Citation: Shi Feng, Hu Lili, Ren Jinjun, Yang Qiuhong. Structural Investigation of Alkaline-Earth Phosphosilicate Glasses Containing Six-Coordinated Silicon by Solid-State NMR[J]. Acta Physico-Chimica Sinica, ;2020, 36(4): 190201. doi: 10.3866/PKU.WHXB201902018 shu

Structural Investigation of Alkaline-Earth Phosphosilicate Glasses Containing Six-Coordinated Silicon by Solid-State NMR

  • Corresponding author: Ren Jinjun, renjinjunsiom@163.com
  • Received Date: 22 February 2019
    Revised Date: 15 April 2019
    Accepted Date: 16 April 2019
    Available Online: 19 April 2019

    Fund Project: The project was supported by the National Natural Science Foundation of China (61675218) and the 100 Talents Program of Chinese Academy of Sciencesthe National Natural Science Foundation of China 61675218

  • Phosphate glass is widely used in optical applications; however, its generally low chemical stability and poor thermal mechanical properties hinder the application of phosphate glass to the rapidly evolving laser industry. The addition of a small amount of silicon can form a six-coordinate Si (Si(6)) network and improve the above-mentioned poor properties of phosphate glass. Therefore, it is important to characterize and understand the structural details of phosphosilicate glasses. It is difficult to investigate the glass structure because of its complicated and disordered characteristics. However, solid-state nuclear magnetic resonance (NMR) spectroscopy can provide detailed local structural information, regardless of the presence of its long-range order. To study the effect of alkaline earth metals on Si(6) species formation, we prepared phosphosilicate glasses (2MO-3P2O5)(1−x)·(SiO2)x (M = Ca, Sr, Ba) by conventional melt-quenching, and the glass structure was investigated by solid-state NMR and Raman spectroscopy. The 31P and 29Si NMR spectra indicated that the glass networks consisted of P(2) and P(3) tetrahedrons linked via four- and six-fold coordinated silicon units (Si(4) and Si(6)). The fraction of six-coordinated silicon Si(6) decreased with increasing SiO2 content. Similarly, the Raman spectra showed that the vibration band of the P=O stretching mode in P(3) linked with Si(6) neighbors reduced as the silica content increased. The connectivities between various phosphorus species were probed by 31P one- and two-dimensional refocused INADEQUATE experiments. This experimental technique is based on homonuclear J-coupling and yields correlation peaks between nuclei engaged in P―O―P linkages (P(2) and P(3) units). The signals from isolated 31P nuclei are suppressed because of the absence of J-coupling, which precludes the formation of double quantum coherences. The results indicated the segregation of P(2) and P(3) units in the prepared glass, which were also compared with those in the previously reported Na2O-P2O5-SiO2 glasses. They differed from alkali phosphosilicate glasses, where each P(3) unit exhibited a maximum average of one Si(6)―O―P(3) linkage, and in the alkaline earth phosphosilicate glasses, the average was approximately 0.4–0.7. When the content of Si(6) units reached its maximum, further increase in the SiO2 content did not increase the Si(6) content, and the surplus Si were present as Si(4). Alkaline earth metal ions exhibit weaker stabilizing effects for Si(6) species. Based on the results presented herein, we constructed sketches to illustrate the local structural organization of the glass. The relationships between the compositions and structures are important for glass composition and property design. It is important to improve the performance of phosphate glass by changing its composition, particularly for large laser device applications.
  • 加载中
    1. [1]

      Stebbins, J. F. J. Non-Cryst. Solids 1988, 106, 359. doi: 10.1016/0022-3093(88)90289-X  doi: 10.1016/0022-3093(88)90289-X

    2. [2]

      Richard, K. B. J. Non-Cryst. Solids 2000, 263, 1. doi: 10.1016/S0022-3093(99)00620-1  doi: 10.1016/S0022-3093(99)00620-1

    3. [3]

      Onodera, Y.; Kohara, S.; Masai, H.; Koreeda, A.; Okamura, S.; Ohkubo, T. Nat. Commun. 2017, 8, 15449. doi: 10.1038/ncomms15449  doi: 10.1038/ncomms15449

    4. [4]

