Citation: Peng PENG, LIU Hongtao, WU Bin, TANG Qingxin, LIU Yunqi. Nitrogen Doped Graphene with a p-Type Field-Effect and Its Fine Modulation[J]. Acta Physico-Chimica Sinica, ;2019, 35(11): 1282-1290. doi: 10.3866/PKU.WHXB201903002 shu

Nitrogen Doped Graphene with a p-Type Field-Effect and Its Fine Modulation

  • Corresponding author: WU Bin, wubin@iccas.ac.cn TANG Qingxin, tangqx@nenu.edu.cn LIU Yunqi, liuyq@iccas.ac.cn
  • # These authors contributed equally to this work
  • Received Date: 1 March 2019
    Revised Date: 26 March 2019
    Accepted Date: 27 March 2019
    Available Online: 4 November 2019

    Fund Project: Beijing National Laboratory for Molecular Sciences, China (BNLMS), Chinese Academy of Sciences and the Strategic Priority Research Program of the Chinese Academy of Sciences XDB12030100the National Basic Research Program of China 2016YFA0200101The project was supported by the National Basic Research Program of China (2016YFA0200101), the National Natural Science Foundation of China (21633012, 60911130231, 51233006, 61390500), Beijing National Laboratory for Molecular Sciences, China (BNLMS), Chinese Academy of Sciences and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB30000000, XDB12030100)Beijing National Laboratory for Molecular Sciences, China (BNLMS), Chinese Academy of Sciences and the Strategic Priority Research Program of the Chinese Academy of Sciences XDB30000000the National Natural Science Foundation of China 60911130231the National Natural Science Foundation of China 51233006the National Natural Science Foundation of China 21633012the National Natural Science Foundation of China 61390500

  • Functionalized graphene has attracted significant interest over the past decade due to its unique physical properties and potential applications. Graphene oxide (GO), a readily scaled-up product, is a basic material for further functionalization. Using reductive processes, highly conductive reduced graphene oxide (RGO) can be obtained, which exhibits electrical and optical properties analogous to those of graphene. Moreover, due to the presence of oxygen-containing functional groups, its chemical reactivity and electronic properties can be easily tailored by chemical doping with nitrogen. However, developing strategies for doping graphene is challenging and the fundamental roles of the doping atom configuration and its environment on the resulting properties of graphene remain poorly understood. These properties are important for electrical and catalytic applications of graphene. Thus, synthesizing specific configurations of nitrogen-doped graphene and consequently investigating the electrical and catalytic properties of the product is imperative. Herein, we demonstrate an approach that allows for successful production of nitrogen-functionalized RGO using Schiff base condensation between the amino groups in an o-aryl diamine compound and the carbonyl groups in GO. Three typical nitrogen-containing species including o-phenylenediamine (OPD), 2, 3-diaminopyridine (23DAP), and bis(trifluoromethyl)-1, 2-diaminobenzene (BTFMDAB) were used for functionalizing the GO samples, and the corresponding RGO derivatives (OPD-RGO, 23DAP-RGO, and BTF-RGO) were obtained by thermal annealing. Pyrazine nitrogen was successfully introduced into graphitic framework, as confirmed by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectra, thermal gravimetric analysis (TGA), Raman, and X-ray photoelectron spectroscopy (XPS). Field-effect transistors (FETs) based on the BTF-RGO exhibited hole-dominated ambipolar field-effect behavior with a Dirac point at a 9 V gate voltage and hole mobilities up to 2.5 times that of RGO. The weak p-type doping effect originated from the strongly electron-withdrawing trifluoromethyl groups. By studying the OPD-RGO and 23DAP-RGO-based FETs, containing pyrazine nitrogen and mixed pyrazine/pyridine nitrogen, respectively, we found that pyrazine nitrogen provided weak n-type doping effects, while pyridine nitrogen exhibited weak p-type doping effects due to its electron-withdrawing ability. Enhanced p-type doping effect was accompanied by the introduction of groups with stronger electron-withdrawing ability into the graphitic framework. Impressively, pyridine nitrogen in the pyrazine nitrogen-doped RGO yielded a weak p-type doped graphene due to the electron-withdrawing effect of the pyridine nitrogen. Nitrogen-doped graphene can be finely tuned from weak n-type to weak p-type doping by adjusting the electron-withdrawing ability of o-aryl diamine compounds. This study demonstrates the effect of nitrogen configuration and its surrounding environment on the electrical properties of RGOs, providing additional possible applications.
  • 加载中
    1. [1]

