Citation: Chen Yao, Chen George Zheng. New Precursors Derived Activated Carbon and Graphene for Aqueous Supercapacitors with Unequal Electrode Capacitances[J]. Acta Physico-Chimica Sinica, ;2020, 36(2): 190402. doi: 10.3866/PKU.WHXB201904025 shu

New Precursors Derived Activated Carbon and Graphene for Aqueous Supercapacitors with Unequal Electrode Capacitances



  • Author Bio: Yao Chen (ORCID: 0000-0003-0147-8156) obtained his PhD degree from Institute of Electrical Engineering, Chinese Academy of Sciences under Prof. Yanwei Ma's supervision in 2012. He then completed his postdoc research in IFW Dresden, Germany, together with Prof. Oliver Schmidt and in AIST Kansai, Japan with Prof. Qiang Xu. Since 2015, as an instructor, he had joined Wuhan University of Science and Technology where he was mainly engaged in research on carbon based electrochemical energy storage devices and heterogeneous catalysis
    George Z. Chen (ORCID: 0000-0002-5589-5767) graduated from Jiujiang Teachers Training College with a Diploma in 1981, Fujian Normal University with the MSc in 1985, and the University of London with the PhD and DIC in 1992. After contracted work in the Universities of Oxford, Leeds and Cambridge, he joined the University of Nottingham in 2003, and has been Professor since 2009. He is Li Dak Sam Chair Professor of the University of Nottingham Ningbo China, and Specially Invited Professor of Wuhan University of Science and Technology. His research aims at electrochemical and liquid salts innovations for materials, energy and environment
  • Corresponding author: Chen Yao, y.chen@wust.edu.cn Chen George Zheng, george.chen@nottingham.ac.uk
  • Received Date: 3 April 2019
    Revised Date: 17 May 2019
    Accepted Date: 7 June 2019
    Available Online: 17 February 2019

    Fund Project: the Ningbo Municipal Government, China 2014A35001-1The project was supported by State Key Laboratory of Materials Processing and the Die & Mould Technology, Huazhong University of Science and Technology, China (P2019-014) and the Ningbo Municipal Government, China (3315 Plan, and 2014A35001-1)State Key Laboratory of Materials Processing and the Die & Mould Technology, Huazhong University of Science and Technology, China P2019-014the Ningbo Municipal Government, China 3315计划

  • Carbon materials can offer various micro- and nanostructures as well as bulk and surface functionalities; hence, they remain the most popular for manufacturing supercapacitors. This article critically reviews recent developments in the preparation of carbon materials from new precursors for supercapacitors. Typical examples are activated carbon (AC) and graphene, which can be prepared from various conventional and new precursors such as biomass, polymers, graphite oxide, CH4, and even CO2 via innovative processes to achieve low-cost and/or high specific capacitance. Specifically, when producing AC from natural biomasses or synthetic polymers, either new, spent, or waste, popular activation agents, such as KOH and ZnCl2, are often used to process the ACs derived from these new precursors while the respective activation mechanisms always attract interest. The traditional two-step calcination process at high temperatures is widely employed to achieve high performance, with or without retaining the morphology of the precursors. The three-step calcination, including a post-vacuum treatment, is also the preferred choice in many cases, but it can increase the cost per capacity (kWh∙g−1). More recently, one-step molecular activation promises a better and more economical approach to the commercial application of AC, although further increase of the yield is necessary. In addition to activation, graphitization, N doping, and template control can further improve ACs in terms of the charging and discharging rates, or pseudocapacitance, or both. Considerations are also given to material structure design, and carbon regeneration during activation. Metal-organic frameworks, which were initially used as templates, have been found to be good direct carbon precursors. Various graphene structures, including powders, films, aerogels, foams, and fibers, can be produced from graphite oxide, CO2, and CH4. Similar to AC, graphene can possess micropores by activation. Self-propagating high-temperature synthesis and molten salt processing are newly-reported methods for fabrication of mesoporous graphene. Macroporous graphene hydrogels can be produced by hydrothermal treatment of graphite oxide suspension, which can also be transferred into films. Hierarchically porous structures can be achieved by H2O2 etching or ZnCl2 activation of the macroporous graphene precursor. Sponges as templates combined with KOH activation are applied to create both micro- and macropores in graphene foams. Graphene can grow on fibers and textiles by electrodeposition, dip-coating, or filtration, which can be woven into clothes with a large area or thick loading, illuminating the potential application in flexible and wearable supercapacitors. The key obstacles in AC and graphene production are high cost, low yield, low packing density, and low working potential range. Most Carbon materials derived from new precursors work very well with aqueous electrolytes. Charge storage occurs not only in the electric double layer (i.e., the "carbon | electrolyte" interface), but also via redox activity in association with the bulk and surface functionalities, and the resulting partial delocalization of valence electrons. The analysis of the capacitive electrode has shown a design defect that prevents the working voltage of a symmetrical supercapacitor from reaching the full potential window of the carbon material. This defect can be avoided in AC-based supercapacitors with unequal electrode capacitances, leading to higher cell voltages and hence higher specific energy than their symmetrical counterparts. There are also emerging ways to raise the energy capacity of AC supercapacitors, such as the use of redox electrolytes to enable the Nernstian charge storage mechanism, and of the three dimensional printing method for a desirable electrode structure. All these developments are promising carbon materials from various precursors of new and waste sources for a more affordable and sustainable supercapacitor technology.
  • 加载中
    1. [1]

