Citation: WANG Shizhao, LI Weijun, YU Yue, LIU Jin, ZHANG Cheng. Aggregation-Induced Emission Property of a Novel Pt(Ⅱ) Metal Complex and Its Self-Sensitized Oxidation Reaction in Photo-Excitation State[J]. Acta Physico-Chimica Sinica, ;2019, 35(11): 1276-1281. doi: 10.3866/PKU.WHXB201902014 shu

Aggregation-Induced Emission Property of a Novel Pt(Ⅱ) Metal Complex and Its Self-Sensitized Oxidation Reaction in Photo-Excitation State

  • Corresponding author: LI Weijun, liwj@zjut.edu.cn ZHANG Cheng, czhang@zjut.edu.cn
  • Received Date: 19 February 2019
    Revised Date: 18 March 2019
    Accepted Date: 21 March 2019
    Available Online: 28 November 2019

    Fund Project: Zhejiang Provincial Natural Science Foundation of China LY19E030006Zhejiang Provincial Natural Science Foundation of China LZ17E030001the National Natural Science Foundation of China 51673174the National Natural Science Foundation of China 51603185China Postdoctoral Science Foundation 2018M632498The project was supported by the National Natural Science Foundation of China (51603185, 51673174), Zhejiang Provincial Natural Science Foundation of China (LQ19E030016, LY19E030006, LZ17E030001), China Postdoctoral Science Foundation (2018M632498), and the Zhejiang Provincial Postdoctoral fellowship, China (Z71101009)the Zhejiang Provincial Postdoctoral fellowship, China Z71101009Zhejiang Provincial Natural Science Foundation of China LQ19E030016

  • The excited states of transition metal complexes with a wide range of photochemical and photophysical properties have attracted considerable attention recently. However, the luminescence property is affected by concentration quenching in practical applications. Aggregation-induced emission (AIE) is an effective strategy to solve this problem. In this work, a new imidazole-based N^C^N Pt(Ⅱ) metal complex, PtP2IM, with the AIE property was synthesized and characterized according to its single crystal structure. Under visible light, we found that the metal complex undergoes a photo-oxidation reaction with the generation of a new red-emitting, imidazole/benzoylimino-based N^C^N' Pt(Ⅱ) metal complex, PtPIMO, which was also confirmed by the crystal structure. Additional studies on the reaction process and conditions of this photo-oxidation reaction were conducted using different methods, such as NMR, UV-Vis spectroscopy, and so on. The experimental results showed that the change from PtP2IM to PtPIMO gradually occurred, and the new photochemical reaction was finally concluded as the C=C double bond in either one of the two imidazole rings of the PtP2IM complex was attacked by oxygen to generate a new complex, PtPIMO, under photoirradiation in air. Electron paramagnetic resonance (EPR) measurements demonstrated the production of singlet oxygen, which is an excited state of oxygen with a high energy. Through the density functional theory (DFT) calculations, the electronic transition was determined to be a metal to ligand charge transfer (MLCT) in which more energy could transfer from the triplet excited state of PtP2IM to the ground-state oxygen to generate singlet oxygen (1O2) with a high intersystem crossing (ISC) efficiency due to the spin-orbit coupling of Pt heavy atoms. When large amounts of the singlet capture agent, triethylenediamine (TEDA) were added, the previously observed UV-Vis spectra change that corresponded to the photo oxidation reaction was not detected, which means that the photo-oxidation reaction observed in the case of PtP2IM was because of the oxidation by singlet oxygen. When oxygen was removed, excellent photostability and an obvious aggregation-induced emission (AIE) were observed for PtP2IM with the luminescent quantum efficiency of PtP2IM in solution and as a film at ~3% and ~20%, respectively. Based on the packing structure in the crystal, we observed that there were no strong intermolecular interactions, such as π-π or Pt-Pt interactions. Additionally, many intermolecular CH―π bonds between the two adjacent PtP2IM molecules were observed, which could effectively limit the rotation of the peripheral phenyl group linked to the imidazole ring. Thus, the AIE property of PtP2IM was attributed to the restricted intramolecular rotation (RIR) effect of the peripheral flexible phenyl group that was linked to the imidazole ring in the solid state in which the vibration of multiple peripheral benzene rings was effectively suppressed. This decreased the non-radiative transition rate and induced the high luminescent quantum efficiency. In the aggregation state, PtP2IM still demonstrated the photo-oxidation reaction by singlet oxygen. Thus, we report a new Pt(Ⅱ) metal complex, PtP2IM, with the AIE property that can undergo an uncommon photo-oxidation reaction in the photo-excitation state. This work aimed to elucidate the basic photochemical and photophysics of transition metal complexes with the AIE property.
  • 加载中
    1. [1]

