Citation: Ren Yi, Liu Qing-Yu, Zhao Yan-Xia, Yang Qi, He Sheng-Gui. C―C Coupling of Methane Mediated by Atomic Gold Cations under Multiple-Collision Conditions[J]. Acta Physico-Chimica Sinica, ;2020, 36(1): 190402. doi: 10.3866/PKU.WHXB201904026 shu

C―C Coupling of Methane Mediated by Atomic Gold Cations under Multiple-Collision Conditions

  • Corresponding author: Liu Qing-Yu, liuqingyu12@iccas.ac.cn He Sheng-Gui, shengguihe@iccas.ac.cn
  • Received Date: 8 April 2019
    Revised Date: 25 April 2019
    Accepted Date: 25 April 2019
    Available Online: 29 January 2019

    Fund Project: the National Key Research and Development Program of China 2017YFC0209403the Youth Innovation Promotion Association, Chinese Academy of Sciences 2018041The project was supported by the National Natural Science Foundation of China (21627803, 91645203) and the National Key Research and Development Program of China (2017YFC0209403). Y. -X. Zhao thanks the grant from the Youth Innovation Promotion Association, Chinese Academy of Sciences (2018041)the National Natural Science Foundation of China 21627803the National Natural Science Foundation of China 91645203

  • The reactivity of atomic metal cations toward CH4 has been extensively investigated over the past decades. Closed-shell metal cations in electronically ground states are usually inert with CH4 under thermal collision conditions because of the extremely high stability of methane. With the elevation of collision energies, closed-shell atomic gold cations (Au+) have been reported to react with CH4 under single-collision conditions to produce AuCH2+, AuH+, and AuCH3+ species. Further investigations found that the ion-source-generated AuCH2+ cations can react with CH4 to synthesize C―C coupling products. These previous studies suggested that new products for the reaction of Au+ with CH4 can be identified under multiple-collision conditions with sufficient collision energies. However, the reported ion-molecule reactions involving methane were usually performed under single- or multiple-collision conditions with thermal collision energies. In this study, a new reactor composed of a drift tube and ion funnel is constructed and coupled with a homemade reflectron time-of-flight mass spectrometer. Laser-ablation-generated Au+ ions are injected into the reactor and drift 120 mm to react with methane seeded in the helium drift gas. The reaction products and unreacted Au+ ions are focused through the ion funnel and accumulate through a linear ion trap and are then detected by a mass spectrometer. In the reactor, the pressure is approximately 100 Pa, and the electric field between the drift tube and ion funnel can regulate the collision energies between ions and molecules. The reaction of the closed-shell atomic Au+ cation with CH4 is investigated, and the C―C coupling product AuC2H4+ is observed under multiple-collision conditions with elevated collision energies. Density functional theory calculations are performed to understand the mechanism of the coupling reaction (Au++ 2CH4 → AuC2H4+ + 2H2). Two pathways involving Au―CH2 and Au―CH3 species can separately mediate the C―C coupling process. The activation of the second C―H bond in each process requires additional energy to overcome the relatively high barrier (2.07 and 2.29 eV). Ion-trajectory simulations under multiple-collision conditions are then conducted to determine the collisional energy distribution in the reactor. These simulations confirmed that the electric fields between the drift tube and ion funnel could supply sufficient center-of-mass kinetic energies to facilitate the C―C coupling process to form AuC2H4+. The following catalytic cycle could then be postulated: \begin{document}$\mathrm{AuC}_{2} \mathrm{H}_{4}^{+}+\mathrm{CH}_{4} \stackrel{\Delta}{\longrightarrow} \mathrm{AuCH}_{4}^{+}+\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{AuCH}_{4}^{+}+\mathrm{CH}_{4} \stackrel{\Delta}{\longrightarrow} \mathrm{AuC}_{2} \mathrm{H}_{4}^{+}+2 \mathrm{H}_{2}$\end{document}, and \begin{document}$\mathrm{CH}_{4} \stackrel{\mathrm{Au}^{+}, \Delta}{\longrightarrow} \mathrm{C}_{2} \mathrm{H}_{4}+2 \mathrm{H}_{2}$\end{document}. Thus, this study enriches the chemistry of both gold and methane.
  • 加载中
    1. [1]

