Citation: WANG Genwang, HOU Chaojian, LONG Haotian, YANG Lijun, WANG Yang. Electronic and Optoelectronic Nanodevices Based on Two-Dimensional Semiconductor Materials[J]. Acta Physico-Chimica Sinica, ;2019, 35(12): 1319-1340. doi: 10.3866/PKU.WHXB201903010 shu

Electronic and Optoelectronic Nanodevices Based on Two-Dimensional Semiconductor Materials

  • Corresponding author: HOU Chaojian, houchaojian@163.com YANG Lijun, yljtj@hit.edu.cn WANG Yang, wyyh@hit.edu.cn
  • Received Date: 5 March 2019
    Revised Date: 11 April 2019
    Accepted Date: 12 April 2019
    Available Online: 17 December 2019

    Fund Project: the National Key R & D Program of China 2017YFB1104900the National Natural Science Foundation of China 61773275The project was supported by the National Key R & D Program of China (2017YFB1104900), and the National Natural Science Foundation of China (61773275)

  • With the continuous miniaturization and integration of electronic and optoelectronic nanodevices, Moore's Law faces huge challenges from the demands of devices with multifunctional and high-performance characteristics. With several recent reports of the successful synthesis of nanomaterials such as nanoparticles, quantum dots, nanowires, and two-dimensional layered materials, the utilization of such materials for the fabrication of electronic and optoelectronic nanodevices has demonstrated potential for realizing multifunctional and high-performance nanodevices in the future. In particular, owing to their excellent electrical, thermal, mechanical, and optical properties, atomically two-dimensional layered materials have emerged as the most promising materials for nanodevices to solve the bottleneck problems of traditional silicon-based devices. Two-dimensional semiconductor materials have been widely applied in many aspects of functional modules, including pn junctions, field effect transistors, rectifiers, photodetectors, and even solar cells. To provide a strong foundation for the development of high-performance and multifunctional nanodevices in the future, this review summarizes the recent advances in electronic and optoelectronic nanodevices based on novel two-dimensional semiconductor materials. We begin the review with a brief introduction of existing two-dimensional materials, including graphene, transition-metal dichalcogenide materials, black phosphorus, hexagonal boron nitride, and van der Waals heterostructures. The atom structure features, electronic and optical properties, and major applications in devices are discussed. The semiconductor materials are suitable for device channels, while graphene and hexagonal boron nitride can be used as electrodes, encapsulating materials, and components of van der Waals heterostructures for channel of field effect transistors. Next, we mainly discuss the advances in electronic and optoelectronic nanodevices based on transition-metal dichalcogenide materials, black phosphorus, and van der Waals heterostructures. In the context of electronic nanodevices, we introduce field effect transistors and other important functional devices, such as sensors, memristors, and integrated circuits. The mobility, on-off ratio, rectification ratio, and other properties of electronic devices are mentioned. In addition, we describe the potential applications of optoelectronic nanodevices for photodetectors, lasers, light-emitting diodes, photovoltaic devices, and so on. The metrics of devices performance such as responsivity, response time, and spectrum response range are compared. Finally, we summarize and compare the advantages and disadvantages of nanodevices based on different materials. Manufacturing comprehensive and high-performance nanodevices will be a promising direction in the future. In addition, the methods for improving the performance of devices are classified. This review will serve as an important reference for the development of future multifunctional and high-performance nanodevices.
  • 加载中
    1. [1]

      https://newsroom.ibm.com/2015-07-09-IBM-Research-Alliance-Produces-Industrys-First-7nm-Node-Test-Chips (accessed Sept. 7, 2015)

    2. [2]

      Waldrop, M. M. Nature 2016, 530, 144. doi:10.1038/530144a  doi: 10.1038/530144a

    3. [3]

      Saha, P.; Banerjee, P.; Dash, D. K.; Sarkar, S. K. J. Mater. Eng. Perform. 2018, 27 (6), 2708. doi: 10.1007/s11665-018-3281-2  doi: 10.1007/s11665-018-3281-2

    4. [4]

      Pop, E. Nano Res. 2010, 3 (3), 147. doi: 10.1007/s12274-010-1019-z  doi: 10.1007/s12274-010-1019-z

    5. [5]

      Theis, T. N.; Wong, H. S. P. Comput. Sci. Eng. 2017, 19 (2), 41. doi: 10.1109/MCSE.2017.29  doi: 10.1109/MCSE.2017.29

    6. [6]

      Dai, J.; Miao, X. Electron. Packag. 2015, 15 (10), 30.  doi: 10.16257/j.cnki.1681-1070.2015.0110

    7. [7]

      Krätschmer, W.; Lamb, L. D.; Fostiropoulos, K.; Huffman, D. R. Nature 1990, 347, 354. doi: 10.1038/347354a0  doi: 10.1038/347354a0

    8. [8]

      Iijima, S.; Ichihashi, T. Nature 1993, 363, 603. doi: 10.1038/363603a0  doi: 10.1038/363603a0

    9. [9]

      Yang, G.; Zhu, C.; Du, D.; Zhu, J.; Lin, Y. Nanoscale 2015, 7 (34), 14217. doi: 10.1039/C5NR03398E  doi: 10.1039/C5NR03398E

    10. [10]

      Sannino, D.; Rizzo, L.; Vaiano, V. Progress in Nanomaterials Applications for Water Purification. In Nanotechnologies for Environmental Remediation; Lofrano, G., Libralato, G., Brown, J. Eds.; Springer, Cham, Switzerland, 2017; pp. 1–24.

    11. [11]

      Perreault, F.; Faria, A. F. D.; Elimelech, M. Chem. Soc. Rev. 2015, 44 (16), 5861. doi: 10.1039/C5CS00021A  doi: 10.1039/C5CS00021A

    12. [12]

      Hu, C.; Mu, Ye.; Li M.; Qiu, J. Acta Phys. -Chim. Sin. 2019, 35 (6), 572. doi: 10.3866/PKU.WHXB201806060  doi: 10.3866/PKU.WHXB201806060

    13. [13]

      Chen, Z.; Yang, Z.; Chen, T.; Sun, L.; Fukuda, T. Electron Beam Introduced Metallic Nanowires Growth. In 2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO), 16th International Conference on Nanotechnology, Sendai, Japan, August 22–25, 2016; IEEE: New York, 2016, pp. 26–29.