      Li, K.; Tong, G. S. M.; Wan, Q. Y.; Cheng, G.; Tog, W. Y.; Ang, W. H.; Kwong, W. L.; Che, C. M. Chem. Sci. 2016,7, 1653. doi: 10.1039/c5sc03766b  doi: 10.1039/c5sc03766b

    2. [2]

      Zhang, S. T.; Yao, L.; Peng, Q. M.; Li, W. J.; Pan, Y. Y.; Xiao, R.; Gao, Y.; Gu, C.; Wang, Z. M.; Lu, P.; et al. Adv. Funct. Mater. 2015,25, 1755. doi: 10.1002/adfm.201404260  doi: 10.1002/adfm.201404260

    3. [3]

      Wei, C. D.; Ge, G. P.; Li, C. Y.; Lei, K. W.; Liang, H. Z.; Yu, G.; Liu, Z. W. Acta Phys. -Chim. Sin. 2015, 31, 17.  doi: 10.3866/PKU.WHXB201411212

    4. [4]

      Wang, J.; Zhang, F. J.; Xu, Z.; Wang, Y. S. Acta Phys. -Chim. Sin. 2012, 28, 949.  doi: 10.3866/PKU.WHXB201201163

    5. [5]

      Zhang, J.; Du, P. W.; Schneider, J.; Jarosz, P.; Eisenberg, R. J. Am. Chem. Soc. 2007, 129, 7726. doi: 10.1021/ja071789h  doi: 10.1021/ja071789h

    6. [6]

      Zhong, J. J.; Yang, C.; Chang, X. Y.; Zou, C.; Lu, W.; Che, C. M. Chem. Commun. 2017, 53, 8948. doi: 10.1039/c7cc03823b  doi: 10.1039/c7cc03823b

    7. [7]

      Xiao, J. D.; Shang, Q. C.; Xiong, Y. J.; Zhang, Q.; Luo, Y.; Yu, S. H.; Jiang, H. L. Angew. Chem. Int. Ed. 2016, 55, 1. doi: 10.1002/anie.201603990  doi: 10.1002/anie.201603990

    8. [8]

      Grove, L. J.; Rennekamp, J. M.; Jude, H.; Connick, W. B. J. Am. Chem. Soc. 2004, 126, 1594. doi: 10.1021/ja037783j  doi: 10.1021/ja037783j

    9. [9]

      Zhang, M. M.; Saha, M. L.; Wang, M.; Zhou, Z. X.; Song, B.; Lu, C. J.; Yan, X. Z.; Li, X. P.; Huang, F. H.; Yin, S. C.; et al. J. Am. Chem. Soc. 2017, 139, 5067. doi: 10.1021/jacs.6b12536  doi: 10.1021/jacs.6b12536

    10. [10]

      Saha, M. L.; Yan, X. Z.; Stang, P. J. Acc. Chem. Res. 2006, 49, 2527. doi: 10.1021/acs.accounts.6b00416  doi: 10.1021/acs.accounts.6b00416

    11. [11]

      Garcia-Chocano, V. M.; Sanchez-Dehesa, J. Appl. Catal. B 2006, 69, 1. doi: 10.1016/j.apacoust.2012.06.008  doi: 10.1016/j.apacoust.2012.06.008

    12. [12]