      Lunsford, J. H. Catal. Today 2000, 63, 165. doi: 10.1016/s0920-5861(00)00456-9  doi: 10.1016/s0920-5861(00)00456-9

    2. [2]

      Caballero, A.; Pérez, P. J. Chem. Soc. Rev. 2013, 42, 8809. doi: 10.1039/c3cs60120j  doi: 10.1039/c3cs60120j

    3. [3]

      Saha, D.; Grappe, H. A.; Chakraborty, A.; Orkoulas, G. Chem. Rev. 2016, 116, 11436. doi: 10.1021/acs.chemrev.5b00745  doi: 10.1021/acs.chemrev.5b00745

    4. [4]

      Ismagilov, Z. R.; Matus, E. V.; Tsikoza, L. T. Energy Environ. Sci. 2008, 1, 526. doi: 10.1039/b810981h  doi: 10.1039/b810981h

    5. [5]

      Spivey, J. J.; Hutchings, G. Chem. Soc. Rev. 2014, 43, 792. doi: 10.1039/c3cs60259a  doi: 10.1039/c3cs60259a

    6. [6]

      Schwach, P.; Pan, X.; Bao, X. Chem. Rev. 2017, 117, 8497. doi: 10.1021/acs.chemrev.6b00715  doi: 10.1021/acs.chemrev.6b00715

    7. [7]

      Schwarz, H.; González-Navarrete, P.; Li, J.; Schlangen, M.; Sun, X.; Weiske, T.; Zhou, S. Organometallics 2017, 36, 8. doi: 10.1021/acs.organomet.6b00372  doi: 10.1021/acs.organomet.6b00372

    8. [8]

      Ding, X. -L.; Wu, X. -N.; Zhao, Y. -X.; He, S. -G. Acc. Chem. Res. 2012, 45, 382. doi: 10.1021/ar2001364  doi: 10.1021/ar2001364

    9. [9]

      Feyel, S.; Döbler, J.; Schröder, D.; Sauer, J.; Schwarz, H. Angew. Chem. Int. Ed. 2006, 45, 4681. doi: 10.1002/anie.200600188  doi: 10.1002/anie.200600188

    10. [10]

      Harding, D. J.; Kerpal, C.; Meijer, G.; Fielicke, A. Angew. Chem. Int. Ed. 2012, 51, 817. doi: 10.1002/anie.201107042  doi: 10.1002/anie.201107042

    11. [11]

      Lang, S. M.; Frank, A.; Bernhardt, T. M. J. Phys. Chem. C 2013, 117, 9791. doi: 10.1021/jp312852r  doi: 10.1021/jp312852r

    12. [12]

      Canale, V.; Zavras, A.; Khairallah, G. N.; d'Alessandro, N.; O'Hair, R. A. J. Eur. J. Mass Spectrom. 2015, 21, 557. doi: 10.1255/ejms.1332  doi: 10.1255/ejms.1332

    13. [13]

      Lang, S. M.; Bernhardt, T. M.; Chernyy, V.; Bakker, J. M.; Barnett, R. N.; Landman, U. Angew. Chem. Int. Ed. 2017, 56, 13406. doi: 10.1002/anie.201706009  doi: 10.1002/anie.201706009

    14. [14]

      Caballero, A.; Despagnet-Ayoub, E.; Díaz-Requejo, M. M.; Díaz-Rodríguez, A.; González-Núñez, M. E.; Mello, R.; Muñoz, B. K.; Ojo, W. S.; Asensio, G.; Etienne, M.; et al. Science 2011, 332, 835. doi: 10.1126/science.1204131  doi: 10.1126/science.1204131

    15. [15]

      Guo, X.; Fang, G.; Li, G.; Ma, H.; Fan, H.; Yu, L.; Ma, C.; Wu, X.; Deng, D.; Wei, M.; et al. Science 2014, 344, 616. doi: 10.1126/science.1253150  doi: 10.1126/science.1253150

    16. [16]

