Citation: Li Shihan, Zhao Zhenchao, Li Shikun, Xing Youdong, Zhang Weiping. Aluminum Distribution and Brønsted Acidity of Al-Rich SSZ-13 Zeolite: A Combined DFT Calculation and Solid-State NMR Study[J]. Acta Physico-Chimica Sinica, ;2020, 36(4): 190302. doi: 10.3866/PKU.WHXB201903021 shu

Aluminum Distribution and Brønsted Acidity of Al-Rich SSZ-13 Zeolite: A Combined DFT Calculation and Solid-State NMR Study

  • Corresponding author: Zhang Weiping, wpzhang@dlut.edu.cn
  • Received Date: 11 March 2019
    Revised Date: 11 April 2019
    Accepted Date: 11 April 2019
    Available Online: 18 April 2019

    Fund Project: the National Natural Science Foundation of China 21603022the Fundamental Research Funds for the Central Universities in China DUT17TD04the National Natural Science Foundation of China 21872017The project was supported by the National Natural Science Foundation of China (21872017, 21603022), the Fundamental Research Funds for the Central Universities in China (DUT17TD04) and the Supercomputing Center of Dalian University of Technology, China

  • SSZ-13 zeolite with a chabazite (CHA) topology structure has important applications for methanol to olefin (MTO) conversion and selective catalytic reduction of nitrogen oxides (NOx) by ammonia (NH3-SCR) to reduce diesel engine exhaust emissions. It has been reported that the Al-rich SSZ-13 zeolite can be used to tune the selectivity of olefins in the MTO reaction, and significantly enhance NO conversions at lower temperatures in NH3-SCR. Thus, the aluminum content and distribution as well as the corresponding acidity in SSZ-13 zeolite determine the catalytic performance of the zeolite for different catalytic reactions. Herein, quantum chemical computing using density functional theory (DFT) combined with multinuclear solid-state nuclear- magnetic-resonance (NMR) experiments were performed to investigate the correlation of Al location and Brønsted acidity of H-SSZ-13 zeolite with the Si/Al ratio varying from 5.8 to 25. The most favorable acid site in the 1Al model is O(1)―H in which a proton is bonded with the O(1) atom near the isolated Al atom of the zeolite framework. Nevertheless, energy differences were rather small when comparing the substitution energies of an Al atom replacing a Si atom in the zeolite framework with a proton located in different O sites. As the Si/Al ratio decreased, the Al-rich SSZ-13 zeolite contained more Al substitutions in its framework. This system exhibited the lowest substitution energy when two Al atoms were located at the diagonal of the same six-membered ring for the Al-Si-Si-Al (NNNN) sequence in the framework of the Al-rich SSZ-13 zeolite. However, for the Al-Si-Al (NNN) sequence, the most favorable distribution involved two Al atoms located in different six-membered rings of the double six-membered ring units (D6R). The proton affinities (PA), NH3 desorption energies, and 1H NMR chemical shifts after d3-acetonitrile adsorption were calculated in the most stable models to characterize the Brønsted acid strength of the SSZ-13 zeolite with different Si/Al ratios. All computing results suggested that the Al-rich SSZ-13 zeolite exhibited weaker Brønsted acid strength than that of the Si-rich counterpart due to the presence of Si(2Al) groupings with the NNN sequence in the framework. Quantitative 29Si magic-angle spinning (MAS) NMR measurements after deconvolution demonstrated that the content of Si(2Al) groupings in the Al-rich SSZ-13 was > 43%. The 1H MAS NMR experiments after d3-acetonitrile adsorption showed that the chemical shift of the bridging hydroxyls in the Al-rich SSZ-13 moved to the lower field, further confirming that it had a weaker Brønsted acid strength than the Si-rich counterpart.
  • 加载中
    1. [1]

      Yang, B.; Guo, C.; Cheng, J. Chem. Eng. Prog. 2014, 33, 368.  doi: 10.3969/j.issn.1000-6613.2014.02.018