      Chen, G. Z. Int. Mater. Rev.2017, 62, 173. doi: 10.1080/09506608.2016.1240914  doi: 10.1080/09506608.2016.1240914

    2. [2]

      Zhang, X.; Zhang, H.; Li, C.; Wang, K.; Sun, X.; Ma, Y. RSC Adv. 2014, 4, 45862. doi: 10.1039/c4ra07869a  doi: 10.1039/c4ra07869a

    3. [3]

      Chen, Y.; Chen, G. Z. Building Porous Graphene Architectures for Electrochemical Energy Storage Devices, In: Innovations in Engineered Porous Materials for Energy Generation and Storage applications; Rajagopalan, R.; Balakrishnan, A. Eds.; CRC press, Boca Raton, 2018, pp. 86–108.

    4. [4]

      Inagaki, M.; Konno, H.; Tanaike, O. J. Power Sources 2010, 195, 7880. doi: 10.1016/j.jpowsour.2010.06.036  doi: 10.1016/j.jpowsour.2010.06.036

    5. [5]

      Hibino, T.; Kobayashi, K.; Nagao, M.; Kawasaki, S. Sci. Rep. 2015, 5, 7903. doi: 10.1038/srep07903  doi: 10.1038/srep07903

    6. [6]

      Sevilla, M.; Mokaya, R. Energy Environ. Sci. 2014, 7, 1250. doi: 10.1039/c3ee43525c  doi: 10.1039/c3ee43525c

    7. [7]

      Harris, P. J. F.; Liu, Z.; Suenaga, K. J. Phys.: Condens. Matter 2008, 20, 362201. doi: 10.1088/0953-8984/20/36/362201  doi: 10.1088/0953-8984/20/36/362201

    8. [8]

      Peigney, A.; Laurent, C.; Flahaut, E.; Bacsa, R. R.; Rousset, A. Carbon 2001, 39, 507. doi: 10.1016/s0008-6223(00)00155-x  doi: 10.1016/s0008-6223(00)00155-x

    9. [9]

      Zhang, Y.; Tan, Y. W.; Stormer, H. L.; Kim, P. Nature 2005, 438, 201. doi: 10.1038/nature04235  doi: 10.1038/nature04235

    10. [10]

      Liu, F.; Ming, P.; Li, J. Phys. Rev. B 2007, 76, 064120. doi: 10.1103/PhysRevB.76.064120  doi: 10.1103/PhysRevB.76.064120

    11. [11]

      Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Carbon 2007, 45, 1558. doi: 10.1016/j.carbon.2007.02.034  doi: 10.1016/j.carbon.2007.02.034

    12. [12]

      Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S. Nano Lett. 2008, 8, 3498. doi: 10.1021/nl802558y  doi: 10.1021/nl802558y

    13. [13]

      Li, D.; Muller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Nat. Nanotechnol. 2008, 3, 101. doi: 10.1038/nnano.2007.451  doi: 10.1038/nnano.2007.451

    14. [14]

      Li, J.; O'Shea, J.; Hou, X.; Chen, G. Z. Chem. Commun. 2017, 53, 10414. doi: 10.1039/c7cc04344a  doi: 10.1039/c7cc04344a

    15. [15]

      Rouquerol, J.; Avnir, D.; Fairbridge, C. W.; Everett, D. H.; Haynes, J. H.; Pernicone, N.; Ramsay, J. D. F.; Sing, K. S. W.; Unger, K. K. Pure Appl. Chem. 1994, 66, 1739. doi: 10.1351/pac199466081739  doi: 10.1351/pac199466081739

    16. [16]

      Ibarra, J.; Moliner, R.; Palacios, J. Fuel 1991, 70, 727. doi: 10.1016/0016-2361(91)90069-M  doi: 10.1016/0016-2361(91)90069-M

    17. [17]

      Ahmadpour, A.; Do, D. D. Carbon 1996, 34, 471. doi: 10.1016/0008-6223(95)00204-9  doi: 10.1016/0008-6223(95)00204-9

    18. [18]

      Hayashi, J. i.; Kazehaya, A.; Muroyama, K.; Watkinson, A. P. Carbon 2000, 38, 1873. doi: 10.1016/S0008-6223(00)00027-0  doi: 10.1016/S0008-6223(00)00027-0

    19. [19]

      Saha, D.; Li, Y.; Bi, Z.; Chen, J.; Keum, J. K.; Hensley, D. K.; Grappe, H. A.; Meyer, H. M.; Dai, S.; Paranthaman, M. P.; Naskar, A. K. Langmuir 2014, 30, 900. doi: 10.1021/la404112m  doi: 10.1021/la404112m

    20. [20]

      Hao, P.; Zhao, Z.; Tian, J.; Li, H.; Sang, Y.; Yu, G.; Cai, H.; Liu, H.; Wong, C. P.; Umar, A. Nanoscale 2014, 6, 12120. doi: 10.1039/c4nr03574g  doi: 10.1039/c4nr03574g