      Zhu, Y.; Murali, S.; Stoller, M. D.; Ganesh, K.; Cai, W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M. Science 2011, 332, 1537. doi: 10.1126/science.1200770  doi: 10.1126/science.1200770

    2. [2]

      Fowler, J. D.; Allen, M. J.; Tung, V. C.; Yang, Y.; Kaner, R. B.; Weiller, B. H. ACS Nano 2009, 3, 301. doi: 10.1021/nn800593m  doi: 10.1021/nn800593m

    3. [3]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666. doi: 10.1126/science.1102896  doi: 10.1126/science.1102896

    4. [4]

      Paredes, J.; Villar-Rodil, S.; Martínez-Alonso, A.; Tascon, J. Langmuir 2008, 24, 10560. doi: 10.1021/la801744a  doi: 10.1021/la801744a

    5. [5]

      Peng, P.; Liu, H.; Wu, B.; Tang, Q.; Liu, Y. ChemNanoMat 2019, 5, 472. doi: 10.1002/cnma.201800567  doi: 10.1002/cnma.201800567

    6. [6]

      Szabó, T.; Berkesi, O.; Forgó, P.; Josepovits, K.; Sanakis, Y.; Petridis, D.; Dékány, I. Chem. Mater. 2006, 18, 2740. doi: 10.1021/cm060258+  doi: 10.1021/cm060258+

    7. [7]

      Mkhoyan, K. A.; Contryman, A. W.; Silcox, J.; Stewart, D. A.; Eda, G.; Mattevi, C.; Miller, S.; Chhowalla, M. Nano Lett. 2009, 9, 1058. doi: 10.1021/nl8034256  doi: 10.1021/nl8034256

    8. [8]

      Liu, H.; Liu, Y.; Zhu, D. J. Mater. Chem. 2011, 21, 3335. doi: 10.1039/C0JM02922J  doi: 10.1039/C0JM02922J

    9. [9]

      Han, T. H.; Huang, Y. K.; Tan, A. T.; Dravid, V. P.; Huang, J. J. Am. Chem. Soc. 2011, 133, 15264. doi: 10.1021/ja205693t  doi: 10.1021/ja205693t

    10. [10]

      Long, D.; Li, W.; Ling, L.; Miyawaki, J.; Mochida, I.; Yoon, S. H. Langmuir 2010, 26, 16096. doi: 10.1021/la102425a  doi: 10.1021/la102425a

    11. [11]

      Wang, L.; Sofer, Z.; Luxa, J.; Pumera, M. J. Mater. Chem. C 2014, 2, 2887. doi: 10.1039/C3TC32359E  doi: 10.1039/C3TC32359E

    12. [12]

      Li, X.; Wang, H.; Robinson, J. T.; Sanchez, H.; Diankov, G.; Dai, H. J. Am. Chem. Soc. 2009, 131, 15939. doi: 10.1021/ja907098f  doi: 10.1021/ja907098f

    13. [13]

      Sheng, Z. H.; Shao, L.; Chen, J. J.; Bao, W. J.; Wang, F. B.; Xia, X. H. ACS Nano 2011, 5, 4350. doi: 10.1021/nn103584t  doi: 10.1021/nn103584t

    14. [14]

      Liu, R.; Wu, D.; Feng, X.; Müllen, K. Angew. Chem. Int. Ed. 2010, 122, 2619. doi: 10.1002/anie.200907289  doi: 10.1002/anie.200907289

    15. [15]

      Wei, D.; Liu, Y.; Wang, Y.; Zhang, H.; Huang, L.; Yu, G. Nano Lett. 2009, 9, 1752. doi: 10.1021/nl803279t  doi: 10.1021/nl803279t