      Edén, Mattias. Annu. Rep. Prog. Chem. Sect. C: Phys. Chem. 2012, 108, 177. doi: 10.1039/C2PC90006H  doi: 10.1039/C2PC90006H

    5. [5]

      Schmidt-Rohr, K.; Spiess, H. W. Phys. Rev. Lett. 1991, 66, 3020. doi: 10.1103/PhysRevLett.66.3020  doi: 10.1103/PhysRevLett.66.3020

    6. [6]

      Dupree, R.; Holland, D.; Mortuza, M. G.; Collins, J. A.; Lockyer, M. W. G. J. Non-Cryst. Solids 1989, 112, 111. doi: 10.1016/0022-3093(89)90504-8  doi: 10.1016/0022-3093(89)90504-8

    7. [7]

      Dirken, P.; Kohn, S.; Smith, M. E.; Eck, E. R. H. Chem. Phys. Lett. 1997, 266, 568. doi: 10.1016/S0009-2614(97)00041-9  doi: 10.1016/S0009-2614(97)00041-9

    8. [8]

      Meade, C.; Hemley, R. J.; Mao, H. K. Phys. Rev. Lett. 1992, 69, 1387. doi: 10.1103/PhysRevLett.69.1387  doi: 10.1103/PhysRevLett.69.1387

    9. [9]

      Ping, T.; Sung, P. S.; Greenblatt, M. J. Non-Cryst. Solids 1991, 135, 131. doi: 10.1016/0022-3093(91)90413-Z  doi: 10.1016/0022-3093(91)90413-Z

    10. [10]

      Ren, J. J.; Eckert, H. J. Phys. Chem. C 2014, 118, 15386. doi: 10.1021/jp504023k  doi: 10.1021/jp504023k

    11. [11]

      Massiot, D.; Messinger, R. J.; Cadars, S.; Deschamps, M.; Montouillout, V.; Pellerin, N.; Veron, E.; Allix, M.; Florian, P.; Fayon, F. Acc. Chem. Res. 2013, 46, 1975. doi: 10.1021/ar3003255  doi: 10.1021/ar3003255

    12. [12]

      Li, C.; Shen, M.; Hu, B. W. Acta Phys. -Chim. Sin. 2020, 36, 1902019.  doi: 10.3866/PKU.WHXB201902019

    13. [13]

      Xu, W. B.; Ren, J. J.; Shao, C. Y.; Wang, X.; Wang, M.; Zhang, L. Y.; Chen, D. P.; Wang, S. K.; Yu, C. L.; Hu, L. L. J. Lumin. 2015, 167, 8. doi: 10.1016/j.jlumin.2015.05.061  doi: 10.1016/j.jlumin.2015.05.061

    14. [14]

      Kim, E. J.; Fei, Y.; Lee, S. K. Geochim. Cosmochim. Acta 2018, 224, 327. doi: 10.1016/j.gca.2018.01.006  doi: 10.1016/j.gca.2018.01.006

    15. [15]

      Ren, J. J; Eckert, H. J. Phys. Chem. C 2012, 116, 12747. doi: 10.1021/jp301383x  doi: 10.1021/jp301383x

    16. [16]

      Larink, D.; Eckert, H.; Reichert, M.; Martin, S. W. J. Phys. Chem. C 2012, 116, 26162. doi: 10.1021/jp307085t20152201012  doi: 10.1021/jp307085t20152201012

    17. [17]

      Sava, B. A.; Elisa, M.; Vasiliu, I. C.; Nastase, F.; Simon, S. J. Non-Cryst. Solids 2012, 358, 2877. doi: 10.1016/j.jnoncrysol.2012.07.016  doi: 10.1016/j.jnoncrysol.2012.07.016

    18. [18]

      Oliveira, M. D.; Aitken, B.; Eckert, H. J. Phys. Chem. C 2018, 122, 19807. doi: 10.1021/acs.jpcc.8b06055  doi: 10.1021/acs.jpcc.8b06055

    19. [19]

      Campbel, J. H.; Suratwala, T. I. J. Non-Cryst. Solids 2000, 263, 318. doi: 10.1016/S0022-3093(99)00645-6  doi: 10.1016/S0022-3093(99)00645-6

    20. [20]

      Campbell, J. H.; Hayden, J. S.; Marker, A. Int. J. Appl. Glass Sci. 2011, 2, 3. doi: 10.1111/j.2041-1294.2011.00044.x  doi: 10.1111/j.2041-1294.2011.00044.x

    21. [21]

      Ebendorff-Heidepriem, H.; Ehrt, D. J. Non-Cryst. Solids 1996, 208, 205. doi: 10.1016/S0022-3093(96)00524-8  doi: 10.1016/S0022-3093(96)00524-8

    22. [22]

      Toratani, H. Properties of Laser Glasses. Ph.D. Dissertation, Kyoto University, Japan, 1989.

