Citation: Li Chao, Shen Ming, Hu Bingwen. Solid-State NMR and EPR Methods for Metal Ion Battery Research[J]. Acta Physico-Chimica Sinica, ;2020, 36(4): 190201. doi: 10.3866/PKU.WHXB201902019 shu

Solid-State NMR and EPR Methods for Metal Ion Battery Research

  • Corresponding author: Hu Bingwen, bwhu@phy.ecnu.edu.cn
  • Received Date: 22 February 2019
    Revised Date: 27 March 2019
    Accepted Date: 1 April 2019
    Available Online: 11 April 2019

    Fund Project: the National Natural Science Foundation of China 21522303the National Natural Science Foundation of China 21703068the National Natural Science Foundation of China 21872055The project was supported by the National Natural Science Foundation of China (21872055, 21703068, 21522303)

  • The rapid development of batteries, especially lithium-ion batteries, has dramatically changed our daily lives. From portable electronics to electric vehicles and smart grids, batteries are extensively used in many fields and are difficult to be replaced in terms of their excellent energy and power densities. The advancement of battery technology requires the thorough understanding of electrochemical reaction mechanisms, which strongly depends on the collaboration of researchers from different fields. Magnetic resonance spectroscopy includes the important techniques of nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR), and the former is suitable for studying light elements commonly found in batteries including Li, Na, P and O, while the latter is suitable for studying heavier transition metals such as Co, Mn, Fe and V. In addition, NMR and EPR are capable of quantitatively analysis in a nondestructive manner regardless of sample crystallinity. Hence, NMR and EPR spectroscopies have allowed for significant research progress and have become increasingly important for battery research over the past three decades. Herein, we will provide our perspective of magnetic resonance methods and first summarize the main interactions and the Hamiltonian forms of solid-state NMR and EPR (dipole-dipole interaction, electric quadrupole interaction, chemical shift, and hyperfine interaction). Subsequently, we summarize the important and frequently-used methods of solid-state NMR and EPR spectroscopies and introduce their representative applications in metal ion battery research (mainly lithium- and sodium-ion batteries). Specifically, we introduce the basic principles and representative applications of (ⅰ) MQMAS (multiple-quantum magic angle spinning), (ⅱ) pjMATPASS (MAT = magic-angle turning, PASS = phase-adjusted sideband separation, and pj = projection), (ⅲ) WURST-CPMG (WURST = wide band uniform rate smooth truncation, CPMG = Carr-Purcell Meiboom-Gil), (ⅳ) 2D homonuclear correlation and exchange (2D EXSY), (ⅴ) 2D homonuclear correlation based on dipole coupling (i.e. RFDR), (ⅵ) perpendicular mode EPR, (ⅶ) parallel mode EPR, (ⅷ) in situ NMR, and (ⅸ) in situ EPR. In addition, we briefly introduce representative applications of 2D heteronuclear correlation (i.e. CP-HETCOR), pulsed field gradient NMR, spin-lattice relaxation (SLR), spin alignment echo (SAE), DFT calculations, and dynamic nuclear polarization (DNP). Previous reviews regarding the application of magnetic resonance technology in battery research are almost all reported in terms of the classification of battery materials. In other words, they are written from the perspective of applications in cathode, anode, and electrolyte research. Herein, we summarize from the perspective of solid-state NMR and EPR methods, which may be beneficial for the readers to fully understand the value of these important technologies. We believe this review can serve as a guide to solve challenges related to using solid-state NMR and EPR spectroscopies in battery research.
  • 加载中
    1. [1]

      Li, M.; Lu, J.; Chen, Z.; Amine, K. Adv. Mater. 2018, 30, 1800561. doi: 10.1002/adma.201800561  doi: 10.1002/adma.201800561

    2. [2]

      Larcher, D.; Tarascon, J. M. Nat. Chem. 2015, 7, 19. doi: 10.1038/nchem.2085  doi: 10.1038/nchem.2085

    3. [3]

      Goodenough, J. B.; Park, K. S. J. Am. Chem. Soc. 2013, 135, 1167. doi: 10.1021/ja3091438  doi: 10.1021/ja3091438

    4. [4]

      Yang, Z.; Zhang, W.; Shen, Y.; Yuan, L. X.; Huang, Y. H. Acta Phys. -Chim. Sin. 2016, 32, 1062.  doi: 10.3866/PKU.WHXB201603231

    5. [5]

      Goodenough, J. B. Energy Storage Mater. 2015, 1, 158. doi: 10.1016/j.ensm.2015.07.001  doi: 10.1016/j.ensm.2015.07.001

    6. [6]

      Tarascon, J. M. Nat. Chem. 2010, 2, 510. doi: 10.1038/nchem.680  doi: 10.1038/nchem.680

    7. [7]

      Choi, J. W.; Aurbach, D. Nat. Rev. Mater. 2016, 1, 16013. doi: 10.1038/natrevmats.2016.13  doi: 10.1038/natrevmats.2016.13

    8. [8]

      Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Adv. Funct. Mater. 2013, 23, 947. doi: 10.1002/adfm.201200691  doi: 10.1002/adfm.201200691

    9. [9]

