Citation: Li Haixia, Wang Jiwei, Jiao Lifang, Tao Zhanliang, Liang Jing. Spherical Nano-SnSb/C Composite as a High-Performance Anode Material for Sodium Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2020, 36(5): 190401. doi: 10.3866/PKU.WHXB201904017 shu

Spherical Nano-SnSb/C Composite as a High-Performance Anode Material for Sodium Ion Batteries

  • Corresponding author: Liang Jing, liangjing@nankai.edu.cn
  • Received Date: 3 April 2019
    Revised Date: 10 May 2019
    Accepted Date: 21 May 2019
    Available Online: 31 May 2019

    Fund Project: the National Natural Science Foundation of China 51771094the National Key R & D Program of China 2016YFB0101201The project was supported by the National Key R & D Program of China (2016YFB0901500, 2016YFB0101201) and the National Natural Science Foundation of China (51771094)the National Key R & D Program of China 2016YFB0901500

  • Sodium-ion batteries (SIBs) have recently garnered considerable attention because of the greater abundance, wider distribution, and lower cost of Na compared to Li. However, the investigation is insufficient, mainly because Na+ is larger and heavier than Li+, thereby limiting the Na+ insertion and extraction ability from the host materials. Anodes with alloying reactions such as Sn, Ge, and Sb have been considered for SIBs owing to their high gravimetric and volumetric specific capacities. In this study, we devised a one-pot reaction strategy for the in-situ fabrication of a spherical porous nano-SnSb/C composite by employing aerosol spray pyrolysis, and subsequently applied it as an anode in SIBs. The products of spray pyrolysis generally feature three-dimensional spherical hierarchical structures, which are considered to be relatively stable and also act as high-packing-density electrode materials. Additionally, they can be easily handled during the fabrication of the electrode. By adjusting the precursor concentration of SnCl2·2H2O and SbCl3, different sizes for SnSb nanoparticles (10 and 20 nm) were obtained. The crystal structures and morphologies of the as-prepared samples were characterized using X-ray diffraction, field-emission scanning electron microscopy, and high-resolution transmission electron microscopy. Thermal gravimetric analysis was carried out to analyze the carbon content of SnSb/C composites by using a TG-DSC analyzer with a heating rate of 5 ℃·min-1 in air from 25 ℃ to 600 ℃. The specific surface areas of the microspheres were determined by Brunauer-Emmett-Teller analysis. X-ray photoelectron spectroscopy and Raman spectroscopy were used to investigate the studied materials. The micro-nanostructured composite is composed of SnSb nanoparticles (10 and 20 nm); moreover, the carbon content and size of SnSb nanograins could be controlled by altering the reaction conditions. Owing to its unique structure, the obtained nano-composite displays stable cycle performance and high rate capability as the anode for SIBs. The specific capacity of 10-SnSb/C was 722.1 mAh·g-1 at the first cycle, and the coulombic efficiency of the first cycle was 86.3%. The 10-SnSb/C was stable at different current densities of 100, 1000, and 3000 mA·g-1, and exhibited specific capacities of 607.7, 645.4 and 452.2 mAh·g-1, respectively. The reversible capacity reached 623 mAh·g-1 after 200 cycles at a current density of 1000 mA·g-1, and the capacity retention rate was 95%. The outstanding performance of SnSb/C was due to its distinctive nanostructure, which could effectively improve the utilization rate of active materials, facilitate the transportation of Na+ ions, and prevent the nanoparticle pulverization/agglomeration upon prolonged cycling. The facile synthesis technique and good performance would shed light on the practical development of SnSb/C nanocomposites as high rate capability and long cycle life electrodes for SIBs.
  • 加载中
    1. [1]

      Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Adv. Funct. Mater. 2013, 23, 947. doi: 10.1002/adfm.201200691  doi: 10.1002/adfm.201200691

    2. [2]

      Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Chem. Rev. 2014, 114, 11636. doi: 10.1021/cr500192f  doi: 10.1021/cr500192f

    3. [3]

      Ong, S. P.; Chevrier, V. L.; Hautier, G.; Jain, A.; Moore, C.; Kim, S.; Ma, X.; Ceder, G. Energy Environ. Sci. 2011, 4, 3680. doi: 10.1039/C1EE01782A  doi: 10.1039/C1EE01782A

    4. [4]

      Yang, Z.; Zhang, W.; Shen, Y.; Yuan, L. X.; Huang, Y. H. Acta Phys. -Chim. Sin. 2016, 32, 1062.  doi: 10.3866/PKU.WHXB201603231

    5. [5]

      Hu, Z.; Wang, L. X.; Zhang, K.; Wang, J. B.; Cheng, F.Y.; Tao, Z. L.; Chen, J. Angew. Chem. Int. Ed. 2014, 53, 12794. doi: 10.1002/ange.201407898  doi: 10.1002/ange.201407898

    6. [6]

      Pan, H. L.; Hu, Y. S.; Chen, L. Q. Energy Environ. Sci. 2013, 6, 2338. doi: 10.1039/C3EE40847G  doi: 10.1039/C3EE40847G

    7. [7]

      Xiang, X. D.; Zhang, K.; Chen, J. Adv. Mater. 2015, 27, 5343. doi: 10.1002/chin.201544273  doi: 10.1002/chin.201544273

    8. [8]

      Chen, C. C.; Zhang, N.; Liu, Y. C.; Wang, Y. J.; Chen, J. Acta Phys. -Chim. Sin. 2016, 32, 349.  doi: 10.3866/PKU.WHXB201512073

    9. [9]

      Zhuang, L. Acta Phys. -Chim. Sin. 2017, 33, 1271.  doi: 10.3866/PKU.WHXB201705031

