Citation: Rahim Shah, Naveed Alam, Amir A. Razzaq, YANG Cheng, CHEN Yujie, HU Jiapeng, ZHAO Xiaohui, PENG Yang, DENG Zhao. Effect of Binder Conformity on the Electrochemical Behavior of Graphite Anodes with Different Particle Shapes[J]. Acta Physico-Chimica Sinica, ;2019, 35(12): 1382-1390. doi: 10.3866/PKU.WHXB201903060 shu

Effect of Binder Conformity on the Electrochemical Behavior of Graphite Anodes with Different Particle Shapes

  • Corresponding author: ZHAO Xiaohui, zhaoxh@suda.edu.cn DENG Zhao, zdeng@suda.edu.cn
  • Received Date: 26 March 2019
    Revised Date: 30 April 2019
    Accepted Date: 13 May 2019
    Available Online: 20 December 2019

    Fund Project: the Natural Science Foundation of Jiangsu Province, China BK20160323the National Natural Science Foundation of China 21805201The project was supported by the National Natural Science Foundation of China (21701118, 21805201), the Natural Science Foundation of Jiangsu Province, China (BK20161209, BK20160323, BK20170341), the Postdoctoral Science Foundation of China (2017M611899, 2018T110544) and the Key Technology Initiative of Suzhou Municipal Science and Technology Bureau, China (SYG201748)the National Natural Science Foundation of China 21701118the Natural Science Foundation of Jiangsu Province, China BK20161209the Postdoctoral Science Foundation of China 2017M611899the Natural Science Foundation of Jiangsu Province, China BK20170341the Key Technology Initiative of Suzhou Municipal Science and Technology Bureau, China SYG201748the Postdoctoral Science Foundation of China 2018T110544

  • As an important component in electrodes, the choice of an appropriate binder is significant when fabricating lithium-ion batteries (LIBs) with good cycle stability and rate capability, which are used in numerous applications, especially portable electronics and eco-friendly electric vehicles (EVs). Semi-crystalline poly(vinylidene fluoride) (PVDF), which is a traditional and widely used binder, cannot efficiently accommodate the volume changes observed in the anode during the charge-discharge process while binding all the components in the electrode together, which results in increased internal cell resistance, detachment of the electrode components, and capacity fading. Herein, we have investigated a highly polar and elastomeric polyacrylonitrile-butadiene (NBR) rubber for use as a binder in LIBs, which can accommodate graphite particles of different shapes compared to semi-crystalline PVDF. Prior to our electrochemical tests, NBR was analyzed using thermogravimetric analysis (TGA) and X-ray diffraction (XRD), showing good thermal stability and an amorphous morphology. NBR is more conformable to irregular surfaces, which results in the formation of a homogeneous passivation layer on both spherical and flaky graphite particles to effectively suppress any electrolyte side reactions, further allowing more uniform and fast Li ion diffusion at the electrolyte/electrolyte interface. As a result, the electrochemical performance of both spherical and flaky shape graphite electrodes was significantly improved in terms of their first cycle Coulombic efficiency (CE) and cycle stability. With comparative specific capacity, the first cycle CE of the NBR-based spherical and flaky graphite electrodes were 87.0% and 85.5%, compared to 85.3% and 82.6% observed for their corresponding PVDF-based electrodes, respectively. After 1000 discharge-charge cycles at 1C, the capacity retention of the NBR-based graphite electrodes was significantly higher than that of PVDF-based electrodes. This was attributed to the good stability of the solid electrolyte interphase (SEI) formed on the graphite electrodes and the high stretching ability of the elastomeric NBR binder, which help to accommodate the repeated volume fluctuation of graphite observed during long-term charge-discharge cycling. Electrochemical impedance spectroscopy (EIS) and microscopic analysis (SEM and TEM) were carried out to investigate the formation and evolution of the SEI layers formed on the spherical and flaky graphite electrodes. The results show that thin, homogeneous, and stable SEI layers are formed on the surface of both spherical and flaky graphite electrodes prepared using the NBR binder. When compared to the PVDF-based graphite electrodes, the graphite electrodes constructed using NBR showed decreased resistance in the SEI layer and faster charge transfer, thus enhancing the electrode kinetics for Li ion intercalation/deintercalation. Our study shows that the electrochemical performance of spherical and flaky graphite electrodes prepared using the NBR binder is significantly improved, demonstrating that NBR is a promising binder for these electrodes in LIBs.
  • 加载中
    1. [1]

      (a) Armand, M.; Tarascon, J. M. Nature 2008, 451, 652.
      doi: 10.1038/451652a
      (b) Sun, Y.; Liu, N.; Cui, Y. Nat. Energy 2016, 1, 16071.
      doi: 10.1038/nenergy.2016.71