    21. [21]

      Su, X. L.; Chen, J. R.; Zheng, G. P.; Yang, J. H.; Guan, X. X.; Liu, P.; Zheng, X. C. Appl. Surf. Sci. 2018, 436, 327. doi: 10.1016/j.apsusc.2017.11.249  doi: 10.1016/j.apsusc.2017.11.249

    22. [22]

      Xie, L.; Sun, G.; Su, F.; Guo, X.; Kong, Q.; Li, X.; Huang, X.; Wan, L.; Song, W.; Li, K.; et al. J. Mater. Chem. A 2016, 4, 1637. doi: 10.1039/c5ta09043a  doi: 10.1039/c5ta09043a

    23. [23]

      Li, Y.; Wang, G.; Wei, T.; Fan, Z.; Yan, P. Nano Energy 2016, 19, 165. doi: 10.1016/j.nanoen.2015.10.038  doi: 10.1016/j.nanoen.2015.10.038

    24. [24]

      Wang, H.; Xu, Z.; Li, Z.; Cui, K.; Ding, J.; Kohandehghan, A.; Tan, X.; Zahiri, B.; Olsen, B. C.; Holt, C. M. B.; et al. Nano Lett. 2014, 14, 1987. doi: 10.1021/nl500011d  doi: 10.1021/nl500011d

    25. [25]

      Tian, W.; Gao, Q.; Tan, Y.; Yang, K.; Zhu, L.; Yang, C.; Zhang, H. J. Mater. Chem. A 2015, 3, 5656. doi: 10.1039/c4ta06620k  doi: 10.1039/c4ta06620k

    26. [26]

      Li, D.; Zhang, J.; Wang, Z.; Jin, X. Acta Phys. -Chim. Sin. 2017, 33, 2245.  doi: 10.3866/PKU.WHXB201705241

    27. [27]

      Zhang, L.; Gu, H.; Sun, H.; Cao, F.; Chen, Y.; Chen, G. Z. Carbon 2018, 132, 573. doi: 10.1016/j.carbon.2018.02.100  doi: 10.1016/j.carbon.2018.02.100

    28. [28]

      Mao, N.; Wang, H.; Sui, Y.; Cui, Y.; Pokrzywinski, J.; Shi, J.; Liu, W.; Chen, S.; Wang, X.; Mitlin, D. Nano Research 2017, 10, 1767. doi: 10.1007/s12274-017-1486-6  doi: 10.1007/s12274-017-1486-6

    29. [29]

      Yan, J.; Wei, T.; Qiao, W.; Fan, Z.; Zhang, L.; Li, T.; Zhao, Q. Electrochem. Commun. 2010, 12, 1279. doi: 10.1016/j.elecom.2010.06.037  doi: 10.1016/j.elecom.2010.06.037

    30. [30]

      Zhang, H.; Zhang, X.; Ma, Y. Electrochim. Acta 2015, 184, 347. doi: 10.1016/j.electacta.2015.10.089  doi: 10.1016/j.electacta.2015.10.089

    31. [31]

      Su, H.; Zhang, H.; Liu, F.; Chun, F.; Zhang, B.; Chu, X.; Huang, H.; Deng, W.; Gu, B.; Zhang, H.; et al.Chem. Eng. J. 2017, 322, 73. doi: 10.1016/j.cej.2017.04.012  doi: 10.1016/j.cej.2017.04.012

    32. [32]

      Tang, K.; Chang, J.; Cao, H.; Su, C.; Li, Y.; Zhang, Z.; Zhang, Y. ACS Sus. Chem. Eng. 2017, 5, 11324. doi: 10.1021/acssuschemeng.7b02307  doi: 10.1021/acssuschemeng.7b02307

    33. [33]

      Feng, L.; Wang, K.; Zhang, X.; Sun, X.; Li, C.; Ge, X.; Ma, Y. Adv. Funct. Mater. 2018, 28, 1704463. doi: 10.1002/adfm.201704463  doi: 10.1002/adfm.201704463

    34. [34]

      Alabadi, A.; Yang, X.; Dong, Z.; Li, Z.; Tan, B. J. Mater. Chem. A 2014, 2, 11697. doi: 10.1039/c4ta01215a  doi: 10.1039/c4ta01215a

    35. [35]

      Kim, M.; Puthiaraj, P.; Qian, Y.; Kim, Y.; Jang, S.; Hwang, S.; Na, E.; Ahn, W. S.; Shim, S. E. Electrochim. Acta 2018, 284, 98. doi: 10.1016/j.electacta.2018.07.096  doi: 10.1016/j.electacta.2018.07.096

    36. [36]

      Wei, X.; Wan, S.; Jiang, X.; Wang, Z.; Gao, S. ACS Appl. Mater. Interfaces 2015, 7, 22238. doi: 10.1021/acsami.5b05022  doi: 10.1021/acsami.5b05022

    37. [37]

      Sun, L.; Tian, C.; Li, M.; Meng, X.; Wang, L.; Wang, R.; Yin, J.; Fu, H. J. Mater. Chem. A 2013, 1, 6462. doi: 10.1039/c3ta10897j  doi: 10.1039/c3ta10897j