    14. [14]

      Cui, J.; Cheng, Y.; Zhang, J.; Mei, H.; Wang, X. Appl. Sci.-Basel 2019, 9 (3), 476. doi:10.3390/app9030476  doi: 10.3390/app9030476

    15. [15]

      Cui, J.; Yang, L.; Zhou, L.; Wang, Y. ACS Appl. Mater. Interfaces 2014, 6 (3), 2044. doi: 10.1021/am405114n  doi: 10.1021/am405114n

    16. [16]

      Wang, Y.; Yang, Z.; Chen, T.; Yang, L.; Sun, L.; Fukuda, T. CNT Handling with Van der Waals Force Inside a SEM for FET Application. In 2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), 11th IEEE Annual International Conference on Nano/micro Engineered and Molecular Systems, Sendai, Japan, April 17–20, 2016; IEEE: New York, 2016, 111–116.

    17. [17]

      Ning, Y.; Qing, S.; Masahiro, N.; Huaping, W.; Zhan, Y.; Sun, L.; Huang, Q.; Fukuda, T. J. Micromech. Microeng. 2017, 27 (10), 105007. doi:10.1088/1361-6439/aa7961  doi: 10.1088/1361-6439/aa7961

    18. [18]

      He, P.; Yuan, F.; Wang, Z.; Tan, Z.; Fan, L. Acta Phys. -Chim. Sin. 2018, 34 (11), 1250. doi: 10.3866/PKU.WHXB201804041  doi: 10.3866/PKU.WHXB201804041

    19. [19]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666. doi: 10.1126/science.1102896  doi: 10.1126/science.1102896

    20. [20]

      Zhang, Y.; Zhang, L.; Zhou, C. Acc. Chem. Res. 2013, 46 (10), 2329. doi: 10.1021/ar300203n  doi: 10.1021/ar300203n

    21. [21]

      Vlassiouk, I. V.; Stehle, Y.; Pudasaini, P. R.; Unocic, R. R.; Rack, P. D.; Baddorf, A. P.; Ivanov, L. N.; Lavrik, N. V.; List, F.; Gupta, N.; et al. Nat. Mater. 2018, 17 (4), 318. doi: 10.1038/s41563-018-0019-3

    22. [22]

      Xia, F.; Wang, H.; Xiao, D.; Dubey, M. Nat. Photonics 2014, 8 (12), 899. doi: 10.1038/nphoton.2014.271  doi: 10.1038/nphoton.2014.271

    23. [23]

      Li, M. Y.; Chen, C. H.; Shi, Y.; Li, L. J. Mater. Today 2016, 19 (6), 322. doi: 10.1016/j.mattod.2015.11.003  doi: 10.1016/j.mattod.2015.11.003

    24. [24]

      Wang, C.; He, Q.; Halim, U.; Liu, Y.; Zhu, E.; Lin, Z.; Xiao, H.; Duan, X.; Feng, Z.; Cheng, R.; et al. Nature 2018, 555. 231. doi: 10.1038/nature25774

    25. [25]

      Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Nat. Nanotechnol. 2014, 9 (10), 768. doi: 10.1038/nnano.2014.207  doi: 10.1038/nnano.2014.207

    26. [26]

      Acerce, M.; Voiry, D.; Chhowalla, M. Nat. Nanotechnol. 2015, 10 (4), 313. doi: 10.1038/nnano.2015.40  doi: 10.1038/nnano.2015.40

    27. [27]

      Wang, H.; Yu, L.; Lee, Y. H.; Shi, Y.; Hsu, A.; Chin, M. L.; Li, L. J.; Dubey, M.; Kong, J.; Palacios, T. Nano Lett. 2012, 12 (9), 4674 doi: 10.1021/nl302015v  doi: 10.1021/nl302015v

    28. [28]

      Akinwande, D.; Petrone, N.; Hone, J. Nat. Commun. 2014, 5 (1), 5678. doi: 10.1038/ncomms6678  doi: 10.1038/ncomms6678

    29. [29]

      Xie, C.; Mak, C.; Tao, X.; Yan, F. Adv. Funct. Mater. 2017, 27 (19), 1603886. doi: 10.1002/adfm.201603886  doi: 10.1002/adfm.201603886

    30. [30]

      Bonaccorso, F.; Colombo, L.; Yu, G.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Science 2015, 347, 1246501. doi: 10.1126/science.1246501  doi: 10.1126/science.1246501

    31. [31]

      Salehzadeh, O.; Djavid, M.; Tran, N. H.; Shih, I.; Mi, Z. Nano Lett. 2015, 15 (8), 5302. doi: 10.1021/acs.nanolett.5b01665  doi: 10.1021/acs.nanolett.5b01665

    32. [32]

      Namgung, S.; Shaver, J.; Oh, S. H.; Koester, S. J. ASC Nano 2016, 10 (11), 10500. doi: 10.1021/acsnano.6b06468  doi: 10.1021/acsnano.6b06468

    33. [33]

      Taniguchi, K.; Matsumoto, A.; Shimotani, H.; Takagi, H. Appl. Phys. Lett. 2012, 101 (4), 042603. doi: 10.1063/1.4740268  doi: 10.1063/1.4740268

    34. [34]

      Zhu, H.; Wang, Y.; Xiao, J.; Liu, M.; Xiong, S.; Wong, J. W.; Ye, Z.; Ye, Y.; Yin, X.; Zhang, X. Nat. Nanotechnol. 2015, 10 (2), 151. doi: 10.1038/nnano.2014.309  doi: 10.1038/nnano.2014.309

    35. [35]

      Mak, K. F.; McGill, K. L.; Park, J.; McEuen, P. L. Science 2014, 344, 1489. doi: 10.1126/science.1250140  doi: 10.1126/science.1250140

    36. [36]

      Wu, J.; Schmidt, H.; Amara, K. K., Xu, X.; Eda, G.; Ö zyilmaz, B. Nano Lett. 2014, 14 (5), 2730. doi: 10.1021/nl500666m

    37. [37]

      Zhong, Y.; Zhu, H. Physics 2018, 47 (11), 704.  doi: 10.7693/wl20181103

    38. [38]

      Lee, C.; Wei, X.D.; Kysar, J. W.; Hone, J. Science 2008, 321, 385. doi: 10.1126/science.1157996  doi: 10.1126/science.1157996

    39. [39]

      Deng, T.; Zhang, Z. H.; Liu, Y. X.; Wang, Y. X.; Su, F.; Li, S. S.; Zhang, Y.; Li, H.; Chen, H. J.; Zhao, Z. R.; et al. Nano Lett. 2019, 19 (3), 1494. doi: 10.1021/acs.nanolett.8b04099

    40. [40]

      Xu, W.; Qin, Z.; Chen, C. T.; Kwag, H. R.; Ma, Q.; Sarkar, A.; Buehler, J. B; Gracias, D. H. Sci. Adv. 2017, 3 (10), e1701084. doi: 10.1126/sciadv.1701084

    41. [41]