    23. [23]

      Dupree, R.; Holland, D.; Mortuza, M. G. Nature 1987, 328, 416. doi: 10.1038/328416a0  doi: 10.1038/328416a0

    24. [24]

      Weeding, T.; Jong, B. D.; Veeman, W.; Aitken, B. J. Nature 1985, 318, 352. doi: 10.1038/318352a0  doi: 10.1038/318352a0

    25. [25]

      Radovanovic, E.; Gozzi, M.; Gonçalves, M.; Yoshida, I. J. Non-Cryst. Solids 1999, 248, 37. doi: 10.1016/S0022-3093(99)00101-5  doi: 10.1016/S0022-3093(99)00101-5

    26. [26]

      Ide, J.; Ozutsumi, K.; Kageyama, H.; Handa, K.; Umesaki, N. J. Non-Cryst. Solids 2007, 353, 1966. doi: 10.1016/j.jnoncrysol.2007.02.022  doi: 10.1016/j.jnoncrysol.2007.02.022

    27. [27]

      Ahsan, M. R.; Mortuza, M. G. J. Non-Cryst. Solids 2005, 351, 2333. doi: 10.1016/j.jnoncrysol.2005.05.030  doi: 10.1016/j.jnoncrysol.2005.05.030

    28. [28]

      Miyabe, D.; Takahashi, M.; Tokuda, Y.; Yoko, T.; Uchino, T. Phys. Rev. B 2005, 71, 2202. doi: 10.1103/PhysRevB.71.172202  doi: 10.1103/PhysRevB.71.172202

    29. [29]

      Yamashita, H.; Yoshino, H.; Nagata, K.; Yamaguchi, I.; Ookawa, M.; Maekawa, T. J. Ceram. Soc. Jpn. 1998, 106, 539. doi: 10.2109/jcersj.106.539  doi: 10.2109/jcersj.106.539

    30. [30]

      Sakida, S.; Nanba, T.; Miura, Y. Chem. Lett. 2006, 35, 1268. doi: 10.1246/cl.2006.1268  doi: 10.1246/cl.2006.1268

    31. [31]

      Fleet, M.; Muthupari, S.; Kasrai, M.; Prabakar, S. J. Non-Cryst. Solids 1997, 220, 85. doi: 10.1016/S0022-3093(97)00222-6  doi: 10.1016/S0022-3093(97)00222-6

    32. [32]

      Li, D; Bancroft, G.; Fleet, M. E. Am. Mineral. 1996, 81, 111. doi: 10.2138/am-1996-1-214  doi: 10.2138/am-1996-1-214

    33. [33]

      Ren, J.J.; Eckert, H. J. Phys. Chem. C 2018, 122, 27620. doi: 10.1021/acs.jpcc.8b09779  doi: 10.1021/acs.jpcc.8b09779

    34. [34]

      Massiot, D.; Fayon, F.; Capron, M.; King, I.; Calvé, I.; Alonso, B.; Durand, J. O.; Bujoli, B.; Gan, Z.; Hoatson, G. Magn. Reson. Chem. 2002, 40, 70. doi: 10.1002/mrc.984  doi: 10.1002/mrc.984

    35. [35]

      Lesage, A.; Bardet, M.; Emsley, L. J. Am. Chem. Soc. 1999, 121, 10987. doi: 10.1021/ja992272b  doi: 10.1021/ja992272b

    36. [36]

      Guerry, P.; Smith, M. E.; Brown, S. P. J. Am. Chem. Soc. 2009, 131, 11861. doi: 10.1021/ja902238s  doi: 10.1021/ja902238s