      Fang, C.; Huang, Y.; Zhang, W.; Han, J.; Deng, Z.; Cao, Y.; Yang, H. Adv. Energy Mater. 2016, 6, 1501727. doi: 10.1002/aenm.201501727  doi: 10.1002/aenm.201501727

    10. [10]

      Wang, P. F.; You, Y.; Yin, Y. X.; Guo, Y. G. Adv. Energy Mater. 2018, 8, 1701912. doi: 10.1002/aenm.201701912  doi: 10.1002/aenm.201701912

    11. [11]

      Fang, Y. J.; Chen, Z. X.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Acta Phys. -Chim. Sin. 2017, 33, 211.  doi: 10.3866/PKU.WHXB201610111

    12. [12]

      Wu, X.; Leonard, D. P.; Ji, X. Chem. Mater. 2017, 29, 5031. doi: 10.1021/acs.chemmater.7b01764  doi: 10.1021/acs.chemmater.7b01764

    13. [13]

      Li, C.; Hu, X.; Hu, B. Electrochim. Acta 2017, 253, 439. doi: 10.1016/j.electacta.2017.09.090  doi: 10.1016/j.electacta.2017.09.090

    14. [14]

      Zhang, Z.; Dong, S.; Cui, Z.; Du, A.; Li, G.; Cui, G. Small Methods 2018, 2, 1800020. doi: 10.1002/smtd.201800020  doi: 10.1002/smtd.201800020

    15. [15]

      Wang, M.; Jiang, C.; Zhang, S.; Song, X.; Tang, Y.; Cheng, H. M. Nat. Chem. 2018, 10, 667. doi: 10.1038/s41557-018-0045-4  doi: 10.1038/s41557-018-0045-4

    16. [16]

      Lin, M. C.; Gong, M.; Lu, B.; Wu, W.; Wang, D. Y.; Guan. M.; Angell, M.; Chen, C.; Yang. J.; Hwang, B. J.; et al. Nature 2015, 520, 324. doi: 10.1038/nature14340  doi: 10.1038/nature14340

    17. [17]

      Kim, D. J.; Yoo, D. J.; Otley, M. T.; Prokofjevs, A.; Pezzato, C.; Owczarek, M.; Lee, S. J.; Choi, J. W.; Stoddart, J. F. Nat. Energy 2018, 4, 51. doi: 10.1038/s41560-018-0291-0  doi: 10.1038/s41560-018-0291-0

    18. [18]

      Grey, C. P.; Tarascon, J. M. Nat. Mater. 2017, 16, 45. doi: 10.1038/nmat4777  doi: 10.1038/nmat4777

    19. [19]

      Lu, J.; Wu, T.; Amine, K. Nat. Energy 2017, 2, 17011. doi: 10.1038/nenergy.2017.11  doi: 10.1038/nenergy.2017.11

    20. [20]

      Pecher, O.; Carretero-González, J.; Griffith, K. J.; Grey, C. P. Chem. Mater. 2017, 29, 213. doi: 10.1021/acs.chemmater.6b03183  doi: 10.1021/acs.chemmater.6b03183

    21. [21]

      Grey, C. P.; Dupre, N. Chem. Rev. 2004, 104, 4493. doi: 10.1021/cr020734p  doi: 10.1021/cr020734p

    22. [22]

      Zhong, G.; Liu, Z.; Wang, D.; Li, Q.; Fu, R.; Yang. Y. J. Electrochem. 2016, 22, 231.  doi: 10.13208/j.electrochem.151246

    23. [23]

      Duer, M. J. Solid-State Nmr Spectroscopy: Principles and Applications; Blackwell Sci., London, 2002.

    24. [24]

      Pigliapochi, R.; Pell, A. J.; Seymour, I. D.; Grey, C. P.; Ceresoli, D.; Kaupp, M. Phys. Rev. B 2017, 95, 054412. doi: 10.1103/PhysRevB.95.054412  doi: 10.1103/PhysRevB.95.054412

    25. [25]

      Frydman, L.; Harwood, J. S. J. Am. Chem. Soc. 1995, 117, 5367. doi: 10.1021/ja00124a023  doi: 10.1021/ja00124a023

    26. [26]

      Hrobárik, P.; Reviakine, R.; Arbuznikov, A. V.; Malkina, O. L.; Malkin, V. G.; Köhler, F. H.; Kaupp, M. J. Chem. Phys. 2007, 126, 024107. doi: 10.1063/1.2423003  doi: 10.1063/1.2423003

    27. [27]

      Amoureux, J. P.; Fernandez, C.; Steuernagel, S. J. Magn. Reson. A 1996, 123, 116. doi: 10.1006/jmra.1996.0221  doi: 10.1006/jmra.1996.0221

    28. [28]

      Gan, Z.; Kwak, H. T. J. Magn. Reson. 2004, 168, 346. doi: 10.1016/j.jmr.2004.03.021  doi: 10.1016/j.jmr.2004.03.021

    29. [29]

      Gan, Z. J. Am. Chem. Soc. 2000, 122, 3242. doi: 10.1021/ja9939791  doi: 10.1021/ja9939791

    30. [30]

