Citation: Chen Ruijie, Li Di, Fang Zhenyuan, Huang Yuanyong, Luo Bifu, Shi Weidong. Controlling Self-Assembly of 3D In2O3 Nanostructures for Boosting Photocatalytic Hydrogen Production[J]. Acta Physico-Chimica Sinica, ;2020, 36(3): 190304. doi: 10.3866/PKU.WHXB201903047 shu

Controlling Self-Assembly of 3D In2O3 Nanostructures for Boosting Photocatalytic Hydrogen Production

  • Corresponding author: Shi Weidong, swd1978@ujs.edu.cn
  • Received Date: 20 March 2019
    Revised Date: 6 May 2019
    Accepted Date: 6 May 2019
    Available Online: 8 March 2019

    Fund Project: the National Natural Science Foundation of China 21878129the National Natural Science Foundation of China 21477050the National Natural Science Foundation of China (21878129, 21522603, 21477050)the National Natural Science Foundation of China 21522603

  • Exploring economical and efficient photocatalysts for hydrogen production is of great significance for alleviating the energy and environmental crisis. In this study, 3D In2O3 nanostructures with appropriate self-assembly degrees were obtained using a facile hydrothermal strategy. To study the significance of 3D In2O3 nanostructures with appropriate self-assembly degrees in photocatalytic hydrogen production, the photocatalytic performances of samples were evaluated based on the amount of hydrogen gas release under visible-light irradiation (λ > 400 nm) and simulated solar light illumination. Interestingly, the 3D In2O3-150 nanostructured photocatalyst (hydrothermal temperature was 150 ℃, denoted as In2O3-150) exhibited extremely superior photocatalytic hydrogen evolution activity, which may have been caused by their unique structure to improve light reflection and gas evolution. The special structure can enhance light harvesting and induce more carriers to participate in photocatalytic hydrogen production. Despite possessing similar 3D nanostructures, the In2O3-180 photocatalyst exhibited poor photocatalytic activity. This may have been caused by the high self-assembly degree, which can hinder light irradiation and isolate a portion of the water. In addition, the 3D nanostructures could effectively make uniform the carrier migration direction, which is from the interior to the rod end. However, the direction of carrier migration of the In2O3-110 photocatalyst could transfer in various directions, whereas the In2O3-130 photocatalyst could transfer to both ends of the rod. This might cause partial migration to counteract each other. The compact cluster rod-like structure of In2O3-180 might prevent the light from exciting the carrier effectively. Through a photocatalytic recycling test, the 3D In2O3-150 nanostructured photocatalyst exhibited outstanding photochemical stability. This work highlights the importance of controlling the self-assembly degree of 3D In2O3 nanostructures and explores the performances of 3D In2O3 nanostructured photocatalysts in hydrogen production under visible light and simulated solar light.
  • 加载中
    1. [1]

      Chen, X.; Shen, S.; Guo, L.; Mao, S. Chem. Rev. 2010, 110, 6503. doi: 10.1021/cr1001645  doi: 10.1021/cr1001645

    2. [2]

      Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253. doi: 10.1039/b800489g  doi: 10.1039/b800489g

    3. [3]

      Tong, H.; Ouyang, S.; Bi, Y.; Umezawa, N.; Oshikiri, M.; Ye, J. Adv. Mater. 2012, 24, 229. doi: 10.1002/adma.201102752  doi: 10.1002/adma.201102752

    4. [4]

      Wang, X.; Jing, D.; Ni, M. Sci. Bull. 2017, 62, 597. doi: 10.1016/j.scib.2017.04.021  doi: 10.1016/j.scib.2017.04.021

    5. [5]

      张弛, 吴志娇, 刘建军, 朴玲钰.物理化学学报, 2017, 33, 1492. doi: 10.3866/PKU.WHXB201704141  doi: 10.3866/PKU.WHXB201704141

    6. [6]