    38. [38]

      Graf, D.; Molitor, F.; Ensslin, K.; Stampfer, C.; Jungen, A.; Hierold, C.; Wirtz, L. Nano Lett. 2007, 7, 238. doi: 10.1021/nl061702a  doi: 10.1021/nl061702a

    39. [39]

      Tian, W.; Gao, Q.; Tan, Y.; Li, Z. Carbon 2017, 119, 287. doi: 10.1016/j.carbon.2017.04.050  doi: 10.1016/j.carbon.2017.04.050

    40. [40]

      Li, B.; Dai, F.; Xiao, Q.; Yang, L.; Shen, J.; Zhang, C.; Cai, M. Energy Environ. Sci. 2016, 9, 102. doi: 10.1039/c5ee03149d  doi: 10.1039/c5ee03149d

    41. [41]

      Ma, C.; Chen, X.; Long, D.; Wang, J.; Qiao, W.; Ling, L. Carbon 2017, 118, 699. doi: 10.1016/j.carbon.2017.03.075  doi: 10.1016/j.carbon.2017.03.075

    42. [42]

      Song, Z.; Zhu, D.; Li, L.; Chen, T.; Duan, H.; Wang, Z.; Lv, Y.; Xiong, W.; Liu, M.; Gan, L. J. Mater. Chem. A 2019, 7, 1177. doi: 10.1039/c8ta10158b  doi: 10.1039/c8ta10158b

    43. [43]

      Li, Z.; Xu, Z.; Wang, H.; Ding, J.; Zahiri, B.; Holt, C. M. B.; Tan, X.; Mitlin, D. Energy Environ. Sci.2014, 7, 1708. doi: 10.1039/C3EE43979H  doi: 10.1039/C3EE43979H

    44. [44]

      Xia, X.; Zhang, Y.; Fan, Z.; Chao, D.; Xiong, Q.; Tu, J.; Zhang, H.; Fan, H. J. Adv. Energy Mater. 2015, 5, 1401709. doi: 10.1002/aenm.201401709  doi: 10.1002/aenm.201401709

    45. [45]

      Wang, Q.; Yan, J.; Wang, Y.; Wei, T.; Zhang, M.; Jing, X.; Fan, Z. Carbon 2014, 67, 119. doi: 10.1016/j.carbon.2013.09.070  doi: 10.1016/j.carbon.2013.09.070

    46. [46]

      Li, C.; Zhang, X.; Wang, K.; Sun, X.; Ma, Y. J. Power Sources 2018, 400, 468. doi: 10.1016/j.jpowsour.2018.08.013  doi: 10.1016/j.jpowsour.2018.08.013

    47. [47]

      Li, C.; Zhang, X.; Wang, K.; Sun, X.; Ma, Y. Carbon 2018, 140, 237. doi: 10.1016/j.carbon.2018.08.044  doi: 10.1016/j.carbon.2018.08.044

    48. [48]

      Ning, G.; Fan, Z.; Wang, G.; Gao, J.; Qian, W.; Wei, F. Chem. Commun. 2011, 47, 5976. doi: 10.1039/c1cc11159k  doi: 10.1039/c1cc11159k

    49. [49]

      Fan, Z.; Liu, Y.; Yan, J.; Ning, G.; Wang, Q.; Wei, T.; Zhi, L.; Wei, F. Adv. Energy Mater. 2012, 2, 419. doi: 10.1002/aenm.201100654  doi: 10.1002/aenm.201100654

    50. [50]

      Liu, B.; Shioyama, H.; Akita, T.; Xu, Q. J. Am. Chem. Soc. 2008, 130, 5390. doi: 10.1021/ja7106146  doi: 10.1021/ja7106146

    51. [51]

      Jiang, H. L.; Liu, B.; Lan, Y. Q.; Kuratani, K.; Akita, T.; Shioyama, H.; Zong, F.; Xu, Q. J. Am. Chem. Soc. 2011, 133, 11854. doi: 10.1021/ja203184k  doi: 10.1021/ja203184k

    52. [52]

      Chaikittisilp, W.; Hu, M.; Wang, H.; Huang, H. S.; Fujita, T.; Wu, K. C. W.; Chen, L. C.; Yamauchi, Y.; Ariga, K. Chem. Commun. 2012, 48, 7259. doi: 10.1039/c2cc33433j  doi: 10.1039/c2cc33433j

    53. [53]

      Amali, A. J.; Sun, J. K.; Xu, Q.Chem. Commun. 2014, 50, 1519. doi: 10.1039/c3cc48112c  doi: 10.1039/c3cc48112c

    54. [54]

      Sun, H.; Gu, H.; Zhang, L.; Chen, Y. Mater. Lett. 2018, 216, 123. doi: 10.1016/j.matlet.2018.01.009  doi: 10.1016/j.matlet.2018.01.009

    55. [55]

      Salunkhe, R. R.; Young, C.; Tang, J.; Takei, T.; Ide, Y.; Kobayashi, N.; Yamauchi, Y. Chem. Commun. 2016, 52, 4764. doi: 10.1039/c6cc00413j  doi: 10.1039/c6cc00413j