      Sushkevich, V. L.; Palagin, D.; Ranocchiari, M.; van Bokhoven, J. A. Science 2017, 356, 523. doi: 10.1126/science.aam9035  doi: 10.1126/science.aam9035

    17. [17]

      Tonkyn, R.; Ronan, M.; Weisshaar, J. C. J. Phys. Chem. 1988, 92, 92. doi: 10.1021/j100312a022  doi: 10.1021/j100312a022

    18. [18]

      Irikura, K. K.; Beauchamp, J. L. J. Phys. Chem. 1991, 95, 8344. doi: 10.1021/j100174a057  doi: 10.1021/j100174a057

    19. [19]

      Irikura, K. K.; Beauchamp, J. L. J. Am. Chem. Soc. 1991, 113, 2769. doi: 10.1021/ja00007a070  doi: 10.1021/ja00007a070

    20. [20]

      Cornehl, H. H.; Heinemann, C.; Schröder, D.; Schwarz, H. Organometallics 1995, 14, 992. doi: 10.1021/om00002a053  doi: 10.1021/om00002a053

    21. [21]

      Schwarz, H.; Schröder, D. Pure Appl. Chem. 2000, 72, 2319. doi: 10.1351/pac200072122319  doi: 10.1351/pac200072122319

    22. [22]

      Shayesteh, A.; Lavrov, V. V.; Koyanagi, G. K.; Bohme, D. K. J. Phys. Chem. A 2009, 113, 5602. doi: 10.1021/jp900671c  doi: 10.1021/jp900671c

    23. [23]

      van Koppen, P. A. M.; Kemper, P. R.; Bushnell, J. E.; Bowers, M. T. J. Am. Chem. Soc. 1995, 117, 2098. doi: 10.1021/ja00112a026  doi: 10.1021/ja00112a026

    24. [24]

      Sunderlin, L. S.; Armentrout, P. B. J. Am. Chem. Soc. 1989, 111, 3845. doi: 10.1021/ja00193a015  doi: 10.1021/ja00193a015

    25. [25]

      Haynes, C. L.; Chen, Y.-M.; Armentrout, P. B. J. Phys. Chem. 1995, 99, 9110. doi: 10.1021/j100022a024  doi: 10.1021/j100022a024

    26. [26]

      Armentrout, P. B.; Chen, Y.-M. Int. J. Mass Spectrom. 2017, 413, 135. doi: 10.1016/j.ijms.2016.05.003  doi: 10.1016/j.ijms.2016.05.003

    27. [27]

      Li, F.-X.; Armentrout, P. B. J. Chem. Phys. 2006, 125, 133114. doi: 10.1063/1.2220038  doi: 10.1063/1.2220038

    28. [28]

      Zhou, S.; Li, J.; Wu, X.-N.; Schlangen, M.; Schwarz, H. Angew. Chem. Int. Ed. 2016, 55, 441. doi: 10.1002/anie.201509320  doi: 10.1002/anie.201509320

    29. [29]

      Karakaya, C.; Kee, R. J. Prog. Energy Combust. Sci. 2016, 55, 60. doi: 10.1016/j.pecs.2016.04.003  doi: 10.1016/j.pecs.2016.04.003

    30. [30]

      Tomkins, P.; Ranocchiari, M.; van Bokhoven, J. A. Acc. Chem. Res. 2017, 50, 418. doi: 10.1021/acs.accounts.6b00534  doi: 10.1021/acs.accounts.6b00534

    31. [31]

      Sun, K.; Ginosar, D. M.; He, T.; Zhang, Y.; Fan, M.; Chen, R. Ind. Eng. Chem. Res. 2018, 57, 1768. doi: 10.1021/acs.iecr.7b04707  doi: 10.1021/acs.iecr.7b04707

    32. [32]

      Geusic, M. E.; Morse, M. D.; O'Brien, S. C.; Smalley, R. E. Rev. Sci. Instrum. 1985, 56, 2123. doi: 10.1063/1.1138381  doi: 10.1063/1.1138381

    33. [33]