    16. [16]

      Xue, Y.; Wu, B.; Jiang, L.; Guo, Y.; Huang, L.; Chen, J.; Tan, J.; Geng, D.; Luo, B.; Hu, W. J. Am. Chem. Soc. 2012, 134, 11060. doi: 10.1021/ja302483t  doi: 10.1021/ja302483t

    17. [17]

      Guo, Y.; Di, C. A.; Liu, H.; Zheng, J.; Zhang, L.; Yu, G.; Liu, Y. ACS Nano 2010, 4, 5749. doi: 10.1021/nn101463j  doi: 10.1021/nn101463j

    18. [18]

      Cote, L. J.; Kim, F.; Huang, J. J. Am. Chem. Soc. 2008, 131, 1043. doi: 10.1021/ja806262m  doi: 10.1021/ja806262m

    19. [19]

      Zhang, T.; Zhang, D.; Shen, M. Mater. Lett. 2009, 63, 2051. doi: 10.1016/j.matlet.2009.06.050  doi: 10.1016/j.matlet.2009.06.050

    20. [20]

      Schniepp, H. C.; Li, J. L.; McAllister, M. J.; Sai, H.; Herrera-Alonso, M.; Adamson, D. H.; Prud'homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A. J. Phys. Chem. B 2006, 110, 8535. doi: 10.1021/jp060936f  doi: 10.1021/jp060936f

    21. [21]

      Robinson, J. T.; Tabakman, S. M.; Liang, Y.; Wang, H.; Sanchez Casalongue, H.; Vinh, D.; Dai, H. J. Am. Chem. Soc. 2011, 133, 6825. doi: 10.1021/ja2010175  doi: 10.1021/ja2010175

    22. [22]

      Acik, M.; Lee, G.; Mattevi, C.; Chhowalla, M.; Cho, K.; Chabal, Y. Nat. Mater. 2010, 9, 840. doi: 10.1038/NMAT2858  doi: 10.1038/NMAT2858

    23. [23]

      Gao, W.; Alemany, L. B.; Ci, L.; Ajayan, P. M. Nat. Chem. 2009, 1, 403. doi: 10.1038/nchem.281  doi: 10.1038/nchem.281

    24. [24]

      Kim, T.; Lee, H.; Kim, J.; Suh, K. S. ACS Nano 2010, 4, 1612. doi: 10.1021/nn901525e  doi: 10.1021/nn901525e

    25. [25]

      Chang, D. W.; Choi, H. J.; Baek, J. B. J. Mater. Chem. A 2015, 3, 7659. doi: 10.1039/C4TA07035F  doi: 10.1039/C4TA07035F

    26. [26]

      Mei, X.; Ouyang, J. Carbon 2011, 49, 5389. doi: 10.1016/j.carbon.2011.08.019  doi: 10.1016/j.carbon.2011.08.019

    27. [27]

      Díez-Betriu, X.; Álvarez-García, S.; Botas, C.; Álvarez, P.; Sánchez-Marcos, J.; Prieto, C.; Menéndez, R.; de Andrés, A. J. Mater. Chem. C 2013, 1, 6905. doi: 10.1039/C3TC31124D  doi: 10.1039/C3TC31124D

    28. [28]

      Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Carbon 2007, 45, 1558. doi: 10.1016/j.carbon.2007.02.034  doi: 10.1016/j.carbon.2007.02.034

    29. [29]

      Tung, V. C.; Allen, M. J.; Yang, Y.; Kaner, R. B. Nat. Nanotechnol. 2009, 4, 25. doi: 10.1038/nnano.2008.329  doi: 10.1038/nnano.2008.329

    30. [30]

      Mattevi, C.; Eda, G.; Agnoli, S.; Miller, S.; Mkhoyan, K. A.; Celik, O.; Mastrogiovanni, D.; Granozzi, G.; Garfunkel, E.; Chhowalla, M. Adv. Funct. Mater. 2009, 19, 2577. doi: 10.1002/adfm.200900166  doi: 10.1002/adfm.200900166

    31. [31]