    56. [56]

      Pachfule, P.; Shinde, D.; Majumder, M.; Xu, Q. Nat. Chem. 2016, 8, 718. doi: 10.1038/nchem.2515  doi: 10.1038/nchem.2515

    57. [57]

      Kosynkin, D. V.; Higginbotham, A. L.; Sinitskii, A.; Lomeda, J. R.; Dimiev, A.; Price, B. K.; Tour, J. M. Nature 2009, 458, 872. doi: 10.1038/nature07872  doi: 10.1038/nature07872

    58. [58]

      Yang, X.; Cheng, C.; Wang, Y.; Qiu, L.; Li, D. Science 2013, 341, 534. doi: 10.1126/science.1239089  doi: 10.1126/science.1239089

    59. [59]

      Xu, Y.; Sheng, K.; Li, C.; Shi, G. ACS Nano 2010, 4, 4324. doi: 10.1021/nn101187z  doi: 10.1021/nn101187z

    60. [60]

      Chen, Z.; Ren, W.; Gao, L.; Liu, B.; Pei, S.; Cheng, H. M. Nat. Mater. 2011, 10, 424. doi: 10.1038/nmat3001  doi: 10.1038/nmat3001

    61. [61]

      Xu, Z.; Gao, C. Nat. Commun.2011, 2, 571. doi: 10.1038/ncomms1583  doi: 10.1038/ncomms1583

    62. [62]

      Dong, Z.; Jiang, C.; Cheng, H.; Zhao, Y.; Shi, G.; Jiang, L.; Qu, L. Adv. Mater. 2012, 24, 1856. doi: 10.1002/adma.201200170  doi: 10.1002/adma.201200170

    63. [63]

      Shin, H. J.; Kim, K. K.; Benayad, A.; Yoon, S. M.; Park, H. K.; Jung, I. S.; Jin, M. H.; Jeong, H. K.; Kim, J. M.; Choi, J. Y.; et al. Adv. Funct. Mater. 2009, 19, 1987. doi: 10.1002/adfm.200900167  doi: 10.1002/adfm.200900167

    64. [64]

      Fan, X.; Peng, W.; Li, Y.; Li, X.; Wang, S.; Zhang, G.; Zhang, F. Adv. Mater. 2008, 20, 4490. doi: 10.1002/adma.200801306  doi: 10.1002/adma.200801306

    65. [65]

      Wang, G.; Yang, J.; Park, J.; Gou, X.; Wang, B.; Liu, H.; Yao, J. J. Phys. Chem. C 2008, 112, 8192. doi: 10.1021/jp710931h  doi: 10.1021/jp710931h

    66. [66]

      Chen, Y.; Zhang, X.; Yu, P.; Ma, Y. Chem. Commun. 2009, 4527. doi: 10.1039/B907723E  doi: 10.1039/B907723E

    67. [67]

      Zhang, J.; Yang, H.; Shen, G.; Cheng, P.; Zhang, J.; Guo, S. Chem. Commun. 2010, 46, 1112. doi: 10.1039/B917705A  doi: 10.1039/B917705A

    68. [68]

      Chen, Y.; Zhang, X.; Zhang, D.; Yu, P.; Ma, Y. Carbon 2011, 49, 573. doi: 10.1016/j.carbon.2010.09.060  doi: 10.1016/j.carbon.2010.09.060

    69. [69]

      Pei, S.; Zhao, J.; Du, J.; Ren, W.; Cheng, H. M. Carbon 2010, 48, 4466. doi: 10.1016/j.carbon.2010.08.006  doi: 10.1016/j.carbon.2010.08.006

    70. [70]

      Schniepp, H. C.; Li, J. L.; McAllister, M. J.; Sai, H.; Herrera-Alonso, M.; Adamson, D. H.; Prud'homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A. J. Phys. Chem. B 2006, 110, 8535. doi: 10.1021/jp060936f  doi: 10.1021/jp060936f

    71. [71]

      Yan, J.; Wang, Q.; Wei, T.; Jiang, L.; Zhang, M.; Jing, X.; Fan, Z. ACS Nano 2014, 8, 4720. doi: 10.1021/nn500497k  doi: 10.1021/nn500497k

    72. [72]

      Zhu, Y.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M.; et al. Science 2011, 332, 1537. doi: 10.1126/science.1200770  doi: 10.1126/science.1200770

    73. [73]

      Chen, Y.; Zhang, X.; Zhang, H.; Sun, X.; Zhang, D.; Ma, Y. RSC Adv. 2012, 2, 7747. doi: 10.1039/C2RA20667F  doi: 10.1039/C2RA20667F

    74. [74]

      Kim, H. K.; Bak, S. M.; Lee, S. W.; Kim, M. S.; Park, B.; Lee, S. C.; Choi, Y. J.; Jun, S. C.; Han, J. T.; Nam, K. W.; et al. Energy Environ. Sci. 2016, 9, 1270. doi: 10.1039/c5ee03580e  doi: 10.1039/c5ee03580e

    75. [75]

