Citation: Wei Feng, Bi Honghui, Jiao Shuai, He Xiaojun. Interconnected Graphene-like Nanosheets for Supercapacitors[J]. Acta Physico-Chimica Sinica, ;2020, 36(2): 190304. doi: 10.3866/PKU.WHXB201903043 shu

Interconnected Graphene-like Nanosheets for Supercapacitors

  • Corresponding author: He Xiaojun, agdxjhe@126.com
  • Received Date: 19 March 2019
    Revised Date: 21 April 2019
    Accepted Date: 15 May 2019
    Available Online: 23 February 2019

    Fund Project: the National Natural Science Foundation of China U1508201the National Natural Science Foundation of China U1710116the National Natural Science Foundation of China 51872005The project was supported by the National Natural Science Foundation of China (U1710116, U1508201, and 51872005)

  • The rapid economic development has necessitated increased environmental protection and tremendous efforts have been devoted to designing and preparing environmentally friendly energy storage and conversion devices, including batteries, supercapacitors (SCs), and solar cells. As useful energy storage and conversion devices, SCs have received significant attention due to their high power density, long cycle stability, and rapid charging rate. The performance of SCs largely depends on the electrode materials, which can be composed of metal oxides, conducting polymers, carbon materials, and their composites. Carbon materials, including carbon nanotubes, carbon fibers, porous carbons, template carbons, and graphene-like carbon nanosheets (GCNSs), have attracted significant attention owing to their tailorable pore size and excellent physiochemical stability. GCNSs are considered to be outstanding carbon materials for use in high-performance SC because of their large specific surface area and high electrical conductivity. To date, many carbon precursors have been used to synthesize GCNSs for SCs such as coal, biomass, and chemical by-products. In particular, cheap and abundant chemical by-products for the synthesis of carbon materials can reduce preparation costs and environmental pollution as well as achieve high value-added chemicals. Coal tar, a by-product of the coal coking process, is rich in aromatic polycyclic hydrocarbon molecules, which can be polymerized, carbonized, and activated to synthesize GCNSs for SCs. In addition, MgO particles can be used as templates due to their stable properties and low-cost compared with other metal oxide templates (e.g. Fe2O3, NiO, or CuO), imparting space confinement and structure guidance during the preparation of GCNSs. Herein, we report a facile method for the preparation of interconnected graphene-like nanosheets (IGNSs) from coal tar by MgO templating combined with in-situ KOH activation. The IGNSs were obtained after the impurity removal by repeated washing with dilute acid. The as-synthesized IGNSs feature high specific surface area of up to 2887 m2∙g−1 and abundant hierarchical short pores, which provide abundant active sites for ion adsorption, supply plentiful channels for fast ion transport and boost electrical conductivity. As electrodes for SCs, IGNSs manifest high specific capacitance value of up to 313 F∙g−1 at 0.05 A∙g−1, good rate capability of 261 F∙g−1 at 20 A∙g−1, and excellent cycle stability with 92.7% of initial capacitance retained after 10000 cycles in 6 mol∙L−1 KOH aqueous electrolyte. This study provides a facile method for large-scale production of IGNSs from aromatic hydrocarbon molecules for use in high-performance energy storage devices.
  • 加载中
    1. [1]

      Li, D. Y.; Zhang, J. T.; Wang, Z. Y.; Jin, X. B. Acta Phys. -Chim. Sin. 2017, 33, 2245.  doi: 10.3866/PKU.WHXB201705241

    2. [2]

      Yao, L.; Wu, Q.; Zhang, P. X.; Zhang, J. M.; Wang, D. R.; Li, Y. L.; Ren, X. Z.; Mi, H. W.; Deng, L. B.; Zheng, Z. J. Adv. Mater. 2018, 30, 1706054. doi: 10.1002/adma.201706054  doi: 10.1002/adma.201706054

    3. [3]

      Schroeder, V.; Savagatrup, S.; He, M.; Lin, S. B.; Swager, T. M. Chem. Rev. 2019, 119, 599.doi: 10.1021/acs.chemrev.8b00340  doi: 10.1021/acs.chemrev.8b00340

    4. [4]

      He, X. J.; Ma, H.; Wang, J. X.; Xie, Y. Y.; Xiao, N.; Qiu, J. S. J. Power Sources 2017, 357, 41. doi: 10.1016/j.jpowsour.2017.04.108  doi: 10.1016/j.jpowsour.2017.04.108

