Citation: LI Hui, LIU Shuangyu, WANG Huiming, WANG Bo, SHENG Peng, XU Li, ZHAO Guangyao, BAI Huitao, CHEN Xin, CAO Yuliang, CHEN Zhongxue. Improved Sodium Storage Performance of Na0.44MnO2 Cathode at a High Temperature by Al2O3 Coating[J]. Acta Physico-Chimica Sinica, ;2019, 35(12): 1357-1364. doi: 10.3866/PKU.WHXB201902021 shu

Improved Sodium Storage Performance of Na0.44MnO2 Cathode at a High Temperature by Al2O3 Coating

  • Corresponding author: CHEN Zhongxue, zxchen_pmc@whu.edu.cn
  • Received Date: 25 February 2019
    Revised Date: 2 April 2019
    Accepted Date: 2 April 2019
    Available Online: 10 December 2019

    Fund Project: the National Natural Science Foundation of China 21673165the National Natural Science Foundation of China 21875171the Science and Technology Project of State Grid SGRIDGKJ[2017]841The project was supported by the Science and Technology Project of State Grid (SGRIDGKJ[2017]841), the National Basic Research Program of China (2016YFB0901500) and the National Natural Science Foundation of China (21875171, 21673165)the National Basic Research Program of China 2016YFB0901500

  • Renewable energy resources (such as wind and solar) are being increasingly utilized to overcome issues of energy shortage and environmental deterioration. However, the intrinsically fluctuant and intermittent character of renewable energy sources hinders their practical application; therefore, batteries have been developed to act as a link between renewable energy sources and consumers. Lithium-ion batteries have become the most advanced battery technology in the last three decades, and have successfully captured the electric vehicles market; however, many concerns have recently arisen about the vastly expanded demand for lithium resources, which contrasts with their limited reserves. In this context, sodium-ion batteries have emerged as a promising alternative because of their intercalation chemistry similar to that of lithium-ion batteries, and the abundance of Na resources in the Earth's crust. Like lithium-ion batteries, the performance and cost of sodium-ion batteries are determined primarily by their cathodes. Among the various cathode materials that have been reported for sodium-ion batteries, Na0.44MnO2 is regarded as one of the most promising because of its opened three-dimensional tunnel structure and good chemical stability; it has also been demonstrated in previous studies to have superior cycling stability at room temperature. In practical terms, commercial batteries are often used at high temperatures (above 40 ℃) in summer. Several Mn-based cathode materials for lithium-ion batteries, such as LiMn2O4 and LiNi0.5Mn1.5O4, exhibit severe capacity decay at high temperatures. Therefore, the evaluation of the Na0.44MnO2 cathode in sodium-ion batteries at high temperatures is critical for its further commercialization. In this study, a Na0.44MnO2 cathode is prepared by a facile solid-state method and its electrochemical performance at a high temperature is measured. The electrochemical tests show that the Na0.44MnO2 cathode has a capacity retention of 66.5% over 100 cycles and a low reversible capacity of 12.3 mAh∙g-1 at 10C (1C = 120 mAh∙g-1). To improve its performance at a high temperature, Al2O3-coated Na0.44MnO2 is prepared via a liquid-phase method, and the coating effect is evaluated by electrochemical measurements as well as morphological, structural, and chemical composition analyses. The results show that the electrochemical performance of uncoated Na0.44MnO2 at 55 ℃ is significantly improved after coating with Al2O3; the capacity retention after 100 cycles increases to 79.2%, and the discharge capacity at 10C is increased to 63.6 mAh∙g-1. The improved performance is clearly attributed to the Al2O3 coating, which effectively prevents direct contact of Na0.44MnO2 with the electrolyte and alleviates the dissolution of manganese at a high temperature, thus maintaining a stable electrode/electrolyte interface and reducing charge transfer resistance.
  • 加载中
    1. [1]

      Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-González, J.; Rojo, T. Energy Environ. Sci. 2012, 5, 5884. doi: 10.1039/c2ee02781j  doi: 10.1039/c2ee02781j

    2. [2]

      Pan, H.; Hu, Y. S.; Chen, L. Energy Environ. Sci. 2013, 6, 2338. doi: 10.1039/c3ee40847g  doi: 10.1039/c3ee40847g

    3. [3]

      Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Adv. Funct. Mater. 2013, 23, 947. doi: 10.1002/adfm.201200691  doi: 10.1002/adfm.201200691

    4. [4]