      Li, C.; Zhang, X.; Wang, K.; Sun, X.; Liu, G.; Li, J.; Tian, H.; Li, J.; Ma, Y. Adv. Mater. 2017, 29, 1604690. doi: 10.1002/adma.201604690  doi: 10.1002/adma.201604690

    76. [76]

      Chakrabarti, A.; Lu, J.; Skrabutenas, J. C.; Xu, T.; Xiao, Z.; Maguire, J. A.; Hosmane, N. S. J. Mater. Chem. 2011, 21, 9491. doi: 10.1039/c1jm11227a  doi: 10.1039/c1jm11227a

    77. [77]

      Zhang, H.; Zhang, X.; Sun, X.; Zhang, D.; Lin, H.; Wang, C.; Wang, H.; Ma, Y. ChemSusChem 2013, 6, 1084. doi: 10.1002/cssc.201200904  doi: 10.1002/cssc.201200904

    78. [78]

      Strauss, V.; Marsh, K.; Kowal, M. D.; El-Kady, M.; Kaner, R. B. Adv. Mater. 2018, 30, 1704449. doi: 10.1002/adma.201704449  doi: 10.1002/adma.201704449

    79. [79]

      Lin, S.; Zhang, C.; Wang, Z.; Dai, S.; Jin, X. Adv. Energy Mater. 2017, 7, 1700766. doi: 10.1002/aenm.201700766  doi: 10.1002/aenm.201700766

    80. [80]

      Liu, Y.; Cai, X.; Luo, B.; Yan, M.; Jiang, J.; Shi, W. Carbon 2016, 107, 426. doi: 10.1016/j.carbon.2016.06.025  doi: 10.1016/j.carbon.2016.06.025

    81. [81]

      Xu, Y.; Lin, Z.; Zhong, X.; Huang, X.; Weiss, N. O.; Huang, Y.; Duan, X. Nat. Commun. 2014, 5, 4554. doi: 10.1038/ncomms5554  doi: 10.1038/ncomms5554

    82. [82]

      Bai, H.; Li, C.; Wang, X.; Shi, G. J. Phys. Chem. C 2011, 115, 5545. doi: 10.1021/jp1120299  doi: 10.1021/jp1120299

    83. [83]

      Xiong, Z.; Liao, C.; Han, W.; Wang, X. Adv. Mater. 2015, 27, 4469. doi: 10.1002/adma.201501983  doi: 10.1002/adma.201501983

    84. [84]

      Li, H.; Tao, Y.; Zheng, X.; Luo, J.; Kang, F.; Cheng, H. M.; Yang, Q. H. Energy Environ. Sci. 2016, 9, 3135. doi: 10.1039/c6ee00941g  doi: 10.1039/c6ee00941g

    85. [85]

      Chen, Y.; Zhang, X.; Yu, P.; Ma, Y. J. Power Sources 2010, 195, 3031. doi: 10.1016/j.jpowsour.2009.11.057  doi: 10.1016/j.jpowsour.2009.11.057

    86. [86]

      Kulkarni, S. B.; Patil, U. M.; Shackery, I.; Sohn, J. S.; Lee, S.; Park, B.; Jun, S. J. Mater. Chem. A 2014, 2, 4989. doi: 10.1039/c3ta14959e  doi: 10.1039/c3ta14959e

    87. [87]

      Yang, Z. Y.; Jin, L. J.; Lu, G. Q.; Xiao, Q. Q.; Zhang, Y. X.; Jing, L.; Zhang, X. X.; Yan, Y. M.; Sun, K. N. Adv. Funct. Mater. 2014, 24, 3917. doi: 10.1002/adfm.201304091  doi: 10.1002/adfm.201304091

    88. [88]

      Xu, J.; Tan, Z.; Zeng, W.; Chen, G.; Wu, S.; Zhao, Y.; Ni, K.; Tao, Z.; Ikram, M.; Ji, H.; Zhu, Y. Adv. Mater. 2016, 28, 5222. doi: 10.1002/adma.201600586  doi: 10.1002/adma.201600586

    89. [89]

      Jang, E. Y.; Carretero-González, J.; Choi, A.; Kim, W. J.; Kozlov, M., E.; Kim, T.; Kang, T. J.; Baek, S. J.; Kim, D. W.; Park, Y. W.; et al. Nanotechnology 2012, 23, 235601. doi: 10.1088/0957-4484/23/23/235601  doi: 10.1088/0957-4484/23/23/235601

    90. [90]

      Zhao, Y.; Jiang, C.; Hu, C.; Dong, Z.; Xue, J.; Meng, Y.; Zheng, N.; Chen, P.; Qu, L. ACS Nano 2013, 7, 2406. doi: 10.1021/nn305674a  doi: 10.1021/nn305674a

    91. [91]

      Meng, Y.; Zhao, Y.; Hu, C.; Cheng, H.; Hu, Y.; Zhang, Z.; Shi, G.; Qu, L. Adv. Mater. 2013, 25, 2326. doi: 10.1002/adma.201300132  doi: 10.1002/adma.201300132

    92. [92]