    5. [5]

      Dong, S. A.; He, X. J.; Zhang, H. F.; Xie, X. Y.; Yu, M. X.; Yu, C.; Xiao, N.; Qiu, J. S. J. Mater. Chem. A2018, 6, 15954. doi: 10.1039/c8ta04080j  doi: 10.1039/c8ta04080j

    6. [6]

      Shi, L. R.; Chen, K.; Du, R.; Bachmatiuk, A.; Rümmeli, M. H.; Priydarshi, M. K.; Zhang, Y. F.; Manivannan, A.; Liu, Z. F.Small 2015, 11, 6302. doi: 10.1002/smll.201502013  doi: 10.1002/smll.201502013

    7. [7]

      Yang, Z. F.; Tian, J. R.; Yin, Z. F.; Cui, C. J.; Qian, W. Z.; Wei, F. Carbon 2019, 141, 467. doi: 10.1016/j.carbon.2018.10.010  doi: 10.1016/j.carbon.2018.10.010

    8. [8]

      Zhu, Q. L.; Pachfule, P.; Strubel, P.; Li, Z. P.; Zou, R. Q.; Liu, Z.; Kaskel, S.; Xu, Q. Energy Storage Mater. 2018, 13, 72. doi: 10.1016/j.ensm.2017.12.027  doi: 10.1016/j.ensm.2017.12.027

    9. [9]

      Liu, M. Y.; Niu, J.; Zhang, Z. P.; Dou, M. L.; Wang, F.Nano Energy 2018, 51, 366. doi: 10.1016/j.nanoen.2018.06.037  doi: 10.1016/j.nanoen.2018.06.037

    10. [10]

      Li, X. Q.; Chang, L.; Zhao, S. L.; Hao, C. L.; Lu, C. G.; Zhu, Y. H.; Tang, Z. Y. Acta Phys. -Chim. Sin. 2017, 33, 130.  doi: 10.3866/PKU.WHXB201609012

    11. [11]

      Zhang, T. Y.; Yang, L.; Yan, X. B.; Ding, X. Small 2018, 14, 1802444. doi: 10.1002/smll.201802444  doi: 10.1002/smll.201802444

    12. [12]

      Zhao, J. M.; Luque, R.; Gilani, M. R. H. S.; Lai, J. P.; Nsabimana, A.; Xu, G. B. J. Mater. Chem. A 2018, 6, 23780.doi: 10.1039/c8ta06574h  doi: 10.1039/c8ta06574h

    13. [13]

      Yan, R.; Antonietti, M.; Oschatz, M. Adv. Energy Mater. 2018, 8, 1800026. doi: 10.1002/aenm.201800026  doi: 10.1002/aenm.201800026

    14. [14]

      Li, H.; Tao, Y.; Zheng, X. Y.; Luo, J. Y.; Kang, F. Y.; Cheng, H. M.; Yang, Q. H. Energy Environ. Sci. 2016, 9, 3135. doi: 10.1039/C6ee00941g  doi: 10.1039/C6ee00941g

    15. [15]

      Zhai, T.; Sun, S.; Liu, X. J.; Liang, C. L.; Wang, G. M.; Xia, H. Adv. Mater. 2018, 30, 1706640. doi: 10.1002/adma.201706640  doi: 10.1002/adma.201706640

    16. [16]

      Wu, Z.; Zhang, X. B. Acta Phys.-Chim. Sin. 2017, 33, 305.  doi: 10.3866/PKU.WHXB201611012

    17. [17]

      Wang, D. H.; Chen, Y.; Wang, H. Q.; Zhao, P. H.; Liu, W.; Wang, Y. Z.; Yang, J. L. Appl. Surf. Sci. 2018, 457, 1018. doi: 10.1016/j.apsusc.2018.07.047  doi: 10.1016/j.apsusc.2018.07.047

    18. [18]

      Li, X. L.; Zhi, L. J. Chem. Soc. Rev. 2018, 47, 3189. doi: 10.1039/c7cs00871f  doi: 10.1039/c7cs00871f

    19. [19]

      Cheng, C.; Jiang, G. P.; Garvey, C. J.; Wang, Y. Y.; Simon, G. P.; Liu, J. Z.; Li, D. Sci. Adv. 2016, 2, e1501272. doi: 10.1126/sciadv.1501272  doi: 10.1126/sciadv.1501272