      Morita, R.; Gotoh, K.; Fukunishi, M.; Kubota, K.; Komaba, S.; Nishimura, N.; Yumura, T.; Deguchi, K; Ohki, S.; Shimizu, T.; et al. J. Mater. Chem. A 2016, 4, 13183. doi: 10.1039/C6TA04273B  doi: 10.1039/C6TA04273B

    31. [31]

      Li, C.; Shen, M.; Hu, B.; Lou, X.; Zhang, X.; Tong, W.; Hu, B. J. Mater. Chem. A 2018, 6, 8340. doi: 10.1039/C8TA00568K  doi: 10.1039/C8TA00568K

    32. [32]

      Li, C.; Shen, M.; Lou, X.; Hu, B. J. Phys. Chem. C 2018, 122, 27224. doi: 10.1021/acs.jpcc.8b09151  doi: 10.1021/acs.jpcc.8b09151

    33. [33]

      Reeve, Z. E. M.; Franko, C. J.; Harris, K. J.; Yadegari, H.; Sun, X.; Goward, G. R. J. Am. Chem. Soc. 2017, 139, 595. doi: 10.1021/jacs.6b11333  doi: 10.1021/jacs.6b11333

    34. [34]

      Hung, I.; Zhou, L.; Pourpoint, F.; Grey, C. P.; Gan, Z. J. Am. Chem. Soc. 2012, 134, 1898. doi: 10.1021/ja209600m  doi: 10.1021/ja209600m

    35. [35]

      Clement, R. J.; Pell, A. J.; Middlemiss, D. S.; Strobridge, F. C.; Miller, J. K.; Whittingham, M. S.; Emsley, L.; Grey, C. P.; Pintacuda, G. J. Am. Chem. Soc. 2012, 134, 17178. doi: 10.1021/ja306876u  doi: 10.1021/ja306876u

    36. [36]

      Li, X.; Tang, M.; Feng, X.; Hung, I.; Rose, A.; Chien, P. H.; Gan, Z.; Hu, Y. Y. Chem. Mater. 2017, 29, 8282. doi: 10.1021/acs.chemmater.7b02589  doi: 10.1021/acs.chemmater.7b02589

    37. [37]

      Xu, J.; Lee, D. H.; Clément, R. J.; Yu, X.; Leskes, M.; Pell, A. J.; Pintacuda, G.; Yang, X. Q.; Grey, C. P.; Meng, Y. S. Chem. Mater. 2014, 26, 1260. doi: 10.1021/cm403855t  doi: 10.1021/cm403855t

    38. [38]

      Clément, R. J.; Xu, J.; Middlemiss, D. S.; Alvarado, J.; Ma, C.; Meng, Y. S.; Grey, C. P. J. Mater. Chem. A 2017, 5, 4129. doi: 10.1039/c6ta09601h  doi: 10.1039/c6ta09601h

    39. [39]

      Hung, I.; Gan, Z. J. Magn. Reson. 2010, 204, 150. doi: 10.1016/j.jmr.2010.02.004  doi: 10.1016/j.jmr.2010.02.004

    40. [40]

      Gan, Z. J. Am. Chem. Soc. 1992, 114, 8307. doi: 10.1021/ja00047a062  doi: 10.1021/ja00047a062

    41. [41]

      Antzutkin, O. N.; Shekar, S. C.; Levitt, M. H. J. Magn. Reson., Series A 1995, 115, 7. doi: 10.1006/jmra.1995.1142  doi: 10.1006/jmra.1995.1142

    42. [42]

      Lee, J.; Kitchaev, D. A.; Kwon, D. H.; Lee, C. W.; Papp, J. K.; Liu, Y. S.; Lun, Z.; Clément, R.; Shi, T.; McCloskey, B. D.; et al. Nature 2018, 556, 185. doi: 10.1038/s41586-018-0015-4  doi: 10.1038/s41586-018-0015-4

    43. [43]

      Lee, J.; Urban, A.; Li, X.; Su, D.; Hautier, G.; Ceder, G. Science 2014, 343, 519. doi: 10.1126/science.1246432  doi: 10.1126/science.1246432

    44. [44]

      Xu, S.; Wang, G.; Biswal, B. P.; Addicoat, M.; Paasch, S.; Sheng, W.; Zhuang, X.; Brunner, E.; Heine, T.; Berger, R.; et al. Angew. Chem. Int. Ed. 2019, 58, 849. doi: 10.1002/anie.201812685  doi: 10.1002/anie.201812685

    45. [45]

      O'Dell, L. A.; Schurko, R. W. Chem. Phys. Lett. 2008, 464, 97. doi: 10.1016/j.cplett.2008.08.095  doi: 10.1016/j.cplett.2008.08.095

    46. [46]

      MacGregor, A. W.; O'Dell, L. A.; Schurko, R. W. J. Magn. Reson. 2011, 208, 103. doi: 10.1016/j.jmr.2010.10.011  doi: 10.1016/j.jmr.2010.10.011

    47. [47]

      Hung, I.; Gan, Z. J. Magn. Reson. 2010, 204, 256. doi: 10.1016/j.jmr.2010.03.001  doi: 10.1016/j.jmr.2010.03.001

    48. [48]

      Harris, K. J.; Reeve, Z. E. M.; Wang, D.; Li, X.; Sun, X.; Goward, G. R. Chem. Mater. 2015, 27, 3299. doi: 10.1021/acs.chemmater.5b00323  doi: 10.1021/acs.chemmater.5b00323