    37. [37]

      Hudgens, J. J.; Brow, R. K.; Tallant, R. D.; Martin, S. W. J. Non-Cryst. Solids 1998, 223, 21. doi: 10.1016/S0022-3093(97)00347-5  doi: 10.1016/S0022-3093(97)00347-5

    38. [38]

      Hermansen, C.; Guo, X.; Youngman, R. E.; Mauro, J. C.; Smedskjaer, M. M.; Yue, Y. J. Chem. Phys. 2015, 143, 064510. doi: 10.1063/1.4928330  doi: 10.1063/1.4928330

    39. [39]

      Plotnichenko, V.; Sokolov, V.; Koltashev, V.; Dianov, E. J. Non-Cryst. Solids 2002, 306, 209. doi: 10.1016/S0022-3093(02)01172-9  doi: 10.1016/S0022-3093(02)01172-9

    40. [40]

      Nelson, B.; Exarho, G. J. Chem. Phys. 1979, 71, 2739. doi: 10.1063/1.438679  doi: 10.1063/1.438679

    41. [41]

      Magi, M.; Lippmaa, E.; Samoson, A.; Engelhardt, G.; Grimmer, A. J. Chem. Phys. 1984, 88, 1518. doi: 10.1021/j150652a015  doi: 10.1021/j150652a015

    42. [42]

      Stebbins, J. F.; McMillan, P. J. Non-Cryst. Solids 1993, 160, 116. doi: 10.1016/0022-3093(93)90292-6  doi: 10.1016/0022-3093(93)90292-6

    43. [43]

      Jiang, Q.; Zeng, H. D; Li, X.; Ren, J. J.; Chen, G.; Liu, F. J. Chem. Phys. 2014, 141, 124506. doi: 10.1063/1.4896150  doi: 10.1063/1.4896150

    44. [44]

      Youngman, R.; Hogue, C.; Aitken, B. MRS Online Proc. Libr. 2006, 984, 84. doi: 10.1557/PROC-984-0984-MM12-03  doi: 10.1557/PROC-984-0984-MM12-03

  • 加载中
    1. [1]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    2. [2]

      Biao Fang Runwei Mo . PVDF-based solid-state battery. Chinese Journal of Structural Chemistry, 2024, 43(8): 100347-100347. doi: 10.1016/j.cjsc.2024.100347

    3. [3]

      Tianyi Hou Yunhui Huang Henghui Xu . Interfacial engineering for advanced solid-state Li-metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100313-100313. doi: 10.1016/j.cjsc.2024.100313

    4. [4]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    5. [5]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    6. [6]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    7. [7]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    8. [8]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    9. [9]

      Chaochao WeiRu WangZhongkai WuQiyue LuoZiling JiangLiang MingJie YangLiping WangChuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717

    10. [10]

      Caixia LiYi QiuYufeng ZhaoWuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846

    11. [11]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    12. [12]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    13. [13]

      Yang Deng Yitao Ouyang Chao Han . Constriction-susceptible makes fast cycling of lithium metal in solid-state batteries: Silicon as an example. Chinese Journal of Structural Chemistry, 2024, 43(7): 100276-100276. doi: 10.1016/j.cjsc.2024.100276

    14. [14]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    15. [15]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

    16. [16]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

    17. [17]

      Liang MingDan LiuQiyue LuoChaochao WeiChen LiuZiling JiangZhongkai WuLin LiLong ZhangShijie ChengChuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387

    18. [18]

      Xuejie GaoXinyang ChenMing JiangHanyan WuWenfeng RenXiaofei YangRuncang Sun . Long-lifespan thin Li anode achieved by dead Li rejuvenation and Li dendrite suppression for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109448-. doi: 10.1016/j.cclet.2023.109448

    19. [19]

      Yue Zheng Tianpeng Huang Pengxian Han Jun Ma Guanglei Cui . Cathodal Li-ion interfacial transport in sulfide-based all-solid-state batteries: Challenges and improvement strategies. Chinese Journal of Structural Chemistry, 2024, 43(10): 100390-100390. doi: 10.1016/j.cjsc.2024.100390

    20. [20]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

Metrics
  • PDF Downloads(6)
  • Abstract views(478)
  • HTML views(63)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return