      Wang, J; Yang, M; Zheng, Z.; Yu, R.; Wang, D. Chin. Sci. Bull. 2019, 64 (5–6), 514.  doi: 10.1360/N972018-01105

    42. [42]

      Huo, R.; Wu Y.; Yang, Y.; Piao, S.; Zhang, Z.; Xiao J.; Shi, L. Chin. J. Appl. Chem. 2019, 36 (3), 245.  doi: 10.11944/j.issn.1000-0518.2019.03.180305

    43. [43]

      Deng, C.; Lu, Z. Int. J. Lab. Med. 2019, 40 (3), 364.  doi: 10.3969/j.issn.1673-8640.2015.06.025

    44. [44]

      Long, M.; Wang, P.; Fang, H.; Hu W. Adv. Funct. Mater. 2018, 28 (36), 1803807, doi: org/10.1002/adfm.201803807

    45. [45]

      Ajayan, P.; Kim, P.; Banerjee, K. Phys. Today 2016, 69 (9), 38. doi: 10.1063/PT.3.3297  doi: 10.1063/PT.3.3297

    46. [46]

      Hou, S.; Gweon, G. H.; Fedorov, A. V.; First, P. N.; de Heer, W. A.; Lee, D. H.; Guinea, F.; Neto, A. H. C.; Lanzara, A. Nat. Mater. 2007, 6 (10), 770. doi: 10.1038/nmat2003  doi: 10.1038/nmat2003

    47. [47]

      Wei, D.; Liu, Y.; Wang, Y.; Zhang, H.; Huang, L.; Yu, G. Nano Lett. 2009, 9 (5), 1752. doi: 10.1021/nl803279t  doi: 10.1021/nl803279t

    48. [48]

      Bai, J.; Zhong, X.; Jiang, S.; Huang, Y.; Duan, X. Nat. Nanotechnol. 2010, 5 (3), 190. doi: 10.1038/nnano.2010.8  doi: 10.1038/nnano.2010.8

    49. [49]

      Han, M. Y.; zyilmaz, B.; Zhang, Y.; Kim, P. Phys. Rev. Lett. 2007, 98 (20), 206805. doi: 10.1103/PhysRevLett.98.206805  doi: 10.1103/PhysRevLett.98.206805

    50. [50]

      Grande, M.; Vincenti, M. A.; Stomeo, T.; Bianco, G. V.; de Ceglia, D.; Aközbek, N.; Petruzzelli, V.; Bruno, G.; Vittorio, M. D.; Scalora, M.; et al. Opt. Express 2015, 23 (16), 201032. doi: 10.1364/OE.23.021032

    51. [51]

      Chhowalla, M.; Liu, Z.; Zhang, H. Chem. Soc. Rev. 2015, 44 (19), 2584. doi: 10.1039/C5CS90037A  doi: 10.1039/C5CS90037A

    52. [52]

      Houssa, M.; Dimoulas, A.; Molle, A. 2D Materials for Nanoelectronics, 1st ed.; CRC Press: Boca Raton, the United States, 2016; pp. 142–144.

    53. [53]

      Chang, T. W.; Liu, Z.; Liang, L. U.; Sun, Z. H. Univ. Chem. 2016, 32 (4), 79.  doi: 10.3866/PKU.DXHX201603009

    54. [54]

      Myron, H. W.; Freeman, A. J. Phys. Rev. B 1974, 9 (2), 481. doi: 10.1103/PhysRevB.9.481  doi: 10.1103/PhysRevB.9.481

    55. [55]

      Ataca, C.; Sahin, H.; Ciraci, S. J. Phys. Chem. C 2012, 116 (16), 8983. doi: 10.1021/jp212558p  doi: 10.1021/jp212558p

    56. [56]

      Wang, Y.; Cong, C.; Yang, W.; Shang, J.; Peimyoo, N.; Chen, Y.; Kang, J.; Wang, J.; Huang, W.; Yu, T. Nano Res. 2015, 8 (8), 2562. doi: 10.1007/s12274-015-0762-6  doi: 10.1007/s12274-015-0762-6

    57. [57]

      Yun, W. S.; Han, S. W.; Hong, S. C.; Kim, I. G.; Lee, J. D. Phys. Rev. B 2012, 85 (3), 033305. doi: 10.1103/PhysRevB.85.033305  doi: 10.1103/PhysRevB.85.033305

    58. [58]

      Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Nat. Nanotechnol. 2012, 7 (11), 699. doi: 10.1038/nnano.2012.193  doi: 10.1038/nnano.2012.193

    59. [59]

      Kang, Y.; Najmaei, S.; Liu, Z.; Bao, Y.; Wang, Y.; Zhu, X.; Halas, N. J.; Nordlander, P.; Ajayan, P. M.; Lou, J.; et al. Adv. Mater. 2014, 26 (37), 6467. doi: 10.1002/adma.201401802

    60. [60]

      Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Phys. Rev. Lett. 2010, 105 (13), 136805. doi: 10.1103/PhysRevLett.105.136805  doi: 10.1103/PhysRevLett.105.136805

    61. [61]

      Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Nano Lett. 2010, 10 (4), 1271. doi: 10.1021/nl903868w  doi: 10.1021/nl903868w

    62. [62]

      Bernardi, M.; Palummo, M.; Grossman, J. C. Nano Lett. 2013, 13 (8), 3664. doi: 10.1021/nl401544y  doi: 10.1021/nl401544y

    63. [63]

      Castellanos-Gomez, A.; Poot, M.; Steele, G. A.; van der Zant, H. S. J.; Agraït, N.; Rubio-Bollinger, G. Adv. Mater. 2012, 24 (6), 772. doi: 10.1002/adma.201103965  doi: 10.1002/adma.201103965

    64. [64]

      Castellanos-Gomez, A.; Roldán, R.; Cappelluti, E.; Buscema, M.; Guinea, F.; van der Zant, H. S. J.; Steele, G. A. Nano Lett. 2013, 13 (11), 5361. doi: 10.1021/nl402875m  doi: 10.1021/nl402875m

    65. [65]

      Yu, L.; Ruzsinszky, A.; Perdew, J. P. Nano Lett. 2016, 16 (4), 2444. doi: 10.1021/acs.nanolett.5b05303  doi: 10.1021/acs.nanolett.5b05303

    66. [66]

      Lembke, D.; Kis, A. ACS Nano 2012, 6 (11), 10070. doi: 10.1021/nn303772b  doi: 10.1021/nn303772b

    67. [67]

      Li, L.; Yu, Y.; Ye, G. J.; Ge, Q.; Ou, X.; Wu, H.; Feng, D.; Chen, X. H.; Zhang, Y. Nat. Nanotechnol. 2014, 9 (5), 372. doi: 10.1038/nnano.2014.35  doi: 10.1038/nnano.2014.35