    49. [49]

      Peng, B.; Shen, M.; Amoureux, J. P.; Hu, B. Solid State Nucl. Magn. Reson. 2016, 78, 1. doi: 10.1016/j.ssnmr.2016.05.002  doi: 10.1016/j.ssnmr.2016.05.002

    50. [50]

      Takegoshi, K.; Nakamura, S.; Terao, T. J. Chem. Phys. 2003, 118, 2325. doi: 10.1063/1.1534105  doi: 10.1063/1.1534105

    51. [51]

      Takegoshi, K.; Nakamura, S.; Terao, T. Chem. Phys. Lett. 2001, 344, 631. doi: 10.1016/S0009-2614(01)00791-6  doi: 10.1016/S0009-2614(01)00791-6

    52. [52]

      Hu, B.; Lafon, O.; Trébosc, J.; Chen, Q.; Amoureux, J. P. J. Magn. Reson. 2011, 212, 320. doi: 10.1016/j.jmr.2011.07.011  doi: 10.1016/j.jmr.2011.07.011

    53. [53]

      Hu, B.; Trébosc, J.; Lafon, O.; Chen, Q.; Masuda, Y.; Takegoshi, K.; Amoureux, J. P. ChemPhysChem 2012, 13, 3585. doi: 10.1002/cphc.201200548  doi: 10.1002/cphc.201200548

    54. [54]

      Cahill, L. S.; Chapman, R. P.; Britten, J. F.; Goward, G. R. J. Phys. Chem. B 2006, 110, 7171-7177. doi: 10.1021/jp057015+  doi: 10.1021/jp057015+

    55. [55]

      Langer, J.; Smiley, D. L.; Bain, A. D.; Goward, G. R.; Wilkening, M. J. Phys. Chem. C 2016, 120, 3130. doi: 10.1021/acs.jpcc.5b09894  doi: 10.1021/acs.jpcc.5b09894

    56. [56]

      Bain, A. D. Prog. Nucl. Magn. Reson. Spectrosc. 2003, 43, 63. doi: 10.1016/j.pnmrs.2003.08.001  doi: 10.1016/j.pnmrs.2003.08.001

    57. [57]

      Davis, L. J. M.; He, X. J.; Bain, A. D.; Goward, G. R. Solid State Nuclear Magnetic Resonance 2012, 42, 26. doi: 10.1016/j.ssnmr.2012.01.002  doi: 10.1016/j.ssnmr.2012.01.002

    58. [58]

      Davis, L. J. M.; Heinmaa, I.; Goward, G. R. Chem. Mater. 2010, 22, 769. doi: 10.1021/cm901402u  doi: 10.1021/cm901402u

    59. [59]

      Smiley, D. L.; Davis, L. J. M.; Goward, G. R. J. Phys. Chem. C 2013, 117, 24181. doi: 10.1021/jp407510h  doi: 10.1021/jp407510h

    60. [60]

      Hu, Y. Y.; Liu, Z.; Nam, K. W.; Borkiewicz O. J.; Cheng, J.; Hua, X.; Dunstan, M. T.; Yu, , X.; Wiaderek, K. M.; Du, L. S.; et al. Nat. Mater. 2013, 12, 1130. doi: 10.1038/nmat3784  doi: 10.1038/nmat3784

    61. [61]

      Kuhn, A.; Dupke, S.; Kunze, M.; Puravankara, S.; Langer, T.; Pöttgen, R.; Winter, M.; Wiemhöfer, H. D.; Eckert, H.; Heitjans, P. J. Phys. Chem. C 2014, 118, 28350. doi: 10.1021/jp505386u  doi: 10.1021/jp505386u

    62. [62]

      Smiley, D. L.; Goward, G. R. Chem. Mater. 2016, 28, 7645. doi: 10.1021/acs.chemmater.6b02539  doi: 10.1021/acs.chemmater.6b02539

    63. [63]

      Zheng, J.; Tang, M.; Hu, Y. Y. Angew. Chem. Int. Ed. 2016, 55, 12538. doi: 10.1002/anie.201607539  doi: 10.1002/anie.201607539

    64. [64]

      van Wullen, L.; Echelmeyer, T.; Meyer, H. W.; Wilmer, D. Phys. Chem. Chem. Phys. 2007, 9, 3298. doi: 10.1039/b703179c  doi: 10.1039/b703179c

    65. [65]

      Wang, D.; Zhong, G.; Pang, W. K.; Guo, Z.; Li, Y.; McDonald, M. J.; Fu, R.; Mi, J. X.; Yang, Y. Chem. Mater. 2015, 27, 6650. doi: 10.1021/acs.chemmater.5b02429  doi: 10.1021/acs.chemmater.5b02429

    66. [66]

      Liu, Q.; Li, C.; Wei, L.; Shen, M.; Yao, Y.; Hu, B.; Chen, Q. Polymer 2014, 55, 5454. doi: 10.1016/j.polymer.2014.08.055  doi: 10.1016/j.polymer.2014.08.055

    67. [67]