      Huang, Y.; Li, D.; Fang, Z.; Chen, R.; Luo, B.; Shi, W. Appl. Catal. B: Environ. 2019, 254, 128. doi: 10.1016/j.apcatb.2019.04.082  doi: 10.1016/j.apcatb.2019.04.082

    7. [7]

      Tang, C.; Zhang, R.; Lu, W.; He, L.; Jiang, X.; Asiri, A. M.; Sun, X. Adv. Mater. 2017, 29, 1602441. doi: 10.1002/adma.201602441  doi: 10.1002/adma.201602441

    8. [8]

      陈香, 潘建明, 闫永胜.物理化学学报, 2016, 32, 2794. doi: 10.3866/PKU.WHXB201609073  doi: 10.3866/PKU.WHXB201609073

    9. [9]

      Shin, S. S.; Yeom, E. J.; Yang, W. S.; Hur, S.; Kim, M. G.; Im, J.; Seo, J.; Noh, J. H.; Seok, S. I. Science 2017, 356, 167. doi: 10.1126/science.aam6620  doi: 10.1126/science.aam6620

    10. [10]

      Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0  doi: 10.1038/238037a0

    11. [11]

      Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2009, 8, 76. doi: 10.1038/NMAT2317  doi: 10.1038/NMAT2317

    12. [12]

      Han, Q.; Wang, B.; Zhao, Y.; Hu, C.; Qu, L. Angew. Chem. Int. Edit. 2015, 54, 11433. doi: 10.1002/anie.201504985  doi: 10.1002/anie.201504985

    13. [13]

      Yang, X.; Chen, L.; Liu, Y.; Rooke, J. C.; Sanchez, C.; Su, B. Chem. Soc. Rev. 2017, 46, 481. doi: 10.1039/c6cs00829a  doi: 10.1039/c6cs00829a

    14. [14]

      Zhou, L.; Zhuang, Z.; Zhao, H.; Lin, M.; Zhao, D.; Mai, L. Adv. Mater. 2017, 29, 1602914. doi: 10.1002/adma.201602914  doi: 10.1002/adma.201602914

    15. [15]

      Hara, M.; Kondo, T.; Komoda, M.; Ikeda, S.; Shinohara, K.; Tanaka, A.; Kondo, J. N.; Domen, K. Chem. Commun. 1998, 3, 357. doi: 10.1039/a707440i  doi: 10.1039/a707440i

    16. [16]

      Luevano-Hipolito, E.; Torres-Martinez, L.; Sanchez-Martinez, D.; Cruz, M. R. A. Int. J. Hydrog. Energy 2017, 42, 12997. doi: 10.1016/j.ijhydene.2017.03.192  doi: 10.1016/j.ijhydene.2017.03.192

    17. [17]

      Kwon, Y.; Soon, A.; Han, H.; Lee, H. J. Mater. Chem. A 2015, 3, 156. doi: 10.1039/c4ta04863f  doi: 10.1039/c4ta04863f

    18. [18]

      Wolcott, A.; Smith, W. A.; Kuykendall, T. R.; Zhao, Y.; Zhang, J. Adv. Funct. Mater. 2009, 19, 1849. doi: 10.1002/adfm.200801363  doi: 10.1002/adfm.200801363

    19. [19]

      Takahara, Y.; Kondo, J.; Takata, T.; Lu, D.; Domen, K. Chem. Mater. 2001, 13, 1194. doi: 10.1021/cm000572i  doi: 10.1021/cm000572i

    20. [20]

      Yu, H.; Sun, D.; Liu, J.; Fang, Y.; Li, C. Int. J. Hydrogen Energy 2016, 41, 17225. doi: 10.1016/j.ijhydene.2016.07.139  doi: 10.1016/j.ijhydene.2016.07.139

    21. [21]

      Bao, N.; Shen, L.; Takata, T.; Domen, K. Chem. Mater. 2008, 20, 110. doi: 10.1021/cm7029344  doi: 10.1021/cm7029344

    22. [22]