    2. [2]

      Zhang, R.; Liu, N.; Lei, Z.; Chen, B. Chem. Rev. 2016, 116, 3658. doi: 10.1021/acs.chemrev.5b00474  doi: 10.1021/acs.chemrev.5b00474

    3. [3]

      Zhou, Z.; Wang, Z.; Liu, Z. Sci. China Chem. 2018, 48, 562.  doi: 10.1360/N032017-00215

    4. [4]

      Bull, I.; Boorse, R. S.; Jaglowski, W. M.; Koermer, G. S.; Moini, A.; Patchett, J. A.; Xue, W.; Burk, P.; Dettling, J. C.; Caudle, M. T. Processes for Reducing Nitrogen Oxides Using Copper Cha Zeolite Catalysts. U.S. Patent 8404203.B2, 3013-03-26

    5. [5]

      Beale, A. M.; Gao, F.; Lezcano-Gonzalez, I.; Peden, C. H. F.; Szanyi, J. Chem. Soc. Rev. 2015, 44, 7371. doi: 10.1039/c5cs00108k  doi: 10.1039/c5cs00108k

    6. [6]

      Song, J.; Wang, Y.; Walter, E. D.; Washton, N. M.; Mei, D.; Kovarik, L.; Engelhard, M. H.; Prodinger, S.; Wang, Y.; Peden, C. H. F.; et al. ACS Catal. 2017, 7, 8214. doi: 10.1021/acscatal.7b03020  doi: 10.1021/acscatal.7b03020

    7. [7]

      Yu, H.; Zhang, G.; Han, L.; Chang, L.; Bao, W.; Wang, J. Acta Phys. -Chim. Sin. 2015, 31, 2165.  doi: 10.3866/PKU.WHXB201509184

    8. [8]

      Zhao, Z.; Yu, R.; Zhao, R.; Shi, C.; Gies, H.; Xiao, F.; De Vos, D.; Yokoi, T.; Bao, X.; Kolb, U.; et al. Appl. Catal. B: Environ. 2017, 217, 421. doi: 10.1016/j.apcatb.2017.06.013  doi: 10.1016/j.apcatb.2017.06.013

    9. [9]

      Gao, F.; Wang, Y.; Washton, N. M.; Kollar, M.; Szanyi, J.; Peden, C. H. F. J. Catal. 2015, 331, 25. doi: 10.1016/j.jcat.2015.08.004  doi: 10.1016/j.jcat.2015.08.004

    10. [10]

      Deimund, M. A.; Harrison, L.; Lunn, J. D.; Liu, Y.; Malek, A.; Shayib, R.; Davis, M. E. ACS Catal. 2016, 6, 542. doi: 10.1021/acscatal.5b01450  doi: 10.1021/acscatal.5b01450

    11. [11]

      Di Iorio, J. R.; Nimlos, C. T.; Gounder, R. ACS Catal. 2017, 7, 6663. doi: 10.1021/acscatal.7b01273  doi: 10.1021/acscatal.7b01273

    12. [12]

      Zhao, Z.; Xing, Y.; Li, S.; Meng, X.; Xiao, F.; McGuire, R.; Parvulescu, A. N.; Müller, U.; Zhang, W. J. Phys. Chem. C 2018, 122, 9973. doi: 10.1021/acs.jpcc.8b01423  doi: 10.1021/acs.jpcc.8b01423

    13. [13]

      Civalleri, B.; Ferrari, A. M.; Llunell, M.; Orlando, R.; Mérawa, M.; Ugliengo, P. Chem. Mater. 2003, 15, 3996. doi: 10.1021/cm0342804  doi: 10.1021/cm0342804

    14. [14]

      Zheng, A.; Chen, L.; Yang, J.; Zhang, M.; Su, Y.; Yue, Y.; Ye, C.; Deng, F. J. Phys. Chem. B 2005, 109, 24273. doi: 10.1021/jp0527249  doi: 10.1021/jp0527249