      Cadars, S.; Sein, J.; Duma, L.; Lesage, A.; Pham, T. N.; Baltisberger, J. H.; Brown, S. P.; Emsley, L. J. Magn. Reson. 2007, 188, 24. doi: 10.1016/j.jmr.2007.05.016  doi: 10.1016/j.jmr.2007.05.016

    68. [68]

      Fayon, F.; Le Saout, G.; Emsley, L.; Massiot, D. Chem. Commun. 2002, 1702. doi: 10.1039/B205037B  doi: 10.1039/B205037B

    69. [69]

      Feike, M.; Demco, D. E.; Graf, R.; Gottwald, J.; Hafner, S.; Spiess, H. W. J. Magn. Reson., Series A 1996, 122, 214. doi: 10.1006/jmra.1996.0197  doi: 10.1006/jmra.1996.0197

    70. [70]

      Bennett, A. E.; Griffin, R. G.; Ok, J. H.; Vega, S. J. Chem. Phys. 1992, 96, 8624. doi: 10.1063/1.462267  doi: 10.1063/1.462267

    71. [71]

      Shen, M.; Hu, B.; Lafon, O.; Trébosc, J.; Chen, Q.; Amoureux, J. P. J. Magn. Reson. 2012, 223, 107. doi: 10.1016/j.jmr.2012.07.013  doi: 10.1016/j.jmr.2012.07.013

    72. [72]

      Nishiyama, Y.; Zhang, R.; Ramamoorthy, A. J. Magn. Reson. 2014, 243, 25. doi: 10.1016/j.jmr.2014.03.004  doi: 10.1016/j.jmr.2014.03.004

    73. [73]

      Wang, Q.; Hu, B.; Lafon, O.; Trébosc, J.; Deng, F.; Amoureux, J. P. J. Magn. Reson. 2009, 200, 251. doi: 10.1016/j.jmr.2009.07.009  doi: 10.1016/j.jmr.2009.07.009

    74. [74]

      Hu, B.; Wang, Q.; Lafon, O.; Trébosc, J.; Deng, F.; Amoureux, J. P. J. Magn. Reson. 2009, 198, 41. doi: 10.1016/j.jmr.2009.01.002  doi: 10.1016/j.jmr.2009.01.002

    75. [75]

      Wang, Q.; Hu, B.; Fayon, F.; Trébosc, J.; Legein, C.; Lafon, O.; Deng, F.; Amoureux, J. P. Phys. Chem. Chem. Phys. 2009, 11, 10391. doi: 10.1039/B914468D  doi: 10.1039/B914468D

    76. [76]

      Messinger, R. J.; Ménétrier, M.; Salager, E.; Boulineau, A.; Duttine, M.; Carlier, D.; Mba, J. M. A.; Croguennec, L.; Masquelier, C.; Massiot, D.; et al. Chem. Mater. 2015, 27, 5212. doi: 10.1021/acs.chemmater.5b01234  doi: 10.1021/acs.chemmater.5b01234

    77. [77]

      Michan, A. L.; Divitini, G.; Pell, A. J.; Leskes, M.; Ducati, C.; Grey, C. P. J. Am. Chem. Soc. 2016, 138, 7918. doi: 10.1021/jacs.6b02882  doi: 10.1021/jacs.6b02882

    78. [78]

      Michan, A. L.; Leskes, M.; Grey, C. P. Chem. Mater. 2016, 28, 385. doi: 10.1021/acs.chemmater.5b04408  doi: 10.1021/acs.chemmater.5b04408

    79. [79]

      Neuberger, S.; Culver, S. P.; Eckert, H.; Zeier, W. G.; Auf der Gunne, J. S. Dalton Trans. 2018, 47, 11691. doi: 10.1039/c8dt02619j  doi: 10.1039/c8dt02619j

    80. [80]

      Pecquenard, B.; Gourier, D.; Baffier, N. Solid State Ionics 1995, 78, 287. doi: 10.1016/0167-2738(95)00099-R  doi: 10.1016/0167-2738(95)00099-R

    81. [81]

      Massarotti, V.; Capsoni, D.; Bini, M.; Azzoni, C. B.; Paleari, A. J. Solid State Chem. 1997, 128, 80. doi: 10.1006/jssc.1996.7158  doi: 10.1006/jssc.1996.7158

    82. [82]

      Stoyanova, R.; Gorova, M.; Zhecheva, E. J. Phys. Chem. Solids 2000, 61, 609. doi: 10.1016/S0022-3697(99)00244-9  doi: 10.1016/S0022-3697(99)00244-9

    83. [83]

      Sathiya, M.; Rousse. G.; Ramesha, K.; Laisa, C. P.; Vezin, H.; Sougrati, M. T.; Doublet, M. L.; Foix, D.; Gonbeau, D.; Walker, W.; et al. Nat. Mater. 2013, 12, 827. doi: 10.1038/nmat3699  doi: 10.1038/nmat3699

    84. [84]

      Liao, Y.; Li, C.; Lou, X.; Hu, X.; Ning, Y.; Yuan, F.; Chen, B.; Shen, M.; Hu, B. Electrochimica Acta 2018, 271, 608. doi: 10.1016/j.electacta.2018.03.100  doi: 10.1016/j.electacta.2018.03.100