    68. [68]

      Zhu, J. X.; Liu, X. D.; Xue, M. Z.; Chen, C. X. Acta Phys. -Chim. Sin. 2017, 33 (11), 2153.  doi: 10.3866/PKU.WHXB201705313

    69. [69]

      Tran, V.; Soklaski, R.; Liang, Y.; Yang, L. Phys. Rev. B 2014, 89 (23), 235319. doi: 10.1103/PhysRevB.89.235319  doi: 10.1103/PhysRevB.89.235319

    70. [70]

      Churchill, H. O. H.; Jarillo-Herrero, P. Nat. Nanotechnol. 2014, 9 (5), 330. doi: 10.1038/nnano.2014.85  doi: 10.1038/nnano.2014.85

    71. [71]

      Zhu, W.; Yogeesh, M. N.; Yang, S.; Aldave, S. H.; Kim, J. S.; Sonde, S. S.; Tao, L.; Lu, N.; Akinwande, D. Nano Lett. 2015, 15 (3), 1883. doi: 10.1021/nl5047329  doi: 10.1021/nl5047329

    72. [72]

      Das, S.; Demarteau, M.; Roelofs, A. K. ACS Nano 2014, 8 (11), 11730. doi: 10.1021/nn505868h  doi: 10.1021/nn505868h

    73. [73]

      Peng, X.; Copple, A.; Wei, Q. Phys. Rev. B 2014, 90 (8), 085402. doi: 10.1103/physrevb.90.085402  doi: 10.1103/physrevb.90.085402

    74. [74]

    75. [75]

      Xia, F.; Wang, H.; Jia, Y. Nat. Commun. 2014, 5 (1), 4458. doi: 10.1038/ncomms5458  doi: 10.1038/ncomms5458

    76. [76]

      Fei, R.; Faghaninia, A.; Soklaski, R.; Yan, J. A.; Lo, C.; Yang, L. Nano Lett. 2014, 14 (11), 6393. doi: 10.1021/nl502865s  doi: 10.1021/nl502865s

    77. [77]

      Qiao, J.; Kong, X.; Hu, Z. X.; Yang, F.; Ji, W. Nat. Commun. 2014, 5 (1), 4475. doi: 10.1038/ncomms5475  doi: 10.1038/ncomms5475

    78. [78]

      Castellanos-Gomez, A.; Vicarelli, L.; Prada, E.; Island, J. O.; Narasimha-Acharya, K. L.; Blanter, S.; Groenendijk, D. J.; Buscema, M.; Steele, G. A.; Alvarez, J. V.; et al. 2D Mater. 2014, 1 (2), 025001. doi: 10.1088/2053-1583/1/2/025001

    79. [79]

      Kou, L.; Chen, C.; Smith, S. C. J. Phys. Chem. Lett. 2015, 6 (14), 2794. doi: 10.1021/acs.jpclett.5b01094  doi: 10.1021/acs.jpclett.5b01094

    80. [80]

      Çiftçi, N.O. Chemical Vapor Deposition of Boron Nitride Nanotubes. Master Dissertation, Bilkent University, Turkey, 2013.

    81. [81]

      Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L.; et al. Nat. Nanotechnol. 2010, 5 (10), 722. doi: 10.1038/nnano.2010.172

    82. [82]

      Dean, C.; Young, A. F.; Wang, L.; Meric, I.; Lee, G. H.; Watanabe, K.; Taniguchi, T.; Shepard, K.; Kim, P.; Hone, J. Solid State Commun. 2012, 152 (15), 1275. doi: 10.1016/j.ssc.2012.04.021  doi: 10.1016/j.ssc.2012.04.021

    83. [83]

      Choi, M. S.; Lee, G. H.; Yu, Y. J.; Lee, D. Y.; Lee, S. H.; Kim, P.; Hone, J.; Yoo, W. J. Nat. Commun. 2013, 4 (1), 1624. doi: 10.1038/ncomms2652  doi: 10.1038/ncomms2652

    84. [84]

      Lee, G. H.; Yu, Y. J.; Cui, X.; Petrone, N.; Lee, C. H.; Choi, M. S.; Lee, D. Y.; Lee, C.; Yoo, W. J.; Watanabe, K.; et al. ACS Nano 2013, 7 (9), 7931. doi: 10.1021/nn402954e

    85. [85]

      Geim, A. K.; Grigorieva, I. V. Nature 2013, 499, 419. doi: 10.1038/nature12385  doi: 10.1038/nature12385

    86. [86]

      Liu, Y.; Weiss, N. O.; Duan, X.; Cheng, H. C.; Huang, Y.; Duan, X. Nat. Rev. Mater. 2016, 1 (9), 16042. doi: 10.1038/natrevmats.2016.42  doi: 10.1038/natrevmats.2016.42

    87. [87]

      Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Neto, A. H. C. Science 2016, 353, aac9439. doi: 10.1126/science.aac9439

    88. [88]

      Doganov, R. A.; O'Farrell, E.; Koenig, S. P.; Yeo, Y.; Ziletti, A.; Carvalho, A.; Campbell, D. K.; Coker, D. F.; Watanabe, K.; Taniguchi, T.; et al. Nat. Commun. 2014, 6 (1), 6647. doi: 10.1038/ncomms7647

    89. [89]

      Guo, H.; Lu, N.; Dai, J.; Wu, X.; Cheng, Z. J. Phys. Chem. C 2014, 118 (25), 14051. doi: 10.1021/jp505257g  doi: 10.1021/jp505257g

    90. [90]

      Hong, X.; Kim, J.; Shi, S. F.; Zhang, Y.; Jin, C.; Sun, Y.; Tongay, S.; Wu, J.; Zhang, Y. F.; Wang, F. Nat. Nanotechnol. 2014, 9 (9), 682. doi: 10.1038/nnano.2014.167  doi: 10.1038/nnano.2014.167

    91. [91]

      Sarwat, S.G.; Tweedie, M.; Porter, B.F.; Zhou, Y.; Sheng, Y.; Mol, J.; Warner, J.; Bhaskaran, H. Nano Lett. 2017, 18 (4), 2467. doi: 10.1021/acs.nanolett.8b00036  doi: 10.1021/acs.nanolett.8b00036

    92. [92]

      Tan, M.; Zhang, L.; Liang, W. Acta Phys. -Chim. Sin. 2019, 35 (4), 385.  doi: 10.3866/PKU.WHXB201805291

    93. [93]