      Li, Q.; Guo, B.; Yu, J.; Ran, J.; Zhang, B.; Yan, H.; Gong, J. J. Am. Chem. Soc. 2011, 133, 10878. doi: 10.1021/ja2025454  doi: 10.1021/ja2025454

    23. [23]

      Shen, S.; Zhao, L.; Guo, L. Int. J. Hydrog. Energy 2008, 33, 4501. doi: 10.1016/j.ijhydene.2008.05.043  doi: 10.1016/j.ijhydene.2008.05.043

    24. [24]

      Hong, Y.; Fang, Z.; Yin, B.; Luo, B.; Zhao, Y.; Shi, W.; Li, C. Int. J. Hydrog. Energy 2017, 42, 6738. doi: 10.1016/j.ijhydene.2016.12.055  doi: 10.1016/j.ijhydene.2016.12.055

    25. [25]

      Holladay, J. D.; Hu, J.; King, D. L.; Wang, Y. Catal. Today 2009, 139, 244. doi: 10.1016/j.cattod.2008.08.039  doi: 10.1016/j.cattod.2008.08.039

    26. [26]

      Low, J.; Yu, J.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A. A. Adv. Mater. 2017, 29, 1601694. doi: 10.1002/adma.201601694  doi: 10.1002/adma.201601694

    27. [27]

      Nikolaidis, P.; Poullikkas, A. Renew. Sustain. Energy Rev. 2017, 67, 597. doi: 10.1016/j.rser.2016.09.044  doi: 10.1016/j.rser.2016.09.044

    28. [28]

      Lin, L.; Zhou, W.; Gao, R.; Yao, S.; Zhang, X.; Xu, W.; Zheng, S.; Jiang, Z.; Yu, Q.; Li, Y. Nature 2017, 544, 80. doi: 10.1038/nature21672  doi: 10.1038/nature21672

    29. [29]

      King, P. D. C.; Veal, T. D.; Fuchs, F.; Wang, C. Y.; Payne, D. J. Bourlange, A.; Zhang, H.; Bell, G. R.; Cimalla, V.; Ambacher, O. Phys. Rev. B 2009, 79, 205211. doi: 10.1103/PhysRevB.79.205211  doi: 10.1103/PhysRevB.79.205211

    30. [30]

      Pan, Y.; You, Y.; Xin, S.; Li, Y.; Fu, G.; Cui, Z.; Men, Y.; Cao, F.; Yu, S.; Goodenough, J. B. J. Am. Chem. Soc. 2017, 139, 4123. doi: 10.1021/jacs.7b00266  doi: 10.1021/jacs.7b00266

    31. [31]

      Gan, J.; Lu, X.; Wu, J.; Xie, S.; Zhai, T.; Yu, M.; Zhang, Z.; Mao, Y.; Wang, S.; Shen, Y. Sci. Rep. 2013, 3, 1021. doi: 10.1038/srep01021  doi: 10.1038/srep01021

    32. [32]

      Cao, S.; Liu, X.; Yuan, Y.; Zhang, Z.; Liao, Y.; Fang, J.; Loo, S. C. J.; Sum, T. C.; Xue, C. Appl. Catal. B: Environ. 2014, 147, 940. doi: 10.1016/j.apcatb.2013.10.029  doi: 10.1016/j.apcatb.2013.10.029

    33. [33]

      Ramos-Ramon, J. A.; Pal, U.; Cremades, A.; Maestre, D. Appl. Surf. Sci. 2018, 439, 1010. doi: 10.1016/j.apsusc.2018.01.125  doi: 10.1016/j.apsusc.2018.01.125

    34. [34]

      Wang, X.; Su, J.; Chen, H.; Li, G.; Shi, Z.; Zou, H.; Zou, X. ACS Appl. Mater. Interfaces 2017, 9, 16335. doi: 10.1021/acsami.7b04395  doi: 10.1021/acsami.7b04395

    35. [35]

