Citation: CHENG Fei, YANG Jian, YAN Liang, ZHAO Jun, ZHAO Huahua, SONG Huanling, CHOU Lingjun. Influence of the Composition/Texture of Solid Acid WO3/TiO2-Supported Lithium-Manganese Catalysts on the Oxidative Coupling of Methane[J]. Acta Physico-Chimica Sinica, ;2019, 35(9): 1027-1036. doi: 10.3866/PKU.WHXB201902004 shu

Influence of the Composition/Texture of Solid Acid WO3/TiO2-Supported Lithium-Manganese Catalysts on the Oxidative Coupling of Methane

  • Corresponding author: YANG Jian, yjian@licp.cas.cn CHOU Lingjun, ljchou@licp.cas.cn
  • Received Date: 1 February 2019
    Revised Date: 1 March 2019
    Accepted Date: 6 March 2019
    Available Online: 8 September 2019

    Fund Project: the "Strategic Priority Research Program" of the Chinese Academy of Sciences XDA09030101The project was supported by the Petro China Innovation Foundation (2016D-5007-0506) and the "Strategic Priority Research Program" of the Chinese Academy of Sciences (XDA09030101)The project was supported by the Petro China Innovation Foundation 2016D-5007-0506

  • The selective oxidation of methane to basic petrochemicals (ethylene and ethane) is desirable and has attracted extensive research attention. The oxidative coupling of methane (OCM) is considered a promising one-step route for the production of C2 compounds (ethylene and ethane) from methane, and has been the focus of industrial and fundamental studies. It is widely accepted that the composition is a crucial factor governing the activity of a catalyst system. It was found that the phase structures, basicity, existing status and distribution of the active components, oxygen species, and chemical states of the catalyst were influenced by the composition and ratio, resulting in different catalytic performances for the OCM. In this study, a series of solid acid WO3/TiO2-supported lithium-manganese oxide catalysts for OCM were synthesized via the impregnation method. The impacts of diverse compositions, such as the individual contents (Li and Mn) and dual contents (Li-Mn), on the OCM were investigated in detail, using inductively coupled plasma optical emission spectrometry, X-ray diffraction, high-resolution transmission electron microscopy, CO2-temperature-programmed desorption, O2-temperature-programmed desorption, H2-temperature-programmed reduction, Raman spectroscopy, X-ray photoelectron spectroscopy, and CH4-temperature-programmed surface reaction. The addition of Li content to the catalyst not only led to the anatase-to-rutile crystal structure transformation of TiO2, and the reduction of the high-valence-state Mn species to low-valence-state Mn, but also increased the content of surface lattice oxygen and decreased the surface basicity. The observed effects on the structures and catalytic performance suggest that the Li content is helpful in suppressing the formation of completely oxidized CO2, and increases the C2 selectivity. Moreover, increasing the Li content of the catalyst facilitated the mobility of the lattice oxygen, which triggered the promotion of CH4 activation, thereby enhancing the OCM catalytic performance. The Mn content acted as the active sites for OCM; therefore, the performance of the catalyst was closely related to the Mn concentration and valence state. However, the WO3/TiO2-supported catalyst with excessive Mn content exhibited a high surface basicity, high valence state of Mn, and low abundant lattice oxygen, which was unfavorable for C2 selectivity. The Raman spectroscopy results revealed that MnTiO3 was formed due to the co-existence of Li and Mn on WO3/TiO2, and played an essential role in improving the low-temperature OCM performance. There was a synergic effect of the Li and Mn components on the OCM. The optimal performance (16.3% C2 yield) was achieved over the WO3/TiO2-supported lithium-manganese catalyst with n(Li) : n(Mn) = 2 : 1 at 750 ℃.
  • 加载中
    1. [1]

      Ji, S. F.; Xiao, T. C.; Li, S. B.; Chou, L. J.; Zhang, B.; Xu, C. Z.; Hou, R. L.; York, A. P. E.; Green, M. L. H. J. Catal. 2003, 220, 47. doi: 10.1016/S0021-9517(03)00248-3  doi: 10.1016/S0021-9517(03)00248-3

    2. [2]

      Elkins, T. W.; Roberts, S. J.; Hagelin-Weaver, H. E. Appl. Catal. A Gen. 2016, 528, 175. doi: 10.1016/j.apcata.2016.09.011  doi: 10.1016/j.apcata.2016.09.011

    3. [3]

      Lee, H.; Lee, D. H.; Ha, J. M.; Kim, D. H. Appl. Catal. A Gen. 2018, 557, 39. doi: 10.1016/j.apcata.2018.03.007  doi: 10.1016/j.apcata.2018.03.007

    4. [4]

      Igenegbai, V. O.; Meyer, R. J.; Linic S. Appl. Catal. B Environ. 2018, 230, 29. doi: 10.1016/j.apcatb.2018.02.040  doi: 10.1016/j.apcatb.2018.02.040

    5. [5]

      Keller, G. E.; Bhasin, M. M. J. Catal. 1982, 73, 9. doi: 10.1016/0021-9517(82)90075-6  doi: 10.1016/0021-9517(82)90075-6

    6. [6]

      Rane, V. H.; Chaudhari, S. T.; Choudhary, V. R. J. Nat. