Citation: Liang Xu, Jia Yufeng, Liu Zonghuai, Lei Zhibin. Growing Iron Oxide Nanosheets on Highly Compressible Carbon Sponge for Enhanced Capacitive Performance[J]. Acta Physico-Chimica Sinica, ;2020, 36(2): 190303. doi: 10.3866/PKU.WHXB201903034 shu

Growing Iron Oxide Nanosheets on Highly Compressible Carbon Sponge for Enhanced Capacitive Performance

  • Corresponding author: Lei Zhibin, zblei@snnu.edu.cn
  • Received Date: 15 March 2019
    Revised Date: 27 April 2019
    Accepted Date: 22 May 2019
    Available Online: 1 March 2019

    Fund Project: the National Natural Science Foundation of China 51772181The project was supported by the National Natural Science Foundation of China (51772181)

  • Compressible supercapacitor is a promising flexible energy storage device in view of its excellent capacitive performance, which is recoverable at different compression states. The compressible electrode constitutes the core component that largely determines the performance of a compressible supercapacitor. Commercial polymer sponges are highly compressible materials because most of them are composed of elastic and interconnected polyurethane fibers. However, polymer sponges cannot be directly used as supercapacitor electrodes due to their non-conductive polymer framework. In contrast, carbon sponge (CS) derived from melamine sponge has superior compressible property and exhibits substantially improved conductivity compared to commercial polymer sponge. However, the low specific surface area of CS leads to low specific capacitance, which severely limits its application as compressible supercapacitor electrodes. Currently, pseudocapacitive materials are grown on the conductive CS framework to form hybrid electrodes with improved specific capacitance. Among various pseudocapacitive electrode, iron oxides have attracted considerable attentions due to their natural abundance, high theoretical specific capacitance, and negative working potential. Moreover, the much higher specific capacitance than that of carbon electrodes makes iron oxides one of promising negative candidates for configuring an asymmetric supercapacitor. Herein we report the successful growth of α-Fe2O3 nanosheets on CS by electrodeposition followed by low-temperature thermal annealing. The α-Fe2O3 on CS displays typical nanosheet morphology with mass loading ranging from 3.4 to 6.7 mg·cm-3 that can be facilely controlled by extending the deposition time from 4 to 16 h. The CS-Fe2O3 electrode retains 90% of its geometric height even after manual compression for 100 cycles. Moreover, the CS-Fe2O3 can withstand 60% strain even at Fe2O3 mass loading as high as 6.5 mg·cm-3. The performance of the CS-Fe2O3 electrode at different strains was systematically investigated in 3.0 mol·L-1 KOH aqueous electrolyte by cyclic voltammetry (CV), galvanostatic charge-discharge, and electrochemical impedance spectroscopy (EIS) in a three-electrode system. Our results show that the CS-Fe2O3 composite electrode produces lower specific capacitance at lower strain. The EIS characterization and IR drop results indicate that this is due to the larger internal resistance arising from looser contact of electrode with the current collector and longer ion diffusion length. Particularly, the CS-Fe2O3-12 electrode delivers a maximum specific capacitance of 294 F·g-1 at a current density of 1.0 A·g-1, 1.7-times higher than that of CS substrate. Assuming that the specific capacitance of CS-Fe2O3-12 is derived from the double-layer capacitance of CS and the pseudocapacitance of Fe2O3, the capacitance of Fe2O3 nanosheets in the hybrid is calculated to be as high as 421 F·g-1, much higher than most of recently reported results, showing that the sheet-like structure with more exposed active sites and short ion pathways could dramatically improve the utilization efficiency of the electrode for reversible faradaic reactions. More importantly, the CS-Fe2O3-12 electrode retains 87% of its initial capacitance after continuous charge-discharge at 5.0 A·g-1 for 10000 cycles, showing promising application as a stable and compressible supercapacitor electrode.
  • 加载中
    1. [1]

      Choi, J. H.; Lee, C.; Cho, S.; Moon, G. D.; Kim, B. S.; Chang, H.; Jang, H. D. Carbon 2018, 132, 16. doi: 10.1016/j.carbon.2018.01.105  doi: 10.1016/j.carbon.2018.01.105

    2. [2]

      Guan, C.; Zhao, W.; Hu, Y.; Ke, Q.; Li, X.; Zhang, H.; Wang, J. Adv. Energy Mater. 2016, 6 (20), 1601034. doi: 10.1002/aenm.201601034  doi: 10.1002/aenm.201601034

    3. [3]

      Wu, Z.; Zhang, X. B. Acta Phys. -Chim. Sin.2017, 33 (2), 305.  doi: 10.3866/PKU.WHXB201611012

    4. [4]

      Meng, Y.; Zhao, Y.; Hu, C.; Cheng, H.; Hu, Y.; Zhang, Z.; Shi, G.; Qu, L. Adv. Mater. 2013, 25 (16), 2326. doi: 10.1002/adma.201300132  doi: 10.1002/adma.201300132

    5. [5]

      Lu, X.; Yu, M.; Wang, G.; Tong, Y.; Li, Y. Energy Environ. Sci.2014, 7 (7), 2160. doi: 10.1039/c4ee00960f  doi: 10.1039/c4ee00960f

    6. [6]

      Liu, Z. F. Acta Phys.-Chim. Sin. 2016, 32(4), 817.  doi: 10.3866/PKU.WHXB201603152

    7. [7]

      Yousaf, M.; Shi, H. T. H.; Wang, Y.; Chen, Y.; Ma, Z.; Cao, A.; Naguib, H. E.; Han, R. P. S. Adv. Energy Mater. 2016, 6 (17), 1600490. doi: 10.1002/aenm.201600490  doi: 10.1002/aenm.201600490

    8. [8]

      Yu, H.; Zhang, W.; Li, T.; Zhi, L.; Dang, L.; Liu, Z.; Lei, Z. RSC Adv. 2017, 7 (2), 1067. doi: 10.1039/c6ra25899a  doi: 10.1039/c6ra25899a

    9. [9]

      Niu, Z.; Zhou, W.; Chen, X.; Chen, J.; Xie, S. Adv. Mater. 2015, 27 (39), 6002. doi: 10.1002/adma.201502263  doi: 10.1002/adma.201502263

    10. [10]

      Yu, Y.; Zeng, J.; Chen, C.; Xie, Z.; Guo, R.; Liu, Z.; Zhou, X.; Yang, Y.; Zheng, Z. Adv. Mater. 2014, 26 (5), 810.doi: 10.1002/adma.201303662  doi: 10.1002/adma.201303662

    11. [11]

      Zhao, Y.; Liu, J.; Hu, Y.; Cheng, H.; Hu, C.; Jiang, C.; Jiang, L.; Cao, A.; Qu, L. Adv. Mater. 2013, 25 (4), 591. doi: 10.1002/adma.201203578  doi: 10.1002/adma.201203578

    12. [12]

      Xiao, K.; Ding, L. X.; Liu, G.; Chen, H.; Wang, S.; Wang, H. Adv. Mater. 2016, 28 (28), 5997. doi: 10.1002/adma.201601125  doi: 10.1002/adma.201601125

    13. [13]

      Liang, X.; Nie, K.; Ding, X.; Dang, L.; Sun, J.; Shi, F.; Xu, H.; Jiang, R.; He, X.; Liu, Z.; et al. ACS Appl. Mater. Interfaces 2018, 10 (12), 10087. doi: 10.1021/acsami.7b19043  doi: 10.1021/acsami.7b19043

    14. [14]

      Cheng, P.; Li, T.; Yu, H.; Zhi, L.; Liu, Z.; Lei, Z. J. Phys. Chem. C 2016, 120 (4), 2079. doi: 10.1021/acs.jpcc.5b11280  doi: 10.1021/acs.jpcc.5b11280

    15. [15]

      Lei, Z.; Sun, X.; Wang, H.; Liu, Z.; Zhao, X. S. ACS Appl. Mater. Interfaces 2013, 5 (15), 7501. doi: 10.1021/am4018016  doi: 10.1021/am4018016

    16. [16]

      Zhuang, L. Acta Phys.-Chim. Sin. 2017, 33 (5), 859.  doi: 10.3866/PKU.WHXB201703141

    17. [17]

      Li, Y.; Xu, J.; Feng, T.; Yao, Q.; Xie, J.; Xia, H. Adv. Funct. Mater. 2017, 27 (14), 1606728. doi: 10.1002/adfm.201606728  doi: 10.1002/adfm.201606728

    18. [18]

      Chang, J.; Jin, M.; Yao, F.; Kim, T. H.; Le, V. T.; Yue, H.; Gunes, F.; Li, B.; Ghosh, A.; Xie, S.; et al. Adv. Funct. Mater. 2013, 23 (40), 5074. doi: 10.1002/adfm201301851  doi: 10.1002/adfm201301851

    19. [19]

      Lu, X.; Yu, M.; Zhai, T.; Wang, G.; Xie, S.; Liu, T.; Liang, C.; Tong, Y.; Li, Y. Nano Lett. 2013, 13 (6), 2628. doi: 10.1021/nl400760a  doi: 10.1021/nl400760a

    20. [20]

      Owusu, K. A.; Qu, L.; Li, J.; Wang, Z.; Zhao, K.; Yang, C.; Hercule, K. M.; Lin, C.; Shi, C.; Wei, Q.; et al. Nat. Commun. 2017, 8, 14264. doi: 10.1038/ncomms14264  doi: 10.1038/ncomms14264