      Fang, Y.; Chen, Z.; Ai, X.; Yang, H.; Cao, Y. Acta Phys. -Chim. Sin. 2017, 33, 211.  doi: 10.3866/PKU.WHXB201610111

    5. [5]

      Nayak, P.K.; Yang, L.; Brehm, W.; Adelhelm, P. Angew. Chem. Int. Ed. 2018, 57, 102. doi: 10.1002/anie.201703772  doi: 10.1002/anie.201703772

    6. [6]

      Delmas, C. Adv. Energy Mater. 2018, 8, 1703137. doi: 10.1002/aenm.201703137  doi: 10.1002/aenm.201703137

    7. [7]

      Pu, X.; Wang, H.; Zhao, D.; Yang, H.; Ai, X.; Cao, S.; Chen, Z.; Cao, Y. Small 2019, 1805427. doi: 10.1002/smll.201805427  doi: 10.1002/smll.201805427

    8. [8]

      Liu, S.; Shao, L.; Zhang, X.; Tao, Z.; Chen, J. Acta Phys. -Chim. Sin. 2018, 34, 581.  doi: 10.3866/PKU.WHXB201711222

    9. [9]

      Fang, Y.; Chen, Z.; Xiao, L.; Ai, X.; Cao, Y.; Yang, H. Small 2018, 14, 1703116. doi: 10.1002/smll.201703116  doi: 10.1002/smll.201703116

    10. [10]

      Ni, Q.; Bai, Y.; Wu, F.; Wu, C. Adv. Sci. 2017, 4, 1600275. doi: 10.1002/advs.201600275  doi: 10.1002/advs.201600275

    11. [11]

      Li, H.; Bai, Y.; Wu, F.; Ni, Q.; Wu, C. ACS Appl. Mater. Interfaces 2016, 8, 27779. doi: 10.1021/acsami.6b09898  doi: 10.1021/acsami.6b09898

    12. [12]

      Kim, H.; Kim, D. J.; Seo, D. H.; Yeom, M. S.; Kang, K.; Kim, D. K.; Jung, Y. Chem. Mater. 2012, 24, 1205. doi: 10.1021/cm300065y  doi: 10.1021/cm300065y

    13. [13]

      He, X.; Wang, J.; Qiu, B.; Paillard, E.; Ma, C.; Cao, X.; Liu, H.; Stan, M. C.; Liu, H.; Gallash, T.; et al. Nano Energy 2016, 27, 602. doi: 10.1016/j.nanoen.2016.07.021  doi: 10.1016/j.nanoen.2016.07.021

    14. [14]

      Zhou, X.; Guduru, R. K.; Mohanty, P. J. Mater. Chem. A 2013, 1, 2757. doi: 10.1039/c3ta01134h  doi: 10.1039/c3ta01134h

    15. [15]

      Ma, G.; Zhao, Y.; Huang, K.; Ju, Z.; Liu, C.; Hou, Y.; Xing, Z. Electrochim. Acta 2016, 222, 36. doi: 10.1016/j.electacta.2016.11.048  doi: 10.1016/j.electacta.2016.11.048

    16. [16]

      Sauvage, F.; Laffont, L.; Tarascon, J. M.; Baudrin, E. lnorg. Chem. 2007, 46, 3289. doi: 10.1021/ic0700250  doi: 10.1021/ic0700250

    17. [17]

      Thackeray, M. M. Prog. Solid State Chem. 1997, 25, 1. doi: 10.1016/S0079-6786(97)81003-5  doi: 10.1016/S0079-6786(97)81003-5

    18. [18]

      Li, X.; Xu, Y.; Wang, C. J. Alloys Compd. 2009, 479, 310. doi: 10.1016/j.jallcom.2008.12.081  doi: 10.1016/j.jallcom.2008.12.081

    19. [19]

      Yamada, A.; Tanaka, M.; Tanaka, K.; Sekai, K. J. Power Sources 1999, 81-82, 73. doi: 10.1016/S0378-7753(99)00106-8  doi: 10.1016/S0378-7753(99)00106-8

    20. [20]

      Capitaine, F.; Gravereau, P.; Delmas, C. Solid State Ion. 1996, 89, 197. doi: 10.1016/0167-2738(96)00369-4  doi: 10.1016/0167-2738(96)00369-4

    21. [21]

      Gummow, R. J.; Thackeray, M. J. Electrochem. Soc. 1994, 141, 1178. doi: 10.1149/1.2054893  doi: 10.1149/1.2054893

    22. [22]