    15. [15]

      Zheng, A.; Liu, S. B.; Deng, F. Chem. Rev. 2017, 117, 12475. doi: 10.1021/acs.chemrev.7b00289  doi: 10.1021/acs.chemrev.7b00289

    16. [16]

      Li, S.; Li, J.; Zheng, A.; Deng, F. Acta Phys. -Chim. Sin. 2017, 33, 270.  doi: 10.3866/PKU.WHXB201611022

    17. [17]

      Sazama, P.; Tabor, E.; Klein, P.; Wichterlova, B.; Sklenak, S.; Mokrzycki, L.; Pashkkova, V.; Ogura, M.; Dedecek, J. J. Catal. 2016, 333, 102. doi: 10.1016/j.jcat.2015.10.010  doi: 10.1016/j.jcat.2015.10.010

    18. [18]

      Zhang, W.; Xu, S.; Han, X.; Bao, X. Chem. Soc. Rev. 2012, 41 (1), 192. doi: 10.1039/c1cs15009j  doi: 10.1039/c1cs15009j

    19. [19]

      Shah, R.; Gale, J. D.; Payne, M. C. J. Phys. Chem-Us 1996, 100, 11688. doi: 10.1021/Jp960365z  doi: 10.1021/Jp960365z

    20. [20]

      Lo, C.; Trout, B. L. J. Catal. 2004, 227 (1), 77. doi: 10.1016/j.jcat.2004.06.018  doi: 10.1016/j.jcat.2004.06.018

    21. [21]

      Solans-Monfort, X.; Sodupe, M.; Branchadell, V.; Sauer, J.; Orlando, R.; Ugliengo, P. J. Phys. Chem. B 2005, 109, 3539. doi: 10.1021/jp045531e  doi: 10.1021/jp045531e

    22. [22]

      Haw, J. F.; Hall, M. B.; Alvarado-Swaisgood, A. E.; Munson, E. J.; Lin, Z.; Beck, L. W.; Howard, T. J. Am. Chem. Soc. 1994, 116, 7308. doi: 10.1021/ja00095a039  doi: 10.1021/ja00095a039

    23. [23]

      Gil, B.; Zones, S. I.; Hwang, S. J.; Bejblová, M.; Čejka, J. J. Phys. Chem. C 2008, 112, 2997. doi: 10.1021/jp077687v  doi: 10.1021/jp077687v

    24. [24]

      Calligaris, M.; Nardin, G.; Randaccio, L. Zeolites 1983, 3, 205. doi: 10.1016/0144-2449(83)90008-8  doi: 10.1016/0144-2449(83)90008-8

    25. [25]

      Zheng, A.; Zhang, H.; Chen, L.; Yue, Y.; Ye, C.; Deng, F. J. Phys. Chem. B 2007, 111, 3085. doi: 10.1021/jp067340c  doi: 10.1021/jp067340c

    26. [26]

      Dunning, T. H. J. Phys. Chem. A 2000, 104, 9062. doi: 10.1021/jp001507z  doi: 10.1021/jp001507z

    27. [27]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 09, Revision D.01; Gaussian Inc: Wallingford, CT, 2013

    28. [28]

      Jobic, H.; Tuel, A.; Krossner, M.; Sauer, J. J. Phys. Chem. C 1996, 100, 19545. doi: 10.1021/jp9619954  doi: 10.1021/jp9619954

    29. [29]

      Zygmunt, S. A.; Curtiss, L. A.; Iton, L. E.; Erhardt, M. K. J. Phys. Chem-Us 1996, 100, 6663. doi: 10.1021/Jp952913z  doi: 10.1021/Jp952913z

    30. [30]

      Ryder, J. A.; Chakraborty, A. K.; Bell, A. T. J. Phys. Chem. B 2000, 104, 6998. doi: 10.1021/jp9943427  doi: 10.1021/jp9943427