      Zhou, J.; Zhang, Y. Z.; Yu, G. C.; Crawley, M. R.; Fulong, C. R. P.; Friedman, A. E.; Sengupta, S.; Sun, J. F.; Li, Q.; Huang, F. H.; et al. J. Am. Chem. Soc. 2018, 140, 7730. doi: 10.1021/jacs.8b04929  doi: 10.1021/jacs.8b04929

    13. [13]

      Nosaka, Y.; Nosaka, A. Y. Chem. Rev. 2017, 117, 11302. doi: 10.1021/acs.chemrev.7b00161  doi: 10.1021/acs.chemrev.7b00161

    14. [14]

      Ge, J. C.; Lan, M. H.; Zhou, B. J.; Liu, W. M.; Guo, L.; Wang, H.; Jia, Q. Y.; Niu, G. L.; Huang, X.; Zhou, H. Y. Nat. Commun. 2014, 5, 4596. doi: 10.1038/ncomms5596  doi: 10.1038/ncomms5596

    15. [15]

      von Kockritz-Blickwede, M.; Goldmann, O.; Thulin, P.; Heinemann, K.; Norrby-Teglund, A.; Rohde, M.; Medina, E. Blood 2008, 111, 6. doi: 10.1182/blood-2007-07-104018  doi: 10.1182/blood-2007-07-104018

    16. [16]

      Yogo, T.; Urano, Y.; Ishitsuka, Y.; Maniwa, F.; Nagano, T. J. Am. Chem. Soc. 2005, 127, 12162. doi: 10.1021/ja0528533  doi: 10.1021/ja0528533

    17. [17]

      Zhao, J. Z.; Wu, W. H.; Sun, J. F.; Guo, S. Chem. Soc. Rev. 2013, 42, 5323. doi: 10.1039/c3cs35531d  doi: 10.1039/c3cs35531d

    18. [18]

      Adarsh, N.; Avirah, R. R.; Ramaiah, D. Org. Lett. 2010, 12, 5720. doi: 10.1021/ol102562k  doi: 10.1021/ol102562k

    19. [19]

      Zhou, C. J.; Zhang, S. T.; Gao, Y.; Liu, H. C.; Shan, T.; Liang, X. M.; Yang, B.; Ma, Y. G. Adv. Funct. Mater. 2018, 1802407. doi: 10.1002/adfm.201802407  doi: 10.1002/adfm.201802407

    20. [20]

      Yin, L.; Liang, C.; Chen, K. X.; Zhao, C. X.; Yao, J.; Li, H. R. Acta Phys. -Chim. Sin. 2017, 33, 1390.  doi: 10.3866/PKU.WHXB201704111

    21. [21]

      Shi, H. B.; Liu, J. Z.; Geng, J. L.; Tang, B. Z.; Liu, B. J. Am. Chem. Soc. 2012, 134, 9569. doi: 10.1021/ja302369e  doi: 10.1021/ja302369e

    22. [22]

      Chen, S. J.; Hong, Y. N.; Liu, Y.; Liu, J. Z.; Leung, C. W. T.; Li, M.; Kwok, R. T. K.; Zhao, E. G.; Lam, J. W. Y.; Yu, Y. J. Am. Chem. Soc. 2013, 135, 4926. doi: 10.1021/ja400337p  doi: 10.1021/ja400337p

    23. [23]

      Ding, D.; Goh, C. C.; Feng, G. X.; Zhao, Z. J.; Liu, J.; Liu, R. R.; Tomczak, N.; Geng, J. L.; Tang, B. Z.; Ng, L.G. Adv. Mater. 2013, 25, 6083. doi: 10.1002/adma.201301938  doi: 10.1002/adma.201301938

    24. [24]

      Atkins, A. J.; Talotta, F.; Freitag, L.; Boggio-Pasqua, M.; Gonzalez, L. J. Chem. Theory Comput. 2017, 13, 4123. doi: 10.1021/acs.jctc.7b00379  doi: 10.1021/acs.jctc.7b00379

    25. [25]

