2. [2]

      Ren C. X., Li X. X., Guo L., Acta Phys. -Chim. Sin. 2018, 34(10), 63.  doi: 10.3866/PKU.WHXB201802261

    3. [3]

      Zhang L., Zhi S., Shen Z., Propell. Explos. Pyrot. 2018, 43 (3), 234. doi: 10.1002/prep.201700190  doi: 10.1002/prep.201700190

    4. [4]

      An T., Zhao F. Q., Yi J. H., Fan X. Z., Gao H. X., Hao H. X., Wang X. H., Hu R. Z., Pei Q., Acta Phys. -Chim. Sin. 2011, 27(2), 281.  doi: 10.3866/PKU.WHXB20110213

    5. [5]

      Guan H. S., Li G. X., Zhang N. Y., Acta Astronaut. 2018, 144, 119. doi: 10.1016/j.actaastro.2017.12.015  doi: 10.1016/j.actaastro.2017.12.015

    6. [6]

      Zhang M., Zhao F. Q., Yang Y. J., Qu W. G., Li N., Zhang J. K., Chin. J. Energ. Mater. 2018, 26(12), 1074.
       

    7. [7]

      Sinditskii V. P., Egorshev V. Y., Serushkin V. V., Levshenkov A. I., Berezin M. V., Filatov S. A., Smirnov S. P., Thermochim. Acta 2009, 496(1–2), 1. doi: 10.1016/j.tca.2009.07.004a  doi: 10.1016/j.tca.2009.07.004a

    8. [8]

      Zheng L., Fan B. H., Bu X. X., Pan Y., Dong J. X., Guan W., Acta Phys. -Chim. Sin. 2015, 31 (11), 2036.  doi: 10.3866/PKU.WHXB201509111

    9. [9]

      Korobeinichev O. P., Paletskii A. A., Volkov E. N., Russ. J. Phys. Chem. B 2008, 2(2), 206. doi: 10.1134/s1990793108020085  doi: 10.1134/s1990793108020085

    10. [10]

      Huang H., Shi Y., Yang J., J. Therm. Anal. Calorim. 2015, 121 (2), 705. doi: 10.1007/s10973-015-4472-9  doi: 10.1007/s10973-015-4472-9

    11. [11]

      Sun S. Q., Yi Y. H., Wang L., Zhang J. L., Guo H. C., Acta Phys. -Chim. Sin. 2017, 33(6), 1123.  doi: 10.3866/PKU.WHXB201703301

    12. [12]

      Li N., Geng Z., Cao M., Ren L., Zhao X. Y., Liu B., Tian Y., Hu C. W., Carbon 2013, 54(2), 124. doi: 10.1016/j.carbon.2012.11.009  doi: 10.1016/j.carbon.2012.11.009

    13. [13]

      Zhao F. Q., Zhang H., An T., Zhang X. H., Yi J. H., Xu S. Y., Wang Y. L., Acta Phys. -Chim. Sin. 2013, 29(4), 777.  doi: 10.3866/PKU.WHXB20130111

    14. [14]

      Zhang M., Zhao F. Q., Yang Y. J., Li N., Zhang J. K., Chem. Propell. Polym. Mater. 2018, 16(6), 6.

    15. [15]

      Isert S., Groven L. J., Lucht, R P., Son S. F., Combust. Flame 2014, 162(5), 1821. doi: 10.1016/j.combustflame.2014.11.04  doi: 10.1016/j.combustflame.2014.11.04

    16. [16]

      Yuan Y., Jiang W., Wang Y. J., Shen P., Li F. S., Li P. Y., Zhao F. Q., Gao H. X., Appl. Surf. Sci. 2014, 303 (6), 354. doi: 10.1016/j.apsusc.2014.03.005  doi: 10.1016/j.apsusc.2014.03.005

    17. [17]

      Lan Y., Li X., Li G., Luo Y., J. Nanopart. Res. 2015, 17 (10), 1. doi: 10.1007/s11051-015-3200-5  doi: 10.1007/s11051-015-3200-5

    18. [18]

      Zhang M., Zhao F. Q., Yang Y. J., Zhang J. K., Li N., Gao H. X., Crystengcomm 2018, 20, 7010. doi: 10.1039/c8ce01434e  doi: 10.1039/C8CE01434E

    19. [19]

      Zhang J. K., Zhao F. Q., Xu S. Y., Yang Y. J., Qu W. G., Chin. J. Energ. Mater. 2017, 25(7), 564.