    85. [85]

      Li, C.; Lou, X.; Shen, M.; Hu, X.; Yan, W.; Zou, Y.; Tong, W.; Hu, B. Energy Storage Materials 2017, 7, 195. doi: 10.1016/j.ensm.2017.02.002  doi: 10.1016/j.ensm.2017.02.002

    86. [86]

      Li, C.; Lou, X.; Yang, Q.; Zou, Y.; Hu, B. Chem. Eng. J. 2017, 326, 10008. doi: 10.1016/j.cej.2017.06.048  doi: 10.1016/j.cej.2017.06.048

    87. [87]

      Ning, Y.; Lou, X.; Li, C.; Hu, X.; Hu, B. Chem. -Euro. J. 2017, 23, 15984. doi: 10.1002/chem.201703077  doi: 10.1002/chem.201703077

    88. [88]

      Hendrich, M. P.; Debrunner, P. G. Biophys. J. 1989, 56, 489. doi: 10.1016/S0006-3495(89)82696-7  doi: 10.1016/S0006-3495(89)82696-7

    89. [89]

      Petasis, D. T.; Hendrich, M. P. Methods in Enzymology 2015, 563, 171. doi: 10.1016/bs.mie.2015.06.025  doi: 10.1016/bs.mie.2015.06.025

    90. [90]

      Chevallier, F.; Letellier, M.; Morcrette, M.; Tarascon, J. M.; Frackowiak, E.; Rouzaud, J. N.; Bexguin, F. Electrochem. Solid-State Lett. 2003, 6, A225. doi: 10.1149/1.1612011  doi: 10.1149/1.1612011

    91. [91]

      Poli, F.; Wong, A.; Kshetrimayum, J. S.; Monconduit, L.; Letellier, M. Chem. Mater. 2016, 28, 1787. doi: 10.1021/acs.chemmater.5b04802  doi: 10.1021/acs.chemmater.5b04802

    92. [92]

      Shimoda, K.; Murakami, M.; Komatsu, H.; Arai, H.; Uchimoto, Y.; Ogumi, Z. J. Phys. Chem. C 2015, 119, 13472. doi: 10.1021/acs.jpcc.5b03273  doi: 10.1021/acs.jpcc.5b03273

    93. [93]

      Jung, H.; Allan, P. K.; Hu, Y. Y.; Borkiewicz, O. J.; Wang, X. L.; Han, W. Q.; Du, L. S.; Pickard, C. J.; Chupas, P. J.; Chapman, K. W.; et al. Chem. Mater. 2015, 27, 1031. doi: 10.1021/cm504312x  doi: 10.1021/cm504312x

    94. [94]

      Bayley, P. M.; Trease, N. M.; Grey, C. P. J. Am. Chem. Soc. 2016, 138, 1955. doi: 10.1021/jacs.5b12423  doi: 10.1021/jacs.5b12423

    95. [95]

      Feng, X.; Tang, M.; O'Neill, S.; Hu, Y. Y. J. Mater. Chem. A 2018, 6, 22240. doi: 10.1039/c8ta05433a  doi: 10.1039/c8ta05433a

    96. [96]

      Letellier, M.; Chevallier, F.; Béguin, F. J. Phys. Chem. Solids 2006, 67, 1228. doi: 10.1016/j.jpcs.2006.01.088  doi: 10.1016/j.jpcs.2006.01.088

    97. [97]

      Liu, Z.; Hu, Y. Y.; Dunstan, M. T.; Huo, H.; Hao, X.; Zou, H.; Zhong, G.; Yang, Y.; Grey, C. P. Chem. Mater. 2014, 26, 2513. doi: 10.1021/cm403728w  doi: 10.1021/cm403728w

    98. [98]

      Salager, E.; Kanian, V. S.; Sathiya, M.; Tang, M.; Leiche, J. B.; Melin, P.; Wang, Z.; Vezin, H.; Bessada, C.; Deschamps, M.; et al. Chem. Mater. 2014, 26, 7009. doi: 10.1021/cm503280s  doi: 10.1021/cm503280s

    99. [99]

      Shimoda, K.; Murakami, M.; Takamatsu, D.; Arai, H.; Uchimoto, Y.; Ogumi, Z. Electrochim. Acta 2013, 108, 343. doi: 10.1016/j.electacta.2013.06.120  doi: 10.1016/j.electacta.2013.06.120

    100. [100]

      Stratford, J. M.; Allan, P. K.; Pecher, O.; Chater, P. A.; Grey, C. P. Chem Commun 2016, 52, 12430. doi: 10.1039/c6cc06990h  doi: 10.1039/c6cc06990h

    101. [101]

      Key, B.; Bhattacharyya, R.; Morcrette, M.; Seznéc, V.; Tarascon, J. M.; Grey, C. P. J. Am. Chem. Soc. 2009, 131, 9239. doi: 10.1021/ja8086278  doi: 10.1021/ja8086278

    102. [102]

      Zhou, L.; Leskes, M.; Liu, T.; Grey, C. P. Angew. Chem. Int. Ed. 2015, 54, 14782. doi: 10.1002/anie.201507632  doi: 10.1002/anie.201507632

    103. [103]