      Qu, G.; Cheng, J.; Li, X.; Yuan, D.; Chen, P.; Chen, X.; Wang, B.; Peng, H. Adv. Mater. 2016, 28, 3646. doi: 10.1002/adma.201600689  doi: 10.1002/adma.201600689

    93. [93]

      Liu, L.; Yu, Y.; Yan, C.; Li, K.; Zheng, Z. Nat. Commun. 2015, 6, 7260. doi: 10.1038/ncomms8260  doi: 10.1038/ncomms8260

    94. [94]

      Sun, H.; Xie, S.; Li, Y.; Jiang, Y.; Sun, X.; Wang, B.; Peng, H. Adv. Mater. 2016, 28, 8431. doi: 10.1002/adma.201602987  doi: 10.1002/adma.201602987

    95. [95]

      Yang, Y.; Huang, Q.; Niu, L.; Wang, D.; Yan, C.; She, Y.; Zheng, Z. Adv. Mater. 2017, 29, 1606679. doi: 10.1002/adma.201606679  doi: 10.1002/adma.201606679

    96. [96]

      Hong, M. S.; Lee, S. H.; Kim, S. W. Electrochem. Solid-State Lett. 2002, 5, A227. doi: 10.1149/1.1506463  doi: 10.1149/1.1506463

    97. [97]

      Sun, X.; Zhang, X.; Zhang, H.; Zhang, D.; Ma, Y. J. Solid State Electrochem. 2012, 16, 2597. doi: 10.1007/s10008-012-1678-7  doi: 10.1007/s10008-012-1678-7

    98. [98]

      Khomenko, V.; Raymundo-Piñero, E.; Béguin, F. J. Power Sources 2006, 153, 183. doi: 10.1016/j.jpowsour.2005.03.210  doi: 10.1016/j.jpowsour.2005.03.210

    99. [99]

      Peng, C.; Zhang, S.; Zhou, X.; Chen, G. Z. Energy Environ. Sci. 2010, 3, 1499. doi: 10.1039/c0ee00228c  doi: 10.1039/c0ee00228c

    100. [100]

      Dai, Z.; Peng, C.; Chae, J. H.; Ng, K. C.; Chen, G. Z. Sci. Rep. 2015, 5, 9854. doi: 10.1038/srep09854  doi: 10.1038/srep09854

    101. [101]

      Demarconnay, L.; Raymundo-Pi ero, E.; Béguin, F. J. Power Sources 2011, 196, 580. doi: 10.1016/j.jpowsour.2010.06.013  doi: 10.1016/j.jpowsour.2010.06.013

    102. [102]

      Chae, J. H.; Chen, G. Z. Electrochim. Acta 2012, 86, 248. doi: 10.1016/j.electacta.2012.07.033  doi: 10.1016/j.electacta.2012.07.033

    103. [103]

      Weng, Z.; Li, F.; Wang, D. W.; Wen, L.; Cheng, H. M. Angew. Chem. Inter. Ed. 2013, 52, 3722. doi: 10.1002/anie.201209259  doi: 10.1002/anie.201209259

    104. [104]

      Wu, Z. S.; Ren, W.; Wang, D. W.; Li, F.; Liu, B.; Cheng, H. M. ACS Nano 2010, 4, 5835. doi: 10.1021/nn101754k  doi: 10.1021/nn101754k

    105. [105]

      Fan, Z.; Yan, J.; Wei, T.; Zhi, L.; Ning, G.; Li, T.; Wei, F. Adv. Funct. Mater. 2011, 21, 2366. doi: 10.1002/adfm.201100058  doi: 10.1002/adfm.201100058

    106. [106]

      Zhang, X.; Sun, X.; Chen, Y.; Zhang, D.; Ma, Y. Mater. Lett. 2012, 68, 336. doi: 10.1016/j.matlet.2011.10.092  doi: 10.1016/j.matlet.2011.10.092

    107. [107]

      Jabeen, N.; Hussain, A.; Xia, Q.; Sun, S.; Zhu, J.; Xia, H. Adv. Mater. 2017, 29, 1700804. doi: 10.1002/adma.201700804  doi: 10.1002/adma.201700804

    108. [108]

      Xiong, T.; Tan, T. L.; Lu, L.; Lee, W. S. V.; Xue, J. Adv. Energy Mater. 2018, 8, 1702630. doi: 10.1002/aenm.201702630  doi: 10.1002/aenm.201702630

    109. [109]

      Zuo, W.; Xie, C.; Xu, P.; Li, Y.; Liu, J. Adv. Mater. 2017, 29, 1703463. doi: 10.1002/adma.201703463  doi: 10.1002/adma.201703463

    110. [110]

      Kong, D.; Ren, W.; Cheng, C.; Wang, Y.; Huang, Z.; Yang, H. Y. ACS Appl. Mater. Interfaces 2015, 7, 21334. doi: 10.1021/acsami.5b05908  doi: 10.1021/acsami.5b05908

    111. [111]

      Zhu, Y.; Wu, Z.; Jing, M.; Hou, H.; Yang, Y.; Zhang, Y.; Yang, X.; Song, W.; Jia, X.; Ji, X. J. Mater. Chem. A 2015, 3, 866. doi: 10.1039/C4TA05507A  doi: 10.1039/C4TA05507A