      Liu, J.; Li, S.; Zhang, B.; Wang, Y.; Gao, Y.; Liang, X.; Wang, Y.; Lu, G. J. Colloid. Interface Sci. 2017, 504, 206. doi: 10.1016/j.jcis.2017.05.053  doi: 10.1016/j.jcis.2017.05.053

    36. [36]

      Jiang, Z.; Jiang, D.; Yan, Z.; Liu, D.; Qian, K.; Xie, J. Appl. Catal. B: Environ. 2015, 170, 195. doi: 10.1016/j.apcatb.2015.01.041  doi: 10.1016/j.apcatb.2015.01.041

    37. [37]

      Ma, D.; Shi, J.; Zou, Y.; Fan, Z.; Shi, J.; Cheng, L.; Sun, D.; Wang, Z.; Niu, C. Nanoscale 2018, 10, 7860. doi: 10.1039/c8nr00170g  doi: 10.1039/c8nr00170g

    38. [38]

      Zhang, Y.; Zhang, J.; Nie, M.; Sun, K.; Li, C.; Yu, J. J. Nanopart. Res. 2015, 17, 322. doi: 10.1007/s11051-015-2887-7  doi: 10.1007/s11051-015-2887-7

    39. [39]

      Padmanathan, N.; Shao, H.; McNulty, D.; O'Dwyer, C.; Razeeb, K. M. J. Mater. Chem. A 2016, 4, 4820. doi: 10.1039/c5ta10407f  doi: 10.1039/c5ta10407f

    40. [40]

      Al-Resheedi, A.; Alhokbany, N. S.; Mahfouz, R. M. Mater. Res. 2014, 17, 346. doi: 10.1590/S1516-14392014005000019  doi: 10.1590/S1516-14392014005000019

    41. [41]

      Tahir, M.; Tahir, B.; Amin, N.; Alias, H. A. S.; Alias, H. Appl. Surface Sci. 2016, 389, 46. doi: 10.1016/j.apsusc.2016.06.155  doi: 10.1016/j.apsusc.2016.06.155

    42. [42]

      Wu, M.; Wang, C.; Zhao, Y.; Xiao, L.; Zhang, C.; Yu, X.; Luo, B.; Hu, B.; Fan, W.; Shi, W. CrystEngComm 2015, 17, 2336. doi: 10.1039/c4ce02262a  doi: 10.1039/c4ce02262a

    43. [43]

      Huang, F.; Yang, W.; He, F.; Liu, S. Sensor. Actuat. B: Chem. 2016, 235, 86. doi: 10.1016/j.snb.2016.05.060  doi: 10.1016/j.snb.2016.05.060

    44. [44]

      Chen, X.; Li, R.; Pan, X.; Huang, X.; Yi, Z. Chem. Eng. J. 2017, 320, 644. doi: 10.1016/j.cej.2017.03.072  doi: 10.1016/j.cej.2017.03.072

    45. [45]

      Zhou, X.; Wu, J.; Li, Q.; Zeng, T.; Ji, Z.; He, P.; Pan, W.; Qi, X.; Wang, C.; Liang, P. J. Catal. 2017, 355, 26. doi: 10.1016/j.jcat.2017.09.006  doi: 10.1016/j.jcat.2017.09.006

    46. [46]

      Tian, N.; Zhang, Y.; Li, X.; Xiao, K.; Du, X.; Dong, F.; Waterhouse, G. I. N.; Zhang, T.; Huang, H. Nano Energy 2017, 38, 72. doi: 10.1016/j.nanoen.2017.05.038  doi: 10.1016/j.nanoen.2017.05.038

    47. [47]

      Zhang, G.; Lan, Z.; Wang, X. Chem. Sci. 2017, 8, 5261. doi: 10.1039/c7sc01747b  doi: 10.1039/c7sc01747b

    48. [48]

      Zhang, G.; Lan, Z.; Lin, L.; Lin, S.; Wang, X. Chem. Sci. 2016, 7, 3062. doi: 10.1039/c5sc04572j  doi: 10.1039/c5sc04572j