      Poli, F.; Kshetrimayum, J. S.; Monconduit, L.; Letellier, M. Electrochem. Commun. 2011, 13, 1293. doi: 10.1016/j.elecom.2011.07.019  doi: 10.1016/j.elecom.2011.07.019

    104. [104]

      Sathiya, M.; Leriche, J. B.; Salager, E.; Gourier, D.; Tarascon, J. M.; Vezin, H. Nat. Commun. 2015, 6, 6276. doi: 10.1038/ncomms7276  doi: 10.1038/ncomms7276

    105. [105]

      Tang, M.; Dalzini, A.; Li, X.; Feng, X.; Chien, P. H.; Song, L.; Hu, Y. Y. J. Phys. Chem. Lett. 2017, 8, 4009. doi: 10.1021/acs.jpclett.7b01425  doi: 10.1021/acs.jpclett.7b01425

    106. [106]

      Wandt, J.; Marino, C.; Gasteiger, H. A.; Jakes, P.; Eichel, R. A.; Granwehr, J. Energy Environ. Sci. 2015, 8, 1358. doi: 10.1039/c4ee02730b  doi: 10.1039/c4ee02730b

    107. [107]

      Wandt, J.; Jakes, P.; Granwehr, J.; Eichel, R. A.; Gasteiger, H. A. Mater. Today 2018, 21, 231. doi: 10.1016/j.mattod.2017.11.001  doi: 10.1016/j.mattod.2017.11.001

    108. [108]

      Pines, A.; Gibby, M. G.; Waugh, J. S. J. Chem. Phys. 1973, 59, 569. doi: 10.1063/1.1680061  doi: 10.1063/1.1680061

    109. [109]

      Hartmann, S. R.; Hahn, E. L. Phys. Rev. 1962, 128, 2042. doi: 10.1103/PhysRev.128.2042  doi: 10.1103/PhysRev.128.2042

    110. [110]

      Lesage, A.; Emsley, L. J. Magn. Reson. 2001, 148, 449. doi: 10.1006/jmre.2000.2249  doi: 10.1006/jmre.2000.2249

    111. [111]

      Wang, Q.; Trébosc, J.; Li, Y.; Xu, J.; Hu, B.; Feng, N.; Chen, Q.; Lafon, O.; Amoureux, J. P.; Deng, F. Chem. Commun. 2013, 49, 6653. doi: 10.1039/C3CC42961J  doi: 10.1039/C3CC42961J

    112. [112]

      Trebosc, J.; Hu, B.; Amoureux, J. P.; Gan, Z. J. Magn. Reson. 2007, 186, 220. doi: 10.1016/j.jmr.2007.02.015  doi: 10.1016/j.jmr.2007.02.015

    113. [113]

      Gan, Z. J. Magn. Reson. 2007, 184, 39. doi: 10.1016/j.jmr.2006.09.016  doi: 10.1016/j.jmr.2006.09.016

    114. [114]

      Hu, B.; Trébosc, J.; Amoureux, J. P. J. Magn. Reson. 2008, 192, 112. doi: 10.1016/j.jmr.2008.02.004  doi: 10.1016/j.jmr.2008.02.004

    115. [115]

      Cavadini, S.; Lupulescu, A.; Antonijevic, S.; Bodenhausen, G. J. Am. Chem. Soc. 2006, 128, 7706. doi: 10.1021/ja0618898  doi: 10.1021/ja0618898

    116. [116]

      Peng, B.; Yao, Y.; Chen, Q.; Hu, B. Annual Rep. NMR Spectros. 2014, 85, 1. doi: 10.1016/bs.arnmr.2014.12.002  doi: 10.1016/bs.arnmr.2014.12.002

    117. [117]

      Lee, H. H.; Park, Y.; Shin, K. H.; Lee, K. T.; Hong, S. Y. ACS Appl. Mater. Interfaces 2014, 6, 19118. doi: 10.1021/am505090p  doi: 10.1021/am505090p

    118. [118]

      Peng, C.; Ning, G. H.; Su, J.; Zhong, G.; Tang, W.; Tian, B.; Su, C.; Yu, D.; Zu, L.; Yang, J.; et al. Nat. Energy 2017, 2, 17074. doi: 10.1038/nenergy.2017.74  doi: 10.1038/nenergy.2017.74

    119. [119]

      Griffith, K. J.; Wiaderek, K. M.; Cibin, G.; Marbella, L. E.; Grey, C. P. Nature 2018, 559, 556. doi: 10.1038/s41586-018-0347-0  doi: 10.1038/s41586-018-0347-0

    120. [120]

      Xiang, Y. X.; Zheng, G.; Zhong, G.; Wang, D.; Fu, R.; Yang, Y. Solid State Ionics 2018, 318, 19. doi: 10.1016/j.ssi.2017.11.025  doi: 10.1016/j.ssi.2017.11.025

    121. [121]

      Engelke, S.; Marbella, L. E.; Trease, N. M.; De Volder, M.; Grey, C. P. Phys. Chem. Chem. Phys. 2019, 21, 4538. doi: 10.1039/c8cp07776b  doi: 10.1039/c8cp07776b

    122. [122]