      Das, S.; Robinson, J. A.; Dubey, M.; Terrones, H.; Terrones, M. Ann. Rev. Mater. Res. 2015, 45 (1), 1. doi: 10.1146/annurev-matsci-070214-021034  doi: 10.1146/annurev-matsci-070214-021034

    94. [94]

      Chhowalla, M.; Jena, D.; Zhang, H. Nat. Rev. Mater. 2016, 1 (11), 16052. doi: 10.1038/natrevmats.2016.52  doi: 10.1038/natrevmats.2016.52

    95. [95]

      Podzorov, V.; Gershenson, M. E.; Kloc, C.; Zeis, R.; Bucher, E. Appl. Phys. Lett. 2004, 84 (17), 3301. doi: 10.1063/1.1723695  doi: 10.1063/1.1723695

    96. [96]

      Ayari, A.; Cobas, E.; Ogundadegbe, O.; Fuhrer, M. S. J. Appl. Phys. 2007, 101 (1), 014507. doi: 10.1063/1.2407388  doi: 10.1063/1.2407388

    97. [97]

      Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Nat. Nanotechnol. 2011, 6 (3), 147. doi: 10.1038/nnano.2010.279  doi: 10.1038/nnano.2010.279

    98. [98]

      Liu, T.; Liu, S.; Tu, K.H.; Schmidt, H.; Chu, L.Q.; Xiang, D.; Martin, J.; Eda, G.; Ross, C.A.; Garaj, S. Nat. Nanotechnol. 2019, 14 (3), 223. doi: 10.1038/s41565-019-0361-x  doi: 10.1038/s41565-019-0361-x

    99. [99]

      Lin, M.; Kravchenko, I.; Fowlkes, J.; Li, X.; Puretzky, A.; Rouleau, C.; Geohegan, D.; Xiao, K. Nanotechnology 2016, 27 (16), 165203. doi: 10.1088/0957-4484/27/16/165203  doi: 10.1088/0957-4484/27/16/165203

    100. [100]

      Bhattacharjee, S.; Ganapathi, K.; Mohan, S.; Bhat, N. Appl. Phys. Lett. 2017, 111 (16), 163501. doi: 10.1063/1.4996953  doi: 10.1063/1.4996953

    101. [101]

      Das, S.; Chen, H. Y.; Penumatcha, A. V.; Appenzeller, J. Nano Lett. 2013, 13 (1), 100. doi: 10.1021/nl303583v  doi: 10.1021/nl303583v

    102. [102]

      Kang, J.; Liu, W.; Banerjee, K. Appl. Phys. Lett. 2014, 104 (9), 093106. doi: 10.1063/1.4866340  doi: 10.1063/1.4866340

    103. [103]

      Fang, H.; Chuang, S.; Chang, T. C.; Takei, K.; Takahashi, T.; Javey, A. Nano Lett. 2012, 12 (7), 3788. doi: 10.1021/nl301702r  doi: 10.1021/nl301702r

    104. [104]

      Ross, J. S.; Klement, P.; Jones, A. M.; Ghimire, N. J.; Yan, J.; Mandrus, D. G.; Taniguchi, T.; Watanabe, K.; Kitamura, K.; Yao, W.; et al. Nat. Nanotechnol. 2014, 9 (4), 268. doi: 10.1038/nnano.2014.26

    105. [105]

      Choi, M. S.; Qu, D.; Lee, D.; Liu, X.; Watanabe, K.; Taniguchi, T.; Yoo, W. J. ACS Nano 2014, 8 (9), 9332. doi: 10.1021/nn503284n  doi: 10.1021/nn503284n

    106. [106]

      Li, H. M.; Lee, D.; Qu, D.; Liu, X.; Ryu, J.; Seabaugh, A.; Yoo, W. J. Nat. Commun. 2015, 6 (1), 6564. doi: 10.1038/ncomms7564  doi: 10.1038/ncomms7564

    107. [107]

      Du, Y.; Liu, H.; Deng, Y.; Ye, P. D. ACS Nano 2014, 8 (10), 10035. doi: 10.1021/nn502553m  doi: 10.1021/nn502553m

    108. [108]

      Miao, J.; Zhang, S.; Cai, L.; Scherr, M.; Wang, C. ACS Nano 2015, 9 (9), 9236. doi: 10.1021/acsnano.5b04036  doi: 10.1021/acsnano.5b04036

    109. [109]

      Prakash, A.; Cai, Y.; Zhang, G.; Zhang, Y.; Ang, K. Small 2017, 13 (5), 1602909. doi: 10.1002/smll.201602909.  doi: 10.1002/smll.201602909

    110. [110]

      Han, C.; Hu, Z.; Gomes, L.; Bao, Y.; Carvalho, A.; Tan, S.; Lei, B.; Xiang, D.; Wu, J.; Qi, D.; et al. Nano Lett. 2017, 17 (7), 4122. doi: 10.1021/acs.nanolett.7b00903

    111. [111]

      Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X.; Tománek, D.; Ye, P. D. ACS Nano 2014, 8 (4), 4033. doi: 10.1021/nn501226z  doi: 10.1021/nn501226z

    112. [112]

      Cao, X.; Guo, J. IEEE Trans. Electron Devices 2014, 62 (2), 659. doi: 10.1109/TED.2014.2377632  doi: 10.1109/TED.2014.2377632

    113. [113]

      Buscema, M.; Groenendijk, D. J.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. Nat. Commun. 2014, 5 (1), 4651. doi: 10.1038/ncomms5651  doi: 10.1038/ncomms5651

    114. [114]

      Liu, Y.; Cai, Y.; Zhang, G.; Zhang, Y. W.; Ang, K. W. Adv. Funct. Mater. 2017, 27 (7), 1604638. doi: 10.1002/adfm.201604638  doi: 10.1002/adfm.201604638

    115. [115]

      Island, J. O.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. 2D Mater. 2015, 2 (1), 011002. doi: 10.1088/2053-1583/2/1/011002  doi: 10.1088/2053-1583/2/1/011002

    116. [116]

      Wood, J. D.; Wells, S. A.; Jariwala, D.; Chen, K. S.; Cho, E.; Sangwan, V. K.; Liu, X.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Nano Lett. 2014, 14 (12), 6964. doi: 10.1021/nl5032293  doi: 10.1021/nl5032293

    117. [117]

      He, D.; Wang, Y.; Huang, Y.; Shi, Y.; Wang, X.; Duan, X. Nano Lett. 2019, 19 (1), 331. doi: 10.1021/acs.nanolett.8b03940  doi: 10.1021/acs.nanolett.8b03940

    118. [118]

      Hirose, K.; Osada, T.; Uchida, K.; Taen, T.; Watanabe, K.; Taniguchi, T.; Akahama, Y. Appl. Phys. Lett. 2018, 113 (19), 163501. doi: 10.1063/1.5048233  doi: 10.1063/1.5048233