    2. [2]

    3. [3]

    4. [4]

      Zhang, S. S.; Jow, T. R. J. Power Sources 2002, 109, 422. doi: 10.1016/S0378-7753(02)00107-6  doi: 10.1016/S0378-7753(02)00107-6

    5. [5]

      Ma, Y.; Ma, J.; Chai, J.; Liu, Z.; Ding, G.; Xu, G.; Liu, H.; Chen, B.; Zhou, X.; Cui, G.; et al. ACS Appl. Mater. Interfaces 2017, 9, 41462. doi: 10.1021/acsami.7b11342  doi: 10.1021/acsami.7b11342

    6. [6]

      (a) Zhang, S. S.; Xu, K.; Jow, T. R. J. Power Sources 2004, 138, 226.
      doi: 10.1016/j.jpowsour.2004.05.056
      (b) Patnaik, S. G.; Vedarajan, R.; Matsumi, N. J. Mater. Chem. A 2017, 5, 17909. doi: 10.1039/C7TA03843G

    7. [7]

      Komaba, S.; Shimomura, K.; Yabuuchi, N.; Ozeki, T.; Yui, H.; Komaba, S.; Shimomura, K.; Yabuuchi, N.; Ozeki, T.; Yui, H.; Konno, K. J. Phys. Chem. C 2011, 115, 13487. doi: 10.1021/jp201691g  doi: 10.1021/jp201691g

    8. [8]

      (a) Buqa, H.; Holzapfel, M.; Krumeich, F.; Veit, C.; Novák, P. J. Power Sources 2006, 161, 617. doi: 10.1016/j.jpowsour.2006.03.073
      (b) Lee, J. R.; Won, J. H.; Kim, J. H.; Kim, K. J.; Lee, S. Y. J. Power Sources 2012, 216, 42. doi: 10.1016/j.jpowsour.2012.05.052

    9. [9]

      Komaba, S.; Yabuuchi, N.; Ozeki, T.; Okushi, K.; Yui, H.; Konno, K.; Katayama, Y.; Miura, T. J. Power Sources 2010, 195, 6069. doi: 10.1016/j.jpowsour.2009.12.058  doi: 10.1016/j.jpowsour.2009.12.058

    10. [10]

      Lee, J. H.; Paik, U.; Hackley, V. A.; Choi, Y. M. J. Electrochem. Soc. 2005, 152, A1763. doi: 10.1149/1.1979214  doi: 10.1149/1.1979214

    11. [11]

      Tanaka, S.; Narutomi, T.; Suzuki, S.; Nakao, A.; Oji, H.; Yabuuchi, N. J. Power Sources 2017, 358, 121. doi: 10.1016/j.jpowsour.2017.05.032  doi: 10.1016/j.jpowsour.2017.05.032

    12. [12]

      (a) Lee, S. Y.; Choi, Y.; Hong, K. S.; Lee, J. K.; Kim, J. Y.; Bae, J. S.; Jeong, E. D. Appl. Surf. Sci. 2018, 447, 442.
      doi: 10.1016/j.apsusc.2018.04.004
      (b) Hays, K. A.; Ruther, R. E.; Kukay, A. J.; Cao, P. F.; Saito, T.; Wood, D. L.; Li, J. L. J. Power Sources 2018, 384, 136.
      doi: 10.1016/j.jpowsour.2018.02.085

    13. [13]

      Qiu, L.; Shen, Y.; Fan, H.; Yang, X.; Wang, C. Int. J. Biol. Macromol. 2018, 115, 672. doi: 10.1016/j.ijbiomac.2018.04.062  doi: 10.1016/j.ijbiomac.2018.04.062

    14. [14]

      Lee, B. R.; Kim, S. j.; Oh, E. S. J. Electrochem. Soc. 2014, 161, A2128. doi: 10.1149/2.0641414jes  doi: 10.1149/2.0641414jes

    15. [15]

      Wu, Y. L.; Yang, J.; Wang, J. L.; Yin, L. C.; Nuli, Y. N. Acta Phys. -Chim. Sin. 2010, 26, 283.  doi: 10.3866/PKU.WHXB20100205

    16. [16]

      Kovalenko, I.; Zdyrko, B.; Magasinski, A.; Hertzberg, B.; Milicev, Z.; Burtovyy, R.; Luzinov, I.; Yushin, G. Science 2011, 334, 75. doi: 10.1126/science.1209150  doi: 10.1126/science.1209150

    17. [17]

      Bae, J.; Cha, S. H.; Park, J. Macromol. Res. 2013, 21, 826. doi: 10.1002/aenm.201100236  doi: 10.1002/aenm.201100236

    18. [18]