    112. [112]

      Guan, C.; Liu, X.; Ren, W.; Li, X.; Cheng, C.; Wang, J. Adv. Energy Mater. 2017, 7, 1602391. doi: 10.1002/aenm.201602391  doi: 10.1002/aenm.201602391

    113. [113]

      Gao, S.; Sun, Y.; Lei, F.; Liang, L.; Liu, J.; Bi, W.; Pan, B.; Xie, Y. Angew. Chem. Inter. Ed. 2014, 53, 12789. doi: 10.1002/anie.201407836  doi: 10.1002/anie.201407836

    114. [114]

      Dong, X.; Guo, Z.; Song, Y.; Hou, M.; Wang, J.; Wang, Y.; Xia, Y. Adv. Funct. Mater. 2014, 24, 3405. doi: 10.1002/adfm.201304001  doi: 10.1002/adfm.201304001

    115. [115]

      Lai, F.; Miao, Y. E.; Zuo, L.; Lu, H.; Huang, Y.; Liu, T. Small 2016, 12, 3235. doi: 10.1002/smll.201600412  doi: 10.1002/smll.201600412

    116. [116]

      Liu, S.; Zhao, Y.; Zhang, B.; Xia, H.; Zhou, J.; Xie, W.; Li, H. J. Power Sources 2018, 381, 116. doi: 10.1016/j.jpowsour.2018.02.014  doi: 10.1016/j.jpowsour.2018.02.014

    117. [117]

      Wang, D.; Nai, J.; Li, H.; Xu, L.; Wang, Y. Carbon 2019, 141, 40. doi: 10.1016/j.carbon.2018.09.055  doi: 10.1016/j.carbon.2018.09.055

    118. [118]

      Roldán, S.; Blanco, C.; Granda, M.; Menéndez, R.; Santamaría, R. Angew. Chem. Inter. Ed. 2011, 123, 1737. doi: 10.1002/ange.201006811  doi: 10.1002/ange.201006811

    119. [119]

      Sheng, L.; Jiang, L.; Wei, T.; Liu, Z.; Fan, Z. Adv. Energy Mater. 2017, 7, 1700668. doi: 10.1002/aenm.201700668  doi: 10.1002/aenm.201700668

    120. [120]

      Sheng, L.; Jiang, L.; Wei, T.; Zhou, Q.; Jiang, Y.; Jiang, Z.; Liu, Z.; Fan, Z. J. Mater. Chem. A 2018, 6, 7649. doi: 10.1039/C8TA01375F  doi: 10.1039/C8TA01375F

    121. [121]

      Akinwolemiwa, B, ; Peng, C.; Chen, G. Z., J. Electrochem. Soc. 2015, 162 A5054. doi:10.1149/2.0111505jes  doi: 10.1149/2.0111505jes

    122. [122]

      Akinwolemiwa, B.; Wei, C. H.; Yang, Q. H.; Yu, L. P.; Xia, L.; Hu, D.; Peng, C.; Chen, G. Z. J. Electrochem. Soc. 2018, 165, A4067. doi:10.1149/2.0031902jes  doi: 10.1149/2.0031902jes

    123. [123]

      Shen, K.; Ding, J.; Yang, S. Adv. Energy Mater. 2018, 8, 1800408. doi: 10.1002/aenm.201800408  doi: 10.1002/aenm.201800408

  • 加载中
    1. [1]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    2. [2]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    3. [3]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    4. [4]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    5. [5]

      Tsegaye Tadesse Tsega Jiantao Zai Chin Wei Lai Xin-Hao Li Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192

    6. [6]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    7. [7]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    8. [8]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    9. [9]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    10. [10]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    11. [11]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    12. [12]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    13. [13]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    14. [14]

      Huijie AnChen YangZhihui JiangJunjie YuanZhongming QiuLonghao ChenXin ChenMutu HuangLinlang HuangHongju LinBiao ChengHongjiang LiuZhiqiang Yu . Luminescence-activated Pt(Ⅳ) prodrug for in situ triggerable cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109134-. doi: 10.1016/j.cclet.2023.109134

    15. [15]

      Jinglin CHENGXiaoming GUOTao MENGXu HULiang LIYanzhe WANGWenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152

    16. [16]

      Jieqiong QinZhi YangJiaxin MaLiangzhu ZhangFeifei XingHongtao ZhangShuxia TianShuanghao ZhengZhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845

    17. [17]

      Xinyu Huai Jingxuan Liu Xiang Wu . Cobalt-Doped NiMoO4 Nanosheet for High-performance Flexible Supercapacitor. Chinese Journal of Structural Chemistry, 2023, 42(10): 100158-100158. doi: 10.1016/j.cjsc.2023.100158

    18. [18]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    19. [19]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    20. [20]

      Feibin WeiYongfang RaoYu HuangWei WangHui Mei . The new challenges for the development of NH3-SCR catalysts under new situation of energy transition in power generation industry. Chinese Chemical Letters, 2024, 35(6): 108931-. doi: 10.1016/j.cclet.2023.108931

Metrics
  • PDF Downloads(5)
  • Abstract views(692)
  • HTML views(51)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return