    21. [21]

      Li, T.; Yu, H.; Zhi, L.; Zhang, W.; Dang, L.; Liu, Z.; Lei, Z. J. Phys. Chem. C 2017, 121 (35), 18982. doi: 10.1021/acs.jpcc.7b04330  doi: 10.1021/acs.jpcc.7b04330

    22. [22]

      Li, T.; Zhang, W.; Zhi, L.; Yu, H.; Dang, L.; Shi, F.; Xu, H.; Hu, F.; Liu, Z.; Lei, Z.; Qiu, J. Nano Energy 2016, 30, 9.doi: 10.1016/j.nanoen.2016.09.023  doi: 10.1016/j.nanoen.2016.09.023

    23. [23]

      Cheng, X.; Gui, X.; Lin, Z.; Zheng, Y.; Liu, M.; Zhan, R.; Zhu, Y.; Tang, Z. J. Mater. Chem. A 2015, 3 (42), 20927. doi: 10.1039/c5ta03635f  doi: 10.1039/c5ta03635f

    24. [24]

      Gao, P.; Liu, R.; Huang, H.; Jia, X.; Pan, H. RSC Adv. 2016, 6 (97), 94699. doi: 10.1039/c6ra21567j  doi: 10.1039/c6ra21567j

    25. [25]

      Zheng, X.; Han, Z.; Yao, S.; Xiao, H.; Chai, F.; Qu, F.; Wu, X. Dalton Trans. 2016, 45 (16), 7094. doi: 10.1039/c6dt00002a  doi: 10.1039/c6dt00002a

    26. [26]

      Wang, H.; Xu, Z.; Yi, H.; Wei, H.; Guo, Z.; Wang, X. Nano Energy 2014, 7, 86. doi: 10.1016/j.nanoen.2014.04.009  doi: 10.1016/j.nanoen.2014.04.009

    27. [27]

      Binitha, G.; Soumya, M. S.; Madhavan, A. A.; Praveen, P.; Balakrishnan, A.; Subramanian, K. R. V.; Reddy, M. V.; Nair, S. V.; Nair, A. S.; Sivakumar, N. J. Mater. Chem. A 2013, 1 (38), 11698. doi: 10.1039/c3ta12352a  doi: 10.1039/c3ta12352a

    28. [28]

      Zhao, P.; Li, W.; Wang, G.; Yu, B.; Li, X.; Bai, J.; Ren, Z. J. Alloys Compd. 2014, 604, 87. doi: 10.1016/j.jallcom.2014.03.106  doi: 10.1016/j.jallcom.2014.03.106

    29. [29]

      Wang, Z.; Ma, C.; Wang, H.; Liu, Z.; Hao, Z. J. Alloys Compd.2013, 552, 486. doi: 10.1016/j.jallcom.2012.11.071  doi: 10.1016/j.jallcom.2012.11.071

    30. [30]

      Qin, K.; Liu, E.; Li, J.; Kang, J.; Shi, C.; He, C.; He, F.; Zhao, N. Adv. Energy Mater. 2016, 6 (18), 1600755. doi: 10.1002/aenm.201600755  doi: 10.1002/aenm.201600755

    31. [31]

      Zhang, Y.; Lin, R.; Fu, Y.; Wang, X.; Yu, X.; Li, J.; Zhu, Y.; Tan, S.; Wang, Z. Mater. Lett. 2018, 228, 9. doi: 10.1016/j.matlet.2018.05.073  doi: 10.1016/j.matlet.2018.05.073

    32. [32]

      Nagarajan, N.; Zhitomirsky, I. J. Appl. Electrochem. 2006, 36 (12), 1399. doi: 10.1007/s10800-006-9232-x  doi: 10.1007/s10800-006-9232-x

    33. [33]

      Quan, H.; Cheng, B.; Xiao, Y.; Lei, S. Chem. Eng. J. 2016, 286, 165. doi: 10.1016/j.cej.2015.10.068  doi: 10.1016/j.cej.2015.10.068

    34. [34]

      Ma, Z.; Huang, X.; Dou, S.; Wu, J.; Wang, S. J. Phys. Chem. C 2014, 118 (31), 17231. doi: 10.1021/jp502226j  doi: 10.1021/jp502226j

  • 加载中
    1. [1]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    2. [2]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    3. [3]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    4. [4]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    5. [5]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    6. [6]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    7. [7]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    8. [8]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    9. [9]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    10. [10]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    11. [11]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    12. [12]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    13. [13]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    14. [14]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    15. [15]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    16. [16]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    17. [17]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    18. [18]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    19. [19]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    20. [20]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

Metrics
  • PDF Downloads(9)
  • Abstract views(1043)
  • HTML views(101)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return