      Smith, D.; Španěl, P. Mass Spectrom. Rev. 2005, 24, 661. doi: 10.1002/mas.20033  doi: 10.1002/mas.20033

    34. [34]

      Melko, J. J.; Ard, S. G.; Shuman, N. S.; Pedder, R. E.; Taormina, C. R.; Viggiano, A. A. Rev. Sci. Instrum. 2015, 86, 084101. doi: 10.1063/1.4927716  doi: 10.1063/1.4927716

    35. [35]

      McDonald, D. C.; Sweeny, B. C.; Ard, S. G.; Melko, J. J.; Ruliffson, J. E.; White, M. C.; Viggiano, A. A.; Shuman, N. S. J. Phys. Chem. A 2018, 122, 6655. doi: 10.1021/acs.jpca.8b02513  doi: 10.1021/acs.jpca.8b02513

    36. [36]

      Gronert, S. Mass Spectrom. Rev. 2005, 24, 100. doi: 10.1002/mas.20008  doi: 10.1002/mas.20008

    37. [37]

      Douglas, D. J.; Frank, A. J.; Mao, D. Mass Spectrom. Rev. 2005, 24, 1. doi: 10.1002/mas.20004  doi: 10.1002/mas.20004

    38. [38]

      Nibbering, N. M. M. Acc. Chem. Res. 1990, 23, 279. doi: 10.1021/ar00177a003  doi: 10.1021/ar00177a003

    39. [39]

      Teloy, E.; Gerlich, D. Chem. Phys. 1974, 4, 417. doi: 10.1016/0301-0104(74)85008-1  doi: 10.1016/0301-0104(74)85008-1

    40. [40]

      Armentrout, P. B.; Beauchamp, J. L. Acc. Chem. Res. 1989, 22, 315. doi: 10.1021/ar00165a004  doi: 10.1021/ar00165a004

    41. [41]

      May, J. C.; McLean, J. A. Anal. Chem. 2015, 87, 1422. doi: 10.1021/ac504720m  doi: 10.1021/ac504720m

    42. [42]

      Lanucara, F.; Holman, S. W.; Gray, C. J.; Eyers, C. E. Nat. Chem. 2014, 6, 281. doi: 10.1038/nchem.1889  doi: 10.1038/nchem.1889

    43. [43]

      Zhan, X.; Duan, J.; Duan, Y. Mass Spectrom. Rev. 2013, 32, 143. doi: 10.1002/mas.21357  doi: 10.1002/mas.21357

    44. [44]

      Yuan, B.; Koss, A. R.; Warneke, C.; Coggon, M.; Sekimoto, K.; de Gouw, J. A. Chem. Rev. 2017, 117, 13187. doi: 10.1021/acs.chemrev.7b00325  doi: 10.1021/acs.chemrev.7b00325

    45. [45]

      Kučera, M.; Stano, M.; Wnorowska, J.; Barszczewska, W.; Loffhagen, D.; Matejčík, Š. Eur. Phys. J. D 2013, 67, 234. doi: 10.1140/epjd/e2013-40401-2  doi: 10.1140/epjd/e2013-40401-2

    46. [46]

      Gao, H.; Niu, W.; Huang, C.; Hong, Y.; Shen, C.; Wang, H.; Lu, Y.; Chen, X.; Xia, L.; Jiang, H.; Chu, Y. Int. J. Mass spectrom. 2015, 376, 1. doi: 10.1016/j.ijms.2014.11.001  doi: 10.1016/j.ijms.2014.11.001

    47. [47]

      Kemper, P. R.; Bowers, M. T. J. Am. Soc. Mass. Spectrom. 1990, 1, 197. doi: 10.1016/1044-0305(90)85036-l  doi: 10.1016/1044-0305(90)85036-l

    48. [48]

      Backe, H.; Dretzke, A.; Horn, R.; Kolb, T.; Lauth, W.; Repnow, R.; Sewtz, M.; Trautmann, N. Hyperfine Interact. 2006, 162, 77. doi: 10.1007/s10751-005-9210-4  doi: 10.1007/s10751-005-9210-4

    49. [49]