      Cao, Y.; Xiao, L.; Wang, W.; Choi, D.; Nie, Z.; Yu, J.; Saraf, L. V.; Yang, Z.; Liu, J. Adv. Mater. 2011, 23, 3155. doi: 10.1002/adma.201100904  doi: 10.1002/adma.201100904

    23. [23]

      Jiang, X.; Liu, S.; Xu, H.; Chen, L.; Yang, J.; Qian, Y. Chem. Commun. 2015, 51, 8480. doi: 10.1039/c5cc02233a  doi: 10.1039/c5cc02233a

    24. [24]

      Chen, Z.; Yuan, T.; Pu, X.; Yang, H.; Ai, X.; Xia, Y.; Cao, Y. ACS Appl. Mater. Interfaces 2018, 10, 11689. doi: 10.1021/acsami.8b00478  doi: 10.1021/acsami.8b00478

    25. [25]

      Yuan, T.; Zhang, J.; Pu, X.; Chen, Z.; Tang, C.; Zhang, X.; Ai, X.; Huang, Y.; Yang, H.; Cao, Y. ACS Appl. Mater. Interfaces 2018, 10, 34108. doi: 10.1021/acsami.8b08297  doi: 10.1021/acsami.8b08297

    26. [26]

      Yuan, A.; Tian, L.; Xu, W.; Wang, Y. J. Power Sources 2010, 195, 5032. doi: 10.1016/j.jpowsour.2010.01.074  doi: 10.1016/j.jpowsour.2010.01.074

    27. [27]

      Guan, D.; Jeevarajan, J.A.; Wang, Y. Nanoscale 2011, 3, 1465. doi: 10.1039/c0nr00939c  doi: 10.1039/c0nr00939c

    28. [28]

      Myung, S. T.; Izumi, K.; Komaba, S.; Sun, Y. K.; Yashiro, H.; Kumagai, N. Chem. Mater. 2005, 17, 3695. doi: 10.1021/cm050566s  doi: 10.1021/cm050566s

    29. [29]

      Zhou, X.; Xue, J.; Zhou, D.; Wang, Z.; Bai, Y.; Wu, X.; Liu, X.; Meng, J. ACS Appl. Mater. Interfaces 2010, 2, 2689. doi: 10.1021/am1004738  doi: 10.1021/am1004738

    30. [30]

      Xiong, L.; Xu, Y.; Zhang, C.; Tao, T. Acta Phys. -Chim. Sin. 2012, 28, 1177.  doi: 10.3866/PKU.WHXB201203092

    31. [31]

      Chen, Z.; Qiu, S.; Cao, Y.; Ai, X.; Xie, K.; Hong, X.; Yang, H. J. Mater. Chem. 2012, 22, 17768, doi: 10.1039/c2jm33338d  doi: 10.1039/c2jm33338d

    32. [32]

      Song, J.; Xiao, B.; Lin, Y.; Xu, K.; Li, X. Adv. Energy Mater. 2018, 8, 1703082. doi: 10.1002/aenm.201703082  doi: 10.1002/aenm.201703082

    33. [33]

      Tan, B. J.; Klabunde, K. J.; Sherwood, P. M. A. J. Am. Chem. Soc. 1991, 113, 855. doi: 10.1021/ja00003a019  doi: 10.1021/ja00003a019

    34. [34]

      Liu, X.; Wang, J.; Zhang, J.; Yang, S. J. Mater. Sci.-Mater. El. 2006, 17, 865. doi: 10.1007/s10854-006-0041-0  doi: 10.1007/s10854-006-0041-0

    35. [35]

      Li, J.; Xiong, S.; Liu, Y.; Ju, Z.; Qian, Y. Nano Energy 2013, 2, 1249. doi: 10.1016/j.nanoen.2013.06.003  doi: 10.1016/j.nanoen.2013.06.003

    36. [36]

      Park, J. H.; Park, K.; Kim, R. H.; Yun, D. J.; Park, S. Y.; Han, D.; Lee, S. S.; Park, J. H. J. Mater. Chem. A 2015, 3, 10730. doi: 10.1039/c5ta00609k  doi: 10.1039/c5ta00609k

  • 加载中
    1. [1]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    2. [2]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    3. [3]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    4. [4]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    5. [5]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    6. [6]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    7. [7]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    8. [8]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    9. [9]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    10. [10]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    11. [11]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    12. [12]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    13. [13]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    14. [14]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    15. [15]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    16. [16]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    17. [17]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    18. [18]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    19. [19]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    20. [20]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

Metrics
  • PDF Downloads(16)
  • Abstract views(779)
  • HTML views(40)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return