    10. [10]

      Xiang, X. D.; Lu, Y. Y.; Chen, J. Acta Chim. Sin.2017, 75, 154.  doi: 10.6023/A16060275

    11. [11]

      Fan, W.; Qin, C. L.; Zhao, W. M.; Liao, B. J. Hebei Univ. Tech. 2018, 47, 37.  doi: 10.14081/j.cnki.hgdxb.2018.05.006

    12. [12]

      Cao, Y. L.; Xiao, L. F.; Sushko, M. L.; Wang, W.; Schwenzer, B.; Xiao, J.; Nie, Z. M.; Saraf, L. V.; Yang, Z. G.; Liu, J. Nano Lett. 2012, 12, 3783. doi: 10.1021/nl3016957  doi: 10.1021/nl3016957

    13. [13]

      Li, W. H.; Zeng, L. C.; Yang, Z. Z.; Gu, L.; Wang, J. Q.; Liu, X. W.; Cheng, J. X.; Yu, Y. Nanoscale 2014, 6, 693. doi: 10.1039/C3NR05022J  doi: 10.1039/C3NR05022J

    14. [14]

      Liu, S.; Shao, L. Y.; Zhang, X. J.; Tao, Z. L.; Chen, J. Acta Phys. -Chim. Sin. 2018, 34, 581.  doi: 10.3866/PKU.WHXB201711222

    15. [15]

      Datta, D.; Li, J.; Shenoy, V. B. ACS Appl. Mater. Inter. 2014, 6, 1788. doi: 10.1021/am404788e  doi: 10.1021/am404788e

    16. [16]

      Wu, Z. G.; Zhong, Y. J.; Li, J. T.; Guo, X. D.; Huang, L.; Zhong, B. H.; Sun, S. G. J. Mater. Chem. A 2015, 3, 10092. doi: 10.1039/C4TA01253D  doi: 10.1039/C4TA01253D

    17. [17]

      Xiao, L. F.; Cao, Y. L.; Xiao, J.; Wang, W.; Kovarik, L.; Nie, Z. M.; Liu, J. Chem. Commun. 2012, 48, 3321. doi: 10.1039/C2CC17129E  doi: 10.1039/C2CC17129E

    18. [18]

      Shiva, K.; Rajendra, H. B.; Bhattacharyya, A. J. ChemPlusChem 2015, 80, 516. doi: 10.1002/cplu.201402291  doi: 10.1002/cplu.201402291

    19. [19]

      Wang, J. W.; Lu, Y. Y.; Zhang, N.; Xiang, X. D.; Liang, J.; Chen, J. RSC Adv. 2016, 6, 95805. doi: 10.1039/c6ra19353f  doi: 10.1039/c6ra19353f

    20. [20]

      Xiong, X. Q.; Luo, W.; Hu, X. L.; Chen, C. J.; Qie, L.; Hou, D. F.; Huang, Y. H. Sci. Rep. 2015, 5, 9254. doi: 10.1038/srep09254  doi: 10.1038/srep09254

    21. [21]

      Zhang, N.; Liu, Y. C.; Lu, Y.; Han, X. P.; Cheng, F. Y; Chen, J. Nano Res. 2015, 8, 3384. doi: 10.1007/s12274-015-0838-3  doi: 10.1007/s12274-015-0838-3

    22. [22]

      Jackson, S. T.; Nuzzo, R. G. Appl. Surface Sci. 1995, 90, 195. doi: 10.1016/0169-4332(95)00079-8  doi: 10.1016/0169-4332(95)00079-8

    23. [23]

      Lesiak, B.; Kover L.; Toth, J.; Zemek, J.; Jiricek, P.; Kromka, A.; Rangam, N. Appl. Surface Sci. 2018, 452, 223. doi: 10.1016/j.apsusc.2018.04.269  doi: 10.1016/j.apsusc.2018.04.269

    24. [24]

      Wang, H. K.; Wu, Q. Z; Cao, D. X.; Lu, X.; Wang, J. K.; Leung, M. K. H.; Cheng, S. D.; Lu, L.; Niu, C. M. Mater. Today Energy 2016, 1–2, 24. doi: 10.1016/j.mtener.2016.11.003  doi: 10.1016/j.mtener.2016.11.003

    25. [25]

      Ji, L. W.; Gu, M.; Shao, Y. Y.; Li, X. L.; Engelhard, M. H.; Arey, B. W.; Wang, W.; Nie, Z. M.; Xiao, J.; Wang, C. M.; Zhang, J. G.; Liu, J. Adv. Mater. 2014, 26, 2901. doi: 10.1002/adma.201304962  doi: 10.1002/adma.201304962

    26. [26]

      Liu, Y. C.; Zhang, N.; Jiao, L. F.; Chen, J. Adv. Mater. 2015, 27, 6702. doi: 10.1002/adma.201503015  doi: 10.1002/adma.201503015

    27. [27]

      Wang, C. L.; Xu, Y.; Fang, Y. G.; Zhou, M.; Liang, L. Y.; Singh, S.; Zhao, H. P.; Schober, A.; Lei, Y. J. Am. Chem. Soc. 2015, 137, 3124. doi: 10.1021/jacs.5b00336  doi: 10.1021/jacs.5b00336

  • 加载中
    1. [1]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    2. [2]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    3. [3]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    5. [5]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    6. [6]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    7. [7]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    8. [8]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    9. [9]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    10. [10]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    11. [11]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    12. [12]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    13. [13]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    14. [14]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    15. [15]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    16. [16]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    17. [17]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    18. [18]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    19. [19]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    20. [20]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

Metrics
  • PDF Downloads(24)
  • Abstract views(991)
  • HTML views(235)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return