      Kim, J. S.; Choi, W.; Cho, K. Y.; Byun, D.; Lim, J.; Lee, J. K. J. Power Sources 2013, 244, 521. doi: 10.1016/j.jpowsour.2013.02.049  doi: 10.1016/j.jpowsour.2013.02.049

    19. [19]

      Ma, Y.; Chen, K.; Ma, J.; Xu, G.; Dong, S.; Chen, B.; Li, J.; Chen, Z.; Zhou, X.; Cui, G. Energy Environ. Sci. 2019, 12, 273. doi: 10.1039/C8EE02555J  doi: 10.1039/C8EE02555J

    20. [20]

      Liu, W. R.; Yang, M. H.; Wu, H. C.; Chiao, S.; Wu, N. L. Electrochem. Solid-State Lett. 2005, 8, A100 doi: 10.1149/1.1847685  doi: 10.1149/1.1847685

    21. [21]

      Shah, R.; Gu, J.; Razzaq, A.; Zhao, X.; Shen, X.; Miao, L.; Yan, C.; Peng, Y.; Deng, Z. ACS Appl. Energy Mater. 2018, 1, 3171. doi: 10.1021/acsaem.8b00388  doi: 10.1021/acsaem.8b00388

    22. [22]

      (a) Wang, H.; Umeno, T.; Mizuma, K.; Yoshio, M. J. Power Sources 2008, 175, 886. doi: 10.1016/j.jpowsour.2007.09.103
      (b) Rezvani, S. J.; Pasqualini, M.; Witkowska, A.; Gunnella, R.; Birrozzi, A.; Minicucci, M.; Rajantie, H.; Copley, M.; Nobili, F.; Di Cicco, A. Appl. Surf. Sci. 2018, 435, 1029.
      doi: 10.1016/j.apsusc.2017.10.195
      (c) Chou, W. Y.; Jin, Y. C.; Duh, J. G.; Lu, C. Z.; Liao, S. C. Appl. Surf. Sci. 2015, 355, 1272. doi: 10.1016/j.apsusc.2015.08.046

    23. [23]

      Wang, Y.; Zheng, H.; Qu, Q.; Zhang, L.; Battaglia, VS.; Zheng, H. Carbon 2015, 92, 318. doi: 10.1016/j.carbon.2015.04.084  doi: 10.1016/j.carbon.2015.04.084

    24. [24]

      (a) Shi, Q.; Heng, S.; Qu, Q.; Gao, T.; Liu, W.; Hang, L.; Zheng, H. J. Mater. Chem. A 2017, 22, 10885. doi: 10.1039/C7TA02706K
      (b) Luo, L.; Xu, Y.; Zhang, H.; Han, X.; Dong, H.; Xu, X.; Chen C.; Zhang, Y.; Lin, J. ACS Appl Mater Inter. 2016, 12, 8154.
      doi: 10.1021/acsami.6b03046

    25. [25]

      (a) Wotango, A. S.; Su, W. N.; Haregewoin, A. M.; Chen, H. M.; Cheng, J. H.; Lin, M. H.; Wang, C. H.; Hwang, B. J. ACS Appl. Mater. Inter. 2018, 10, 25252. doi: 10.1021/acsami.8b02185
      (b) Wang, Y.; Zhang, L.; Qu, Q.; Zhang, J.; Zheng, H. Electrochim. Acta 2016, 191, 70. doi: 10.1016/j.electacta.2016.01.025

    26. [26]

      (a) Xiang, H.; Mei, D.; Yan, P.; Bhattacharya, P.; Burton, S. D.; von Wald Cresce, A.; Cao, R.; Engelhard, M. H.; Bowden, M. E.; Zhu, Z.; et al. ACS Appl. Mater. Interfaces 2015, 7, 20687.
      doi: 10.1021/acsami.5b05552
      (b) Kil, K. C. Paik, U. Macromol. Res. 2015, 23, 719.
      doi: 10.1007/s13233-015-3094-1

    27. [27]

      (a) Wang, R.; Feng, L.; Yang, W.; Zhang, Y.; Zhang, Y.; Bai, W.; Liu, B.; Zhang, W.; Chuan, Y.; Zheng, Z. Nanoscale Res. Lett. 2017, 12, 575. doi: 10.1186/s11671-017-2348-6
      (b) Komaba, S.; Itabashi, T.; Kaplan, B.; Groult, H.; Kumagai, N. Electrochem. Commun. 2003, 5, 962.
      doi: 10.1016/j.e;ecom.2003.09.003
      (c) Lee, J. T.; Wu, M. S.; Wang, F. M.; Lin, Y. W.; Bai, M. Y.; Chiang, P. C. J. J. Electrochem. Soc. 2005, 152, A1837.
      doi: 10.1149/1.1993407