    20. [20]

      Zhang J. U., Ren N., Xu S. L., Chin. J. Chem. 2007, 25(1): 125. doi: 10.1002/cjoc.200790006  doi: 10.1002/cjoc.200790006

    21. [21]

      Zhang J. J., Ren N., Bai J. H., Xu S. L., Inter. J. Chem. Kinet. 2007, 39 (2), 67. doi: 10.1002/kin.20214  doi: 10.1002/kin.20214

    22. [22]

      Muravyev N. V., Monogarov K. A., Asachenko A. F., Nechaev M. S., Ananyev I. V., Fomenkov I. V., Pivkina A. N., Phys. Chem. Chem. Phys. 2017, 19(1), 436. doi: 10.1039/c6cp06498a  doi: 10.1039/c6cp06498a

    23. [23]

      Zhou G. W., Wang J., Gao P., Yang X.; He Y., Liao X., Yang J., Ma Z., Ind. Eng. Chem. Res. 2013, 52(3), 1197. doi: 10.1021/ie302469b  doi: 10.1021/ie302469b

    24. [24]

      Wang Y., Zhang M., Pan D., Li Y., Ma T., Xie J., Electrochim. Acta 2018, 266, 242. doi: 10.1016/j.electacta.2018.02.040  doi: 10.1016/j.electacta.2018.02.040

    25. [25]

      Zhang T., Zhao N., Li J., Gong H., An T., Zhao F., Ma H., RSC Adv. 2017, 7(38), 23583. doi: 10.1039/c6ra28502c  doi: 10.1039/C6RA28502C

    26. [26]

      Huang H., Shi Y., Yang J. J., Therm. Anal. Calorim. 2015, 121 (2), 705. doi: 10.1007/s10973-015-4472-9  doi: 10.1007/s10973-015-4472-9

    27. [27]

      Jia J., Liu Y., Huang S., Xu J., Li S., Zhang H., Cao X., RSC Adv. 2017, 7(77), 49105. doi: 10.1039/c7ra08816g  doi: 10.1039/C7RA08816G

  • 加载中
    1. [1]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    2. [2]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    3. [3]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    4. [4]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    5. [5]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    6. [6]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    7. [7]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    8. [8]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    9. [9]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    10. [10]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    11. [11]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    12. [12]

      Zhongjie LiXiangyue KongYuhao LiuHuayu QiuLingling ZhanShouchun Yin . Progress of additives for morphology control in organic photovoltaics. Chinese Chemical Letters, 2024, 35(6): 109378-. doi: 10.1016/j.cclet.2023.109378

    13. [13]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    14. [14]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    15. [15]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    16. [16]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    17. [17]

      Xin LuHaoran SunXiaomeng LiChunrui LiJinfeng WangDandan Zhou . C14-HSL limits the mycelial morphology of pathogen Trichosporon cells but enhances their aggregation: Mechanisms and implications. Chinese Chemical Letters, 2024, 35(6): 108936-. doi: 10.1016/j.cclet.2023.108936

    18. [18]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    19. [19]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    20. [20]

      Liliang ChuXiaoyan ZhangJianing LiXuelei DengMiao WuYa ChengWeiping ZhuXuhong QianYunpeng Bai . Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis. Chinese Chemical Letters, 2024, 35(4): 108896-. doi: 10.1016/j.cclet.2023.108896

Metrics
  • PDF Downloads(7)
  • Abstract views(650)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return