    20. [20]

      Shi, C.; Hu, L. T.; Hou, J. X.; Guo, K.; Zhai, T. Y.; Li, H. Q. Energy Storage Mater. 2018, 15, 82. doi: 10.1016/j.ensm.2018.03.010  doi: 10.1016/j.ensm.2018.03.010

    21. [21]

      Liu, S. B.; Zhao, Y.; Zhang, B. H.; Xia, H.; Zhou, J. F.; Xie, W. K.; Li, H. J. J. Power Sources 2018, 381, 116. doi: 10.1016/j.jpowsour.2018.02.014  doi: 10.1016/j.jpowsour.2018.02.014

    22. [22]

      Zhang, M.; Chen, M.; Nadimicherla, R.; Xu, D. L.; Jing, Q. S.; Zha, R. H. Nanoscale 2018, 10, 6549. doi: 10.1039/c8nr00207j  doi: 10.1039/c8nr00207j

    23. [23]

      Zhang, X. Z.; Raj, D. V.; Zhou, X. F.; Liu Z. P. J. Power Sources 2018, 382, 95. doi: 10.1016/j.jpowsour.2018.02.032  doi: 10.1016/j.jpowsour.2018.02.032

    24. [24]

      Zhong, Y.; Shi, T. L.; Huang, Y. Y.; Cheng, S. Y.; Liao, G. L.; Tang, Z. R. Electrochim. Acta 2018, 269, 676.doi: 10.1016/j.electacta.2018.03.012  doi: 10.1016/j.electacta.2018.03.012

    25. [25]

      Deng, X.; Shi, W. X.; Zhong, Y. J.; Zhou, W.; Liu, M. L.; Shao, Z. P. ACS Appl. Mater. Interfaces 2018, 10, 21573. doi: 10.1021/acsami.8b04733  doi: 10.1021/acsami.8b04733

    26. [26]

      Lin, G. X.; Ma, R. G.; Zhou, Y.; Liu, Q.; Dong, X. P.; Wang, J. C. Electrochim. Acta 2018, 261, 49. doi: 10.1016/j.electacta.2017.12.107  doi: 10.1016/j.electacta.2017.12.107

    27. [27]

      Xu, B.; Wang, H. R.; Zhu, Q. Z.; Sun, N.; Anasori, B.; Hu, L. F.; Wang, F.; Guan, Y. B.; Gogotsi, Y. Energy Storage Mater. 2018, 12, 128. doi: 10.1016/j.ensm.2017.12.006  doi: 10.1016/j.ensm.2017.12.006

    28. [28]

      Xie, X. Y.; He, X. J.; Shao, X. L.; Dong, S. A.; Xiao, N.; Qiu, J. S. Electrochim. Acta 2017, 246, 634. doi: 10.1016/j.electacta.2017.06.092  doi: 10.1016/j.electacta.2017.06.092

    29. [29]

      He, X. J.; Ma, H.; Wang, J. X.; Xie, Y. Y.; Xiao, N.; Qiu, J. S. J. Power Sources 2017, 357, 41. doi: 10.1016/j.jpowsour.2017.04.108  doi: 10.1016/j.jpowsour.2017.04.108

    30. [30]

      Liu, D. Q.; Li, Q. W.; Zhao, H. Z.J. Mater. Chem. A 2018, 6, 11471. doi: 10.1039/C8TA02580K  doi: 10.1039/C8TA02580K

    31. [31]

      Zhang, M. C.; Chen, K.; Wang, C. Y.; Jian, M. Q.; Yin, Z.; Liu, Z. L.; Hong, G.; Liu, Z. F.; Zhang, Y. Y. Small2018, 14, 1801009. doi: 10.1002/smll.201801009  doi: 10.1002/smll.201801009

  • 加载中
    1. [1]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    2. [2]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    3. [3]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    4. [4]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    5. [5]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    6. [6]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    7. [7]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    8. [8]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    9. [9]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    10. [10]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    11. [11]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    12. [12]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    13. [13]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    14. [14]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    15. [15]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    16. [16]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    17. [17]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    18. [18]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    19. [19]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    20. [20]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

Metrics
  • PDF Downloads(18)
  • Abstract views(900)
  • HTML views(73)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return