    49. [49]

      Fang, Z.; Hong, Y.; Li, D.; Luo, B.; Mao, B.; Shi, W. ACS Appl. Mater. Interfaces 2018, 10, 20521. doi: 10.1021/acsami.8b04783  doi: 10.1021/acsami.8b04783

    50. [50]

      Li, H.; Bian, Z.; Zhu, J.; Zhang, D.; Li, G.; Huo, Y.; Li, H.; Lu, Y. J. Am. Chem. Soc. 2007, 129, 8406. doi: 10.1021/ja072191c  doi: 10.1021/ja072191c

    51. [51]

      Zhang, L.; Yu, J. Chem. Commun. 2003, 16, 2078. doi: 10.1039/b306013f  doi: 10.1039/b306013f

    52. [52]

      Tian, G.; Chen, Y.; Zhou, W.; Pan, K.; Tian, C.; Huang, X.; Fu, H. CrystEngComm 2011, 13, 2994. doi: 10.1039/c0ce00851f  doi: 10.1039/c0ce00851f

    53. [53]

      Zhou, C.; Shi, R.; Shang, L.; Zhao, Y.; Waterhouse, G.; Wu, L.; Tung, C.; Zhang, T. ChemPlusChem 2017, 82, 181. doi: 10.1002/cplu.201600501  doi: 10.1002/cplu.201600501

    54. [54]

      Zhou, C.; Shi, R.; Shang, L.; Zhao, Y.; Wu, L.; Tung, C.; Zhang, T. Chin. J. Catal. 2018, 39, 395. doi: 10.1016/S1872-2067(17)62963-2  doi: 10.1016/S1872-2067(17)62963-2

    55. [55]

      Shi, R.; Chao, Y.; Bao, Y.; Zhao, Y.; Waterhouse, G.; Fang, Z.; Wu, L.; Tung, C.; Yin, Y.; Zhang, T. Adv. Mater. 2017, 29, 1700803. doi: 10.1002/adma.201700803  doi: 10.1002/adma.201700803

  • 加载中
    1. [1]

      Xinlong ZhengZhongyun ShaoJiaxin LinQizhi GaoZongxian MaYiming SongZhen ChenXiaodong ShiJing LiWeifeng LiuXinlong TianYuhao Liu . Recent advances of CuSbS2 and CuPbSbS3 as photocatalyst in the application of photocatalytic hydrogen evolution and degradation. Chinese Chemical Letters, 2025, 36(3): 110533-. doi: 10.1016/j.cclet.2024.110533

    2. [2]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    3. [3]

      Bowen LiTing WangMing XuYuqi WangZhaoxing LiMei LiuWenjing ZhangMing Feng . Structuring MoO3-polyoxometalate hybrid superstructures to boost electrocatalytic hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(2): 110467-. doi: 10.1016/j.cclet.2024.110467

    4. [4]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    5. [5]

      Wengao ZengYuchen DongXiaoyuan YeZiying ZhangTuo ZhangXiangjiu GuanLiejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252

    6. [6]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    7. [7]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    8. [8]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    9. [9]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    10. [10]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    11. [11]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    12. [12]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    13. [13]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    14. [14]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    15. [15]

      Feng CaoChunxiang XianTianqi YangYue ZhangHaifeng ChenXinping HeXukun QianShenghui ShenYang XiaWenkui ZhangXinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575

    16. [16]

      Linping Li Junhui Su Yanping Qiu Yangqin Gao Ning Li Lei Ge . Design and fabrication of ternary Au/Co3O4/ZnCdS spherical composite photocatalyst for facilitating efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100472-100472. doi: 10.1016/j.cjsc.2024.100472

    17. [17]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    18. [18]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    19. [19]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    20. [20]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

Metrics
  • PDF Downloads(7)
  • Abstract views(682)
  • HTML views(95)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return