    119. [119]

      Roy, T.; Tosun, M.; Kang, J. S.; Sachid, A. B.; Desai, S. B.; Hettick, M.; Hu, C. C.; Javey, A. ACS Nano 2014, 8 (6), 6259. doi: 10.1021/nn501723y  doi: 10.1021/nn501723y

    120. [120]

      Avsar, A.; Vera-Marun, I. J.; Tan, J. Y.; Watanabe, K.; Taniguchi, T.; Neto, A. H. C.; zyilmaz, B. ACS Nano 2015, 9 (4), 4138. doi: 10.1021/acsnano.5b00289  doi: 10.1021/acsnano.5b00289

    121. [121]

      Lee, C. H.; Lee, G. H.; van der Zande, A. M.; Chen, W.; Li, Y.; Han, M.; Cui, X.; Arefe, G.; Nuckolls, C.; Heinz, T. F.; et al. Nat. Nanotechnol. 2014, 9 (9), 676. doi: 10.1038/nnano.2014.150

    122. [122]

      Li, M. Y.; Shi, Y.; Cheng, C. C.; Lu, L. S.; Lin, Y. C.; Tang, H. L.; Tsai, M. L.; Chu, C. W.; Wei, K. H.; He, J. H.; et al. Science 2015, 349, 524. doi: 10.1126/science.aab4097

    123. [123]

      Deng, Y.; Luo, Z.; Conrad, N. J.; Liu, H.; Gong, Y.; Najmaei, S.; Ajayan, P. M.; Lou, J.; Xu, X.; Ye, P. D. ACS Nano 2014, 8 (8), 8292. doi: 10.1021/nn5027388  doi: 10.1021/nn5027388

    124. [124]

      Xu, J.; Jia, J.; Lai, S.; Ju, J.; Lee, S. Appl. Phys. Lett. 2017, 110 (3), 033103. doi: 10.1063/1.4974303  doi: 10.1063/1.4974303

    125. [125]

      Liu, X.; Qu, D.; Li, H.; Moon, I.; Ahmed, F.; Kim, C.; Lee, M.; Choi, Y.; Cho, J.; Hone, J.; et al. ACS Nano 2017, 11 (9), 9143. doi: 10.1021/acsnano.7b03994

    126. [126]

      Georgiou, T.; Jalil, R.; Belle, B. D.; Britnell, L.; Gorbachev, R. V.; Morozov, S. V.; Kim, Y. J.; Gholinia, A.; Haigh, S. J.; Makarovsky, O.; et al. Nat. Nanotechnol. 2013, 8 (2), 100. doi: 10.1038/nnano.2012.224

    127. [127]

      Yu, W. J.; Li, Z.; Zhou, H.; Chen, Y.; Wang, Y.; Huang, Y.; Duan, X. Nat. Mater. 2013, 12 (3), 246. doi: 10.1038/nmat3518  doi: 10.1038/nmat3518

    128. [128]

      Kang, J.; Jariwala, D.; Ryder, C. R.; Wells, S. A.; Choi, Y.; Hwang, E.; Cho, J. H.; Marks, T. J.; Hersam, M. C. Nano Lett. 2016, 16 (4), 2580. doi: 10.1021/acs.nanolett.6b00144  doi: 10.1021/acs.nanolett.6b00144

    129. [129]

      Sarkar, D.; Xie, X.; Liu, W.; Cao, W.; Kang, J.; Gong, Y.; Kraemer, S.; Ajayan, P. M.; Banerjee, K. Nature 2015, 526, 91. doi: 10.1038/nature15387  doi: 10.1038/nature15387

    130. [130]

      Miao, J.; Xu, Z.; Li, Q.; Bowman, A.; Zhang, S.; Hu, W.; Zhou, Z.; Wang, C. ACS Nano 2017, 11 (10), 10472. doi: 10.1021/acsnano.7b05755  doi: 10.1021/acsnano.7b05755

    131. [131]

      Wang, H.; Yu, L.; Lee, Y. H.; Shi, Y.; Hsu, A.; Chin, M. L.; Li, L. J.; Dubey, M.; Kong, J.; Palacios, T. Nano Lett. 2012, 12 (9), 4674. doi: 10.1021/nl302015v  doi: 10.1021/nl302015v

    132. [132]

      Yu, L.; Zubair, A.; Santos, E. J. G.; Zhang, X.; Lin, Y.; Zhang, Y.; Palacios, T. Nano Lett. 2015, 15 (8), 4928. doi: 10.1021/acs.nanolett.5b00668  doi: 10.1021/acs.nanolett.5b00668

    133. [133]

      Abbas, A. N.; Liu, B.; Chen, L.; Ma, Y.; Cong, S.; Aroonyadet, N.; Köpf, M.; Nilges, T.; Zhou, C. ACS Nano 2015, 9 (5), 5618. doi: 10.1021/acsnano.5b01961  doi: 10.1021/acsnano.5b01961

    134. [134]

      Guo, J.; Wen, R.; Zhai, J.; Wang, Z. Sci. Bull. 2019, 16 (2), 128. doi: 10.1016/j.scib.2018.12.009  doi: 10.1016/j.scib.2018.12.009

    135. [135]

      Ryu, B.; Yang, E.; Park, Y.; Kurabayashi, K.; Liang, X. J. Vac. Sci. Technol. B 2017, 36 (6), 06G805. doi: 10.1116/1.4991749  doi: 10.1116/1.4991749

    136. [136]

      Wang, M.; Cai, S.; Pan, C.; Wang, C.; Lian, X.; Zhuo, Ye.; Xu, K.; Cao, T.; Pan, X.; Wang, B.; et al. Miao, F. Nat. Electronics 2018, 1 (2), 130. doi: 10.1038/s41928-018-0021-4  doi: 10.1038/s41928-018-0021-4

    137. [137]

      Sangwan, V. K.; Lee, H. S.; Bergeron, H.; Balla, I.; Beck, M. E.; Chen, K. S.; Hersam, M. C. Nature 2018, 554, 500. doi: 10.1038/nature25747  doi: 10.1038/nature25747

    138. [138]

      Mak, K. F.; Shan, J. Nat. Photonics 2016, 10 (4), 216. doi: 10.1038/nphoton.2015.282  doi: 10.1038/nphoton.2015.282

    139. [139]

      Yin, Z.; Li, H.; Li, H.; Jiang, L.; Shi, Y.; Sun, Y.; Lu, G.; Zhang, Q.; Chen, X.; Zhang, H. ACS Nano 2012, 6 (1), 74. doi: 10.1021/nn2024557  doi: 10.1021/nn2024557