    31. [31]

      Wang, J.; Li, S.; Zhao, Z.; Zhou, D.; Lu, A.; Zhang, W. Acta Phys. -Chim. Sin. 2016, 32, 1666.  doi: 10.3866/PKU.WHXB201604012

    32. [32]

      Li, S.; Zhao, Z.; Zhao, R.; Zhou, D.; Zhang, W. ChemCatChem 2017, 9, 1494. doi: 10.1002/cctc.201601623  doi: 10.1002/cctc.201601623

    33. [33]

      Zhao, R.; Zhao, Z.; Li, S.; Zhang, W. J. Phys. Chem. Lett. 2017, 8, 2323. doi: 10.1021/acs.jpclett.7b00711  doi: 10.1021/acs.jpclett.7b00711

    34. [34]

      Calligaris, M.; Nardin, G.; Randaccio, L.; Chiaramonti, P. C. Acta Crystallogr. B 1982, 38, 602. doi: Doi10.1107/S0567740882003483  doi: 10.1107/S0567740882003483

    35. [35]

      Jeanvoine, Y.; Angyan, J. G.; Kresse, G.; Hafner, J. J. Phys. Chem. B 1998, 102, 5573. doi: 10.1021/Jp980341n  doi: 10.1021/Jp980341n

    36. [36]

      Nielsen, M.; Brogaard, R. Y.; Falsig, H.; Beato, P.; Swang, O.; Svelle, S. ACS Catal. 2015, 5, 7131. doi: 10.1021/acscatal.5b01496  doi: 10.1021/acscatal.5b01496

    37. [37]

      Smith, L. J.; Davidson, A.; Cheetham, A. K. Catal. Lett. 1997, 49, 143. doi: 10.1023/A:1019097019846  doi: 10.1023/A:1019097019846

    38. [38]

      Wang, N.; Zhang, M.; Yu, Y. Micropor. Mesopor. Mat. 2013, 169, 47. doi: 10.1016/j.micromeso.2012.10.019  doi: 10.1016/j.micromeso.2012.10.019

    39. [39]

      Chai, J. D.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2008, 10, 6615. doi: 10.1039/b810189b  doi: 10.1039/b810189b

    40. [40]

      Jänchen, J.; Van Wolput, J. H. M. C.; Van de Ven, L. J. M.; De Haan, J. W.; Van Santen, R. A. Catal. Lett. 1996, 39, 147. doi: 10.1007/bf00805574  doi: 10.1007/bf00805574

    41. [41]

      Dai, W.; Sun, X.; Tang, B.; Wu, G.; Li, L.; Guan, N.; Hunger, M. J. Catal. 2014, 314, 10. doi: 10.1016/j.jcat.2014.03.006  doi: 10.1016/j.jcat.2014.03.006

  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    3. [3]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    4. [4]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    5. [5]

      Jinkang Jin Yidian Sheng Ping Lu Zhan Lu . Introducing a Website for Learning Nuclear Magnetic Resonance (NMR) Spectrum Analysis. University Chemistry, 2024, 39(11): 388-396. doi: 10.12461/PKU.DXHX202403054

    6. [6]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    7. [7]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    8. [8]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    9. [9]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    10. [10]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    11. [11]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    12. [12]

      Sinong WangShanshan JinXue YangYanyan HuangPeng LiuYi TangYuliang Yang . Development of Mg-Al LDH and LDO as novel protective materials for deacidification of paper-based relics. Chinese Chemical Letters, 2024, 35(9): 109890-. doi: 10.1016/j.cclet.2024.109890

    13. [13]

      Lumin ZhengYing BaiChuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589

    14. [14]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    15. [15]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    16. [16]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    17. [17]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    18. [18]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    19. [19]

      Hua Hou Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045

    20. [20]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

Metrics
  • PDF Downloads(5)
  • Abstract views(513)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return