      Krishnamoorthy, K.; Veerapandian, M.; Mohan, R.; Kim, S. J. Appl. Phys. A 2012, 106, 501. doi: 10.1007/s00339-011-6720-6  doi: 10.1007/s00339-011-6720-6

    32. [32]

      Jeon, I. Y.; Yu, D.; Bae, S. Y.; Choi, H. J.; Chang, D. W.; Dai, L.; Baek, J. B. Chem. Mater. 2011, 23, 3987. doi: 10.1021/cm201542m  doi: 10.1021/cm201542m

    33. [33]

      Chang, D. W.; Lee, E. K.; Park, E. Y.; Yu, H.; Choi, H. J.; Jeon, I. Y.; Sohn, G. J.; Shin, D.; Park, N.; Oh, J. H. J. Am. Chem. Soc. 2013, 135, 8981. doi: 10.1021/ja402555n  doi: 10.1021/ja402555n

    34. [34]

      Wang, H.; Xie, M.; Thia, L.; Fisher, A.; Wang, X. J. Phys. Chem. Lett. 2013, 5, 119. doi: 10.1021/jz402416a  doi: 10.1021/jz402416a

    35. [35]

      Yang, S.; Zhi, L.; Tang, K.; Feng, X.; Maier, J.; Müllen, K. Adv. Funct. Mater. 2012, 22, 3634. doi: 10.1002/adfm.201200186  doi: 10.1002/adfm.201200186

    36. [36]

      Li, X.; Tang, T.; Li, M.; He, X. Appl. Phys. Lett. 2015, 106, 013110. doi: 10.1063/1.4905342  doi: 10.1063/1.4905342

    37. [37]

      Eda, G.; Fanchini, G.; Chhowalla, M. Nat. Nanotechnol. 2008, 3, 270. doi: 10.1038/nnano.2008.83  doi: 10.1038/nnano.2008.83

    38. [38]

      Wang, Y.; Shao, Y.; Matson, D. W.; Li, J.; Lin, Y. ACS Nano 2010, 4, 1790. doi: 10.1021/nn100315s  doi: 10.1021/nn100315s

    39. [39]

      Reddy, A. L. M.; Srivastava, A.; Gowda, S. R.; Gullapalli, H.; Dubey, M.; Ajayan, P. M. ACS Nano 2010, 4, 6337. doi: 10.1021/nn101926g  doi: 10.1021/nn101926g

  • 加载中
    1. [1]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    2. [2]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    3. [3]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    4. [4]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    5. [5]

      Fabrice Nelly HabarugiraDucheng YaoWei MiaoChengcheng ChuZhong ChenShun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886

    6. [6]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    7. [7]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    8. [8]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    9. [9]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    10. [10]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    11. [11]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    12. [12]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    13. [13]

      Tingting HuangZhuanlong DingHao LiuPing-An ChenLongfeng ZhaoYuanyuan HuYifan YaoKun YangZebing Zeng . Electron-transporting boron-doped polycyclic aromatic hydrocarbons: Facile synthesis and heteroatom doping positions-modulated optoelectronic properties. Chinese Chemical Letters, 2024, 35(4): 109117-. doi: 10.1016/j.cclet.2023.109117

    14. [14]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    15. [15]

      Junchen PengXue YinDandan DongZhongyuan GuoQinqin WangMinmin LiuFei HeBin DaiChaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508

    16. [16]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    17. [17]

      Lumin ZhengYing BaiChuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589

    18. [18]

      Qiang FuShouhong SunKangzhi LuNing LiZhanhua Dong . Boron-doped carbon dots: Doping strategies, performance effects, and applications. Chinese Chemical Letters, 2024, 35(7): 109136-. doi: 10.1016/j.cclet.2023.109136

    19. [19]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    20. [20]

      Sajid MahmoodHaiyan WangFang ChenYijun ZhongYong Hu . Recent progress and prospects of electrolytes for electrocatalytic nitrogen reduction toward ammonia. Chinese Chemical Letters, 2024, 35(4): 108550-. doi: 10.1016/j.cclet.2023.108550

Metrics
  • PDF Downloads(9)
  • Abstract views(576)
  • HTML views(85)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return