    140. [140]

      Mueller, T.; Xia, F.; Avouris, P. Nat. Photonics 2010, 4 (5), 297. doi: 10.1038/nphoton.2010.40  doi: 10.1038/nphoton.2010.40

    141. [141]

      Lee, H. S.; Min, S. W.; Chang, Y. G.; Park, M. K.; Nam, T.; Kim, H.; Kim, J. H.; Ryu, S.; Im, S. Nano Lett. 2012, 12 (7), 3695. doi: 10.1021/nl301485q  doi: 10.1021/nl301485q

    142. [142]

      Choi, W.; Cho, M. Y.; Konar, A.; Lee, J. H.; Cha, G. B.; Hong, S. C.; Kim, S.; Kim, J.; Jena, D.; Joo, J.; et al. Adv. Mater. 2012, 24 (43), 5832. doi: 10.1002/adma.201201909

    143. [143]

      Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Nat. Nanotechnol. 2013, 8 (7), 497. doi: 10.1038/nnano.2013.100  doi: 10.1038/nnano.2013.100

    144. [144]

      Zhang, W.; Huang, J. K.; Chen, C. H.; Chang, Y. H.; Cheng, Y. J.; Li, L. J. Adv. Mater. 2013, 25 (25), 3456. doi: 10.1002/adma.201301244  doi: 10.1002/adma.201301244

    145. [145]

      Lu, J.; Lu, J. H.; Liu, H.; Liu, B.; Chan, K. X.; Lin, J.; Chen, W.; Loh, K. P.; Sow, C. H. ACS Nano 2014, 8 (6), 6334. doi: 10.1021/nn501821z  doi: 10.1021/nn501821z

    146. [146]

      Kwon, J.; Hong, Y. K.; Han, G.; Omkaram, I.; Choi, W.; Kim, S.; Yoon, Y. Adv. Mater. 2015, 27 (13), 2224. doi: 10.1002/adma.201404367  doi: 10.1002/adma.201404367

    147. [147]

      Kufer, D.; Konstantatos, G. Nano Lett. 2015, 15 (11), 7307. doi: 10.1021/acs.nanolett.5b02559  doi: 10.1021/acs.nanolett.5b02559

    148. [148]

      Wang, X.; Wang, P.; Wang, J.; Hu, W.; Zhou, X.; Guo, N.; Huang, H.; Sun, S.; Shen, H.; Lin, T.; et al. Chu, J. Adv. Mater. 2015, 27 (42), 6575. doi: 10.1002/adma.201503340

    149. [149]

      Kang, D. H.; Kim, M. S.; Shim, J.; Jeon, J.; Park, H. Y.; Jung, W. S.; Yu, H. Y.; Pang, C. H.; Lee, S.; Park, J. H. Adv. Mater. 2015, 25 (27), 4219. doi: 10.1002/adfm.201501170  doi: 10.1002/adfm.201501170

    150. [150]

      Jin, Y.; Keum, D. H.; An, S. J. Kim, J. Lee, H. S.; Lee, Y. H. Adv. Mater. 2015, 27 (37), 5534. doi: 10.1002/adma.201502278  doi: 10.1002/adma.201502278

    151. [151]

      Sun, M.; Xie, D.; Sun, Y.; Li, W.; Ren, T. Nanotechnology 2018, 29 (1), 165203. doi: 10.1088/1361-6528/aa96e9  doi: 10.1088/1361-6528/aa96e9

    152. [152]

      Knight, M. W.; Sobhani, H.; Nordlander, P.; Halas, N. J. Science 2011, 332, 702. doi: 10.1126/science.1203056  doi: 10.1126/science.1203056

    153. [153]

      Sobhani, A.; Lauchner, A.; Najmaei, S.; Ayala-Orozco, C.; Wen, F.; Lou, J.; Halas, N. J. Appl. Phys. Lett. 2014, 104 (3), 031112. doi: 10.1063/1.4862745  doi: 10.1063/1.4862745

    154. [154]

      Miao, J.; Hu, W.; Jing, Y.; Luo, W.; Liao, L.; Pan, A.; Wu, S.; Cheng, J.; Chen, X.; Lu, W. Small 2015, 11 (20), 2392. doi: 10.1002/smll.201403422  doi: 10.1002/smll.201403422

    155. [155]

      Wang, W.; Klots, A.; Prasai, D.; Yang, Y.; Bolotin, K. I.; Valentine, J. Nano Lett. 2015, 15 (11), 7440. doi: 10.1021/acs.nanolett.5b02866  doi: 10.1021/acs.nanolett.5b02866

    156. [156]

      Hou, C.; Wang, Y.; Yang, L.; Li, B.; Cao, Z.; Zhang, Q.; Wang, Y.; Yang, Z.; Dong, L. Nano Energy 2018, 53, 734. doi: 10.1016/j.nanoen.2018.09.047  doi: 10.1016/j.nanoen.2018.09.047

    157. [157]

      Buscema, M.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. Nano Lett. 2014, 14 (6), 3347. doi: 10.1021/nl5008085  doi: 10.1021/nl5008085

    158. [158]

      Wu, J.; Koon, G. K. W.; Xiang, D.; Han, C.; Toh, C. T.; Kulkarni, E. S.; Verzhbitskiy, I.; Carvalho, A.; Rodin, A. S.; Koenig, S. P.; et al. zyilmaz, B. ACS Nano 2015, 9 (8), 8070. doi: 10.1021/acsnano.5b01922  doi: 10.1021/acsnano.5b01922

    159. [159]

      Huang, M.; Wang, M.; Chen, C.; Ma, Z.; Li, X.; Han, J.; Wu, Y. Adv. Mater. 2016, 28 (18), 3481. doi: 10.1002/adma.201506352  doi: 10.1002/adma.201506352

    160. [160]

      Guo, Q.; Pospischil, A.; Bhuiyan, M.; Jiang, H.; Tian, H.; Farmer, D.; Deng, B.; Li, C.; Han, S. J.; Wang, H.; et al. Nano Lett. 2016, 16 (7), 4648. doi: 10.1021/acs.nanolett.6b01977

    161. [161]

      Hou, C.; Yang, L; Li, B.; Zhang, Q.; Li, Y.; Yue, Q.; Wang, Y.; Yang, Z.; Dong, L. Sensors 2018, 18 (6), 1668. doi: 10.3390/s18061668  doi: 10.3390/s18061668

    162. [162]

      Youngblood, N.; Chen, C.; Koester, S. J.; Li, M. Nat. Photonics 2012, 9 (4), 247. doi: 10.1038/nphoton.2015.23  doi: 10.1038/nphoton.2015.23