    28. [28]

      (a) Chai, L.; Qu, Q.; Zhang, L.; Shen, M.; Zhang, L.; Zheng, H. Electrochim. Acta 2013, 105, 378.
      doi: 10.1016/j.electacta.2013.05.009
      (b) Wang, Z.; Dang, G.; Zhang, Q.; Xie, J. Inter. J. Electrochem. Sci. 2017, 12, 7457. doi: 10.20964/2017.08.55
      (c) Zhao, H.; Du, A.; Ling, M.; Battaglia, V.; Liu, G. Electrochim. Acta 2016, 209, 159. doi: 10.1016/j.electacta.2016.05.061
      (d) Gómez-Cámer, J. L.; Bünzli, C.; Hantel, M. M.; Poux, T.; Novák, P. Carbon 2016, 105, 42. doi: 10.1016/j.carbon.2016.04.022
      (e) Ku, J. H.; Hwang, S. S.; Ham, D. J.; Song, M. S.; Shon, J. K.; Ji, S. M.; Choi, J. M.; Doo, S. G. J. Power Sources 2015, 287, 36.
      doi: 10.1016/j.jpowsour.2015.04.007
      (f) Shin, D.; Park, H.; Paik, U. Electrochem. Commun. 2017, 77, 103
      doi: 10.1016/j.elecom.2017.02.018

    29. [29]

    30. [30]

      (a) Zhang, L.; Zhang, L.; Chai, L.; Xue, P.; Hao, W.; Zheng, H. J. Mater. Chem. A 2014, 2, 19036. doi: 10.1039/C4TA04320K
      (b) Ryou, M. H.; Kim, J.; Lee, I.; Kim, S.; Jeong, Y.; K.; Hong, S.; Ryu, J. H.; Kim, T. S.; Park, J. K.; Lee, H. Adv. Mater. 2013, 25, 1571. doi: 1010.1002/adma.201203981

  • 加载中
    1. [1]

      Liang MingDan LiuQiyue LuoChaochao WeiChen LiuZiling JiangZhongkai WuLin LiLong ZhangShijie ChengChuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387

    2. [2]

      Xiao ZhuYanbing MoJiawei ChenGaopan LiuYonggang WangXiaoli Dong . A weakly-solvated ether-based electrolyte for fast-charging graphite anode. Chinese Chemical Letters, 2024, 35(8): 109146-. doi: 10.1016/j.cclet.2023.109146

    3. [3]

      Kailong ZhangChao ZhangLuanhui WuQidong YangJiadong ZhangGuang HuLiang SongGaoran LiWenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618

    4. [4]

      Haixia WuKailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550

    5. [5]

      Tong SuYue WangQizhen ZhuMengyao XuNing QiaoBin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191

    6. [6]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    7. [7]

      Zeyu XUTongzhou LUHaibo SHAOJianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164

    8. [8]

      Jie ZhouQuanyu LiXiaomeng HuWeifeng WeiXiaobo JiGuichao KuangLiangjun ZhouLibao ChenYuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143

    9. [9]

      Ningning ZhaoYuyan LiangWenjie HuoXinyan ZhuZhangxing HeZekun ZhangYoutuo ZhangXianwen WuLei DaiJing ZhuLing WangQiaobao Zhang . Separator functionalization enables high-performance zinc anode via ion-migration regulation and interfacial engineering. Chinese Chemical Letters, 2024, 35(9): 109332-. doi: 10.1016/j.cclet.2023.109332

    10. [10]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    11. [11]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    12. [12]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    13. [13]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309

    14. [14]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    15. [15]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    16. [16]

      Mei-Chen LiuQing-Song LiuYi-Zhou QuanJia-Ling YuGang WuXiu-Li WangYu-Zhong Wang . Phosphorus-silicon-integrated electrolyte additive boosts cycling performance and safety of high-voltage lithium-ion batteries. Chinese Chemical Letters, 2024, 35(8): 109123-. doi: 10.1016/j.cclet.2023.109123

    17. [17]

      Ya SongMingxia ZhouZhu ChenHuali NieJiao-Jing ShaoGuangmin Zhou . Integrated interconnected porous and lamellar structures realized fast ion/electron conductivity in high-performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(6): 109200-. doi: 10.1016/j.cclet.2023.109200

    18. [18]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    19. [19]

      Tsegaye Tadesse Tsega Jiantao Zai Chin Wei Lai Xin-Hao Li Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192

    20. [20]

      Ting HuYuxuan GuoYixuan MengZe ZhangJi YuJianxin CaiZhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603

Metrics
  • PDF Downloads(32)
  • Abstract views(873)
  • HTML views(58)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return