      Wyttenbach, T.; Kemper, P. R.; Bowers, M. T. Int. J. Mass Spectrom. 2001, 212, 13. doi: 10.1016/s1387-3806(01)00517-6  doi: 10.1016/s1387-3806(01)00517-6

    50. [50]

      Tang, K.; Shvartsburg, A. A.; Lee, H. N.; Prior, D. C.; Buschbach, M. A.; Li, F.; Tolmachev, A. V.; Anderson, G. A.; Smith, R. D. Anal. Chem. 2005, 77, 3330. doi: 10.1021/ac048315a  doi: 10.1021/ac048315a

    51. [51]

      Koeniger, S. L.; Merenbloom, S. I.; Valentine, S. J.; Jarrold, M. F.; Udseth, H. R.; Smith, R. D.; Clemmer, D. E. Anal. Chem. 2006, 78, 4161. doi: 10.1021/ac051060w  doi: 10.1021/ac051060w

    52. [52]

      Kelly, R. T.; Tolmachev, A. V.; Page, J. S.; Tang, K.; Smith, R. D. Mass Spectrom. Rev. 2010, 29, 294. doi: 10.1002/mas.20232  doi: 10.1002/mas.20232

    53. [53]

      Shi, L.; Holliday, A. E.; Bohrer, B. C.; Kim, D.; Servage, K. A.; Russell, D. H.; Clemmer, D. E. J. Am. Soc. Mass. Spectrom. 2016, 27, 1037. doi: 10.1007/s13361-016-1372-6  doi: 10.1007/s13361-016-1372-6

    54. [54]

      Wagner, N. D.; Clemmer, D. E.; Russell, D. H. Anal. Chem. 2017, 89, 10094. doi: 10.1021/acs.analchem.7b02932  doi: 10.1021/acs.analchem.7b02932

    55. [55]

      Yuan, Z.; Liu, Q. -Y.; Li, X. -N.; He, S. -G. Int. J. Mass Spectrom. 2016, 407, 62. doi: 10.1016/j.ijms.2016.07.004  doi: 10.1016/j.ijms.2016.07.004

    56. [56]

      Li, F. -X.; Gorham, K.; Armentrout, P. B. J. Phys. Chem. A 2010, 114, 11043. doi: 10.1021/jp100566t  doi: 10.1021/jp100566t

    57. [57]

      Zhao, Y. X.; Li, Z. Y.; Yuan, Z.; Li, X. N.; He, S. G. Angew. Chem. Int. Ed. 2014, 53, 9482. doi: 10.1002/anie.201403953  doi: 10.1002/anie.201403953

    58. [58]

      Yuan, Z.; Li, Z. -Y.; Zhou, Z. -X.; Liu, Q. -Y.; Zhao, Y. -X.; He, S. -G. J. Phys. Chem. C 2014, 118, 14967. doi: 10.1021/jp5040344  doi: 10.1021/jp5040344

    59. [59]

      SIMION® Version 8.1. Scientific Instrument Services, Inc.TM 2011.

    60. [60]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 09, Revision A.01; Gaussian Inc.: Wallingford, CT, USA, 2009.

    61. [61]

      Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. Phys. Rev. Lett. 2003, 91, 146401. doi: 10.1103/PhysRevLett.91.146401  doi: 10.1103/PhysRevLett.91.146401

    62. [62]

      Li, Z. -Y.; Li, H. -F.; Zhao, Y. -X.; He, S. -G. J. Am. Chem. Soc. 2016, 138, 9437. doi: 10.1021/jacs.6b03940  doi: 10.1021/jacs.6b03940

    63. [63]

      Meng, J. -H.; He, S. -G. J. Phys. Chem. Lett. 2014, 5, 3890. doi: 10.1021/jz502057n  doi: 10.1021/jz502057n

    64. [64]

      Kanai, Y.; Wang, X.; Selloni, A.; Car, R. J. Chem. Phys. 2006, 125, 234104. doi: 10.1063/1.2403861  doi: 10.1063/1.2403861

    65. [65]

      Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650. doi: 10.1063/1.438955  doi: 10.1063/1.438955

    66. [66]