    163. [163]

      Chen, C.; Youngblood, N.; Peng, R.; Yoo, D.; Mohr, D. A.; Johnson, T. W.; Oh, S. H.; Li, M. Nano Lett. 2017, 17 (2), 985. doi: 10.1021/acs.nanolett.6b04332  doi: 10.1021/acs.nanolett.6b04332

    164. [164]

      Venuthurumilli, P.; Ye, P.; Xu, X. ACS Nano 2018, 12 (5), 4861. doi: 10.1021/acsnano.8b01660  doi: 10.1021/acsnano.8b01660

    165. [165]

      Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y. J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V.; et al. Science 2013, 340, 1311. doi: 10.1126/science.1235547

    166. [166]

      Roy, K.; Padmanabhan, M.; Goswami, S.; Sai, T. P.; Ramalingam, G.; Raghavan, S.; Ghosh, A. Nat. Nanotechnol. 2013, 8 (11), 826. doi: 10.1038/nnano.2013.206  doi: 10.1038/nnano.2013.206

    167. [167]

      Yu, W. J.; Liu, Y.; Zhou, H.; Yin, A.; Li, Z.; Huang, Y.; Duan, X. Nat. Nanotechnol. 2013, 8 (12), 952. doi: 10.1038/nnano.2013.219  doi: 10.1038/nnano.2013.219

    168. [168]

      Zhang, W.; Chuu, C. P.; Huang, J. K.; Chen, C. H.; Tsai, M. L.; Chang, Y. H.; Liang, C. T.; Chen, Y. Z.; Chueh, Y. L.; He, J. H.; et al. Sci. Rep. 2014, 4 (1), 3826. doi: 10.1038/srep03826

    169. [169]

      Massicotte, M.; Schmidt, P.; Vialla, F.; Schädler, K. G.; Reserbat-Plantey, A.; Watanabe, K.; Taniguchi, T.; Tielrooij, K. J.; Koppens, H. H. L. Nat. Nanotechnol. 2016, 11 (1), 42. doi: 10.1038/nnano.2015.227  doi: 10.1038/nnano.2015.227

    170. [170]

      Xue, Y.; Zhang, Y.; Liu, Y.; Liu, H.; Song, J.; Sophia, J.; Liu, J.; Xu, Z.; Xu, Q.; Wang, Z.; et al. ACS Nano 2016, 10 (1), 573. doi: 10.1021/acsnano.5b05596

    171. [171]

      Huo, N.; Yang, J.; Huang, L.; Wei, Z.; Li, S. S.; Wei, S. H.; Li, J. Small 2015, 11 (40), 5430. doi: 10.1002/smll.201501206  doi: 10.1002/smll.201501206

    172. [172]

      Flöry, N.; Jain, A.; Bharadwaj, P.; Parzefall, M.; Taniguchi, T.; Watanabe, K.; Novotny, L. Appl. Phys. Lett. 2015, 107 (12), 123106. doi: 10.1063/1.4931621  doi: 10.1063/1.4931621

    173. [173]

      Pezeshki, A.; Shokouh, S. H. H.; Nazari, T.; Oh, K.; Im, S. Adv. Mater. 2016, 28 (16), 3216. doi: 10.1002/adma.201504090  doi: 10.1002/adma.201504090

    174. [174]

      Liu, H.; Li, D.; Ma, C.; Zhang, X.; Sun, X.; Zhu, C.; Zheng, B.; Zou, Z.; Luo, Z.; Zhu, X.; et al. Nano Energy 2019, 59, 66. doi: 10.1016/j.nanoen.2019.02.032

    175. [175]

      Ye, L.; Li, H.; Chen, Z.; Xu, J. ACS Photonics 2016, 3 (4), 692. doi: 10.1021/acsphotonics.6b00079  doi: 10.1021/acsphotonics.6b00079

    176. [176]

      Kwak, D. H.; Ra, H. S.; Jeong, M. H.; Lee, A. Y.; Lee, J. S. Adv. Mater. Interfaces 2018, 5 (18), 1800671. doi: 10.1002/admi.201800671  doi: 10.1002/admi.201800671

    177. [177]

      Zheng, S.; Wu, E.; Feng, Z.; Zhang, R.; Xie, Y.; Yu, Y.; Zhang, R.; Li, Q.; Liu, J.; Pang, W.; et al. Nanoscale 2018, 10 (21), 10148. doi: 10.1039/c8nr02022a

    178. [178]

      Long, M.; Liu, E.; Wang, P.; Gao, A.; Xia, H.; Luo, W.; Wang, B.; Zeng, J.; Fu, Y.; Xu, K.; et al. Nano Lett. 2016, 16 (4), 2254. doi: 10.1021/acs.nanolett.5b04538

    179. [179]

      Li, H.; Ye, L.; Xu, J. ACS Photonics 2017, 4 (4), 823. doi: 10.1021/acsphotonics.6b00778  doi: 10.1021/acsphotonics.6b00778

    180. [180]

      Gong, Y.; Lei, S.; Ye, G.; Li, B.; He, Y.; Keyshar, K.; Zhang, X.; Wang, Q.; Lou, J.; Liu, Z.; et al. Nano Lett. 2015, 15 (9), 6135. doi: 10.1021/acs.nanolett.5b02423

    181. [181]

      Huang, C.; Wu, S.; Sanchez, A. M.; Peters, J. J. P.; Beanland, R.; Ross, J. S.; Rivera, P.; Yao, W.; Cobden, D. H.; Xu, X. Nat. Mater. 2014, 13 (12), 1096. doi: 10.1038/nmat4064  doi: 10.1038/nmat4064

    182. [182]

      Duan, X.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Li, H.; Wu, X.; Tang, Y.; Zhang, Q.; Pan, A.; et al. Nat. Nanotechnol. 2014, 9 (12), 1024. doi: 10.1038/nnano.2014.222

    183. [183]

      Gong, Y.; Lin, J.; Wang, X.; Shi, G.; Lei, S.; Lin, Z.; Zou, X.; Ye, G.; Vajtai, R.; Yakobson, B. I.; et al. Nat. Mater. 2014, 13 (12), 1135. doi: 10.1038/nmat4091

  • 加载中
    1. [1]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    2. [2]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    3. [3]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    4. [4]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    5. [5]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    6. [6]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    7. [7]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    8. [8]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    9. [9]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    10. [10]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    11. [11]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    12. [12]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    13. [13]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    14. [14]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    15. [15]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    16. [16]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    17. [17]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    18. [18]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    19. [19]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    20. [20]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

Metrics
  • PDF Downloads(62)
  • Abstract views(1291)
  • HTML views(208)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return