      White, E. H.; Harding, M. J. C. Photochem. Photobiol. 1965, 4, 1129. doi: 10.1111/j.1751-1097.1965.tb09302.x  doi: 10.1111/j.1751-1097.1965.tb09302.x

    26. [26]

      Yu, Y.; Zhao, R. Y.; Zhou, C. J.; Sun, X. Y.; Wang, S. Z.; Gao, Y.; Li, W. J.; Lu, P.; Yang, B.; Zhang, C. Chem. Commun. 2019, 55, 977. doi: 10.1039/C8CC08558G  doi: 10.1039/C8CC08558G

    27. [27]

      Baciocchi, E.; Del Giacco, T.; Elisei, F.; Gerini, M. F.; Guerra, M.; Lapi, A.; Liberali, P. J. Am. Chem. Soc. 2003, 125, 16444. doi: 10.1021/ja037591  doi: 10.1021/ja037591

    28. [28]

      Liu, J.; Li, W. J.; Liu, M. J.; Dong, Y. J.; Dai, Y. Y.; Song, Q. B.; Wang, J. L.; Zhang, C. Phys. Chem. Chem. Phys. 2018, 20, 28279. doi: 10.1039/C8CP05581E  doi: 10.1039/C8CP05581E

    29. [29]

      Li, W. J.; Wang, S. Z.; Zhang, Y. J.; Gao, Y.; Dong, Y. J.; Zhang, X.; Song, Q. B.; Yang, B.; Ma, Y. G.; Zhang, C. J. Mater. Chem. C 2017, 5, 8097. doi: 10.1039/C7TC02474F  doi: 10.1039/C7TC02474F

  • 加载中
    1. [1]

      Yan ZhuJia LiuMeiheng LvTingting WangDongxiang ZhangRong ShangXin-Dong JiangJianjun DuGuiling Wang . Heavy-atom-free orthogonal configurative dye 1,7-di-anthra-aza-BODIPY for singlet oxygen generation. Chinese Chemical Letters, 2024, 35(10): 109446-. doi: 10.1016/j.cclet.2023.109446

    2. [2]

      Chi ZhangNing DingYuwei PanLichun FuYing Zhang . The degradation pathways of contaminants by reactive oxygen species generated in the Fenton/Fenton-like systems. Chinese Chemical Letters, 2024, 35(10): 109579-. doi: 10.1016/j.cclet.2024.109579

    3. [3]

      Xing TianDi WuWanheng WeiGuifu DaiZhanxian LiBenhua WangMingming Yu . A lipid droplets-targetable fluorescent probe for polarity detection in cells of iron death, inflammation and fatty liver tissue. Chinese Chemical Letters, 2024, 35(6): 108912-. doi: 10.1016/j.cclet.2023.108912

    4. [4]

      Yiling LiZekun GaoXiuxiu YueMinhuan LanXiuli ZhengBenhua WangShuang ZhaoXiangzhi Song . FRET-based two-photon benzo[a] phenothiazinium photosensitizer for fluorescence imaging-guided photodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109133-. doi: 10.1016/j.cclet.2023.109133

    5. [5]

      Rongxin ZhuShengsheng YuXuanzong YangRuyu ZhuHui LiuKaikai NiuLingbao Xing . Construction of pyrene-based hydrogen-bonded organic frameworks as photocatalysts for photooxidation of styrene in water. Chinese Chemical Letters, 2024, 35(10): 109539-. doi: 10.1016/j.cclet.2024.109539

    6. [6]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    7. [7]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    8. [8]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    9. [9]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    10. [10]

      Leichen WangAnqing MeiNa LiXiaohong RuanXu SunYu CaiJinjun ShaoXiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974

    11. [11]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    12. [12]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    13. [13]

      Ling Tang Yan Wan Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345

    14. [14]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    15. [15]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

    16. [16]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    17. [17]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    18. [18]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    19. [19]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    20. [20]

      Qiyan WuRuixin ZhouZhangyi YaoTanyuan WangQing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416

Metrics
  • PDF Downloads(9)
  • Abstract views(423)
  • HTML views(82)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return