      Prutsch, D.; Gadermaier, B.; Brandstätter, H.; Pregartner, V.; Stanje, B.; Wohlmuth, D.; Epp, V.; Rettenwander, D.; Hanzu, I.; Wilkening, H. M. R. Chem. Mater. 2018, 30, 7575. doi: 10.1021/acs.chemmater.8b02753  doi: 10.1021/acs.chemmater.8b02753

    123. [123]

      Liang, X.; Wang, L.; Jiang, Y.; Wang, J.; Luo, H.; Liu, C.; Feng, J. Chem. Mater. 2015, 27, 5503. doi: 10.1021/acs.chemmater.5b01384  doi: 10.1021/acs.chemmater.5b01384

    124. [124]

      Kuhn, A.; Sreeraj, P.; Pottgen, R.; Wiemhofer, H. D.; Wilkening, M.; Heitjans, P. J. Am. Chem. Soc. 2011, 133, 11018. doi: 10.1021/ja2020108  doi: 10.1021/ja2020108

    125. [125]

      Wilkening, M.; Heitjans, P. ChemPhysChem 2012, 13, 53. doi: 10.1002/cphc.201100580  doi: 10.1002/cphc.201100580

    126. [126]

      Pigliapochi, R.; Seymour, I. D.; Merlet, C.; Pell, A. J.; Murphy, D. T.; Schmid, S.; Grey, C. P. Chem. Mater. 2018, 30, 817. doi: 10.1021/acs.chemmater.7b04314  doi: 10.1021/acs.chemmater.7b04314

    127. [127]

      Middlemiss, D. S.; Ilott, A. J.; Clément, R. l. J.; Strobridge, F. C.; Grey, C. P. Chem. Mater. 2013, 25, 1723. doi: 10.1021/cm400201t  doi: 10.1021/cm400201t

    128. [128]

      Castets, A.; Carlier, D.; Zhang, Y.; Boucher, F.; Ménétrier, M. J. Phys. Chem. C 2012, 116, 18002. doi: 10.1021/jp302549s  doi: 10.1021/jp302549s

    129. [129]

      Liu, Y.; Zeng, L.; Xu, C.; Geng, F.; Shen, M.; Yuan, Q.; Hu, B. Chem. Phys. Lett. 2019, 736, 136779. doi: 10.1016/j.cplett.2019.136779  doi: 10.1016/j.cplett.2019.136779

    130. [130]

      Liu, Z.; Lee, J.; Xiang, G.; Glass, H. F. J.; Keyzer, E. N.; Dutton, S. E.; Grey, C. P. Chem. Commun. 2017, 53, 743. doi: 10.1039/C6CC08430C  doi: 10.1039/C6CC08430C

    131. [131]

      Lee, J.; Seymour, I. D.; Pell, A. J.; Dutton, S. E.; Grey, C. P. Phys. Chem. Chem. Phys. 2017, 19, 613. doi: 10.1039/C6CP06338A  doi: 10.1039/C6CP06338A

    132. [132]

      Canepa, P.; Bo, S. H.; Sai Gautam, G.; Key, B.; Richards, W. D.; Shi, T.; Tian, Y.; Wang, Y.; Li, J.; Ceder, G. Nat. Commun. 2017, 8, 1759. doi: 10.1038/s41467-017-01772-1  doi: 10.1038/s41467-017-01772-1

    133. [133]

      Leroy, C.; Bryce, D. L. Prog. Nucl. Magn. Reson. Spectrosc. 2018, 109, 160. doi: 10.1016/j.pnmrs.2018.08.002  doi: 10.1016/j.pnmrs.2018.08.002

    134. [134]

      Leskes, M.; Kim, G.; Liu, T.; Michan, A. L.; Aussenac, F.; Dorffer, P.; Paul, S.; Grey, C. P. J. Phys. Chem. Lett. 2017, 8, 1078. doi: 10.1021/acs.jpclett.6b02590  doi: 10.1021/acs.jpclett.6b02590

    135. [135]

      Chakrabarty, T.; Goldin, N.; Feintuch, A.; Houben, L.; Leskes, M. ChemPhysChem 2018, 19, 2139. doi: 10.1002/cphc.201800462  doi: 10.1002/cphc.201800462

    136. [136]

      Wolf, T.; Kumar, S.; Singh, H.; Chakrabarty, T.; Aussenac, F.; Frenkel, A. I.; Major, D. T.; Leskes, M. J. Am. Chem. Soc. 2018, 141, 451. doi: 10.1021/jacs.8b11015  doi: 10.1021/jacs.8b11015

  • 加载中
    1. [1]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    2. [2]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    3. [3]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    4. [4]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    5. [5]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    6. [6]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    7. [7]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    8. [8]

      Jinkang Jin Yidian Sheng Ping Lu Zhan Lu . Introducing a Website for Learning Nuclear Magnetic Resonance (NMR) Spectrum Analysis. University Chemistry, 2024, 39(11): 388-396. doi: 10.12461/PKU.DXHX202403054

    9. [9]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    10. [10]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    11. [11]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    12. [12]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    13. [13]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    14. [14]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    15. [15]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    16. [16]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    17. [17]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    18. [18]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    19. [19]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    20. [20]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

Metrics
  • PDF Downloads(14)
  • Abstract views(483)
  • HTML views(86)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return