      Andrae, D.; Häuϐermann, U.; Dolg, M.; Stoll, H.; Preuϐ, H. Theor. Chim. Acta 1990, 77, 123. doi: 10.1007/bf01114537  doi: 10.1007/bf01114537

    67. [67]

      Schlegel, H. B. J. Comput. Chem. 1982, 3, 214. doi: 10.1002/jcc.540030212  doi: 10.1002/jcc.540030212

    68. [68]

      Berente, I.; Náray-Szabó, G. J. Phys. Chem. A 2006, 110, 772. doi: 10.1021/jp054116z  doi: 10.1021/jp054116z

    69. [69]

      Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90, 2154. doi: 10.1063/1.456010  doi: 10.1063/1.456010

    70. [70]

      Gonzalez, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523. doi: 10.1021/j100377a021  doi: 10.1021/j100377a021

    71. [71]

      Zhang, T.; Li, Z. -Y.; Zhang, M. -Q.; He, S. -G. J. Phys. Chem. A 2016, 120, 4285. doi: 10.1021/acs.jpca.6b03836  doi: 10.1021/acs.jpca.6b03836

    72. [72]

      Lang, S. M.; Bernhardt, T. M.; Barnett, R. N.; Landman, U. Angew. Chem. Int. Ed. 2010, 49, 980. doi: 10.1002/anie.200905643  doi: 10.1002/anie.200905643

  • 加载中
    1. [1]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    2. [2]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    3. [3]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    4. [4]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    5. [5]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    6. [6]

      Wei Shao Wanqun Zhang Pingping Zhu Wanqun Hu Qiang Zhou Weiwei Li Kaiping Yang Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048

    7. [7]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    8. [8]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    9. [9]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    10. [10]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    11. [11]

      Jing ChenPeisi XiePengfei WuYu HeZian LinZongwei Cai . MALDI coupled with laser-postionization and trapped ion mobility spectrometry contribute to the enhanced detection of lipids in cancer cell spheroids. Chinese Chemical Letters, 2024, 35(4): 108895-. doi: 10.1016/j.cclet.2023.108895

    12. [12]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    13. [13]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    14. [14]

      Dong-Sheng DengSu-Qin TangYong-Tu YuanDing-Xiong XieZhi-Yuan ZhuYue-Mei HuangYun-Lin Liu . C-F insertion reaction sheds new light on the construction of fluorinated compounds. Chinese Chemical Letters, 2024, 35(8): 109417-. doi: 10.1016/j.cclet.2023.109417

    15. [15]

      Zhi LiWenpei LiShaoping JiangChuan HuYuanyu HuangMaxim ShevtsovHuile GaoShaobo Ruan . Legumain-triggered aggregable gold nanoparticles for enhanced intratumoral retention. Chinese Chemical Letters, 2024, 35(7): 109150-. doi: 10.1016/j.cclet.2023.109150

    16. [16]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309

    17. [17]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    18. [18]

      Junchuan Sun Lu Wang . Carbon exchange enabled supra-photothermal methane dry reforming. Chinese Journal of Structural Chemistry, 2024, 43(10): 100330-100330. doi: 10.1016/j.cjsc.2024.100330

    19. [19]

      Xiangqian CaoChenkai YangXiaodong ZhuMengxin ZhaoYilin YanZhengnan HuangJinming CaiJingming ZhuangShengzhou LiWei LiBing Shen . Synergistic enhancement of chemotherapy for bladder cancer by photothermal dual-sensitive nanosystem with gold nanoparticles and PNIPAM. Chinese Chemical Letters, 2024, 35(8): 109199-. doi: 10.1016/j.cclet.2023.109199

    20. [20]

      Min HuangRu ChengShuai WenLiangtong LiJie GaoXiaohui ZhaoChunmei LiHongyan ZouJian Wang . Ultrasensitive detection of microRNA-21 in human serum based on the confinement effect enhanced chemical etching of gold nanorods. Chinese Chemical Letters, 2024, 35(9): 109379-. doi: 10.1016/j.cclet.2023.109379

Metrics
  • PDF Downloads(10)
  • Abstract views(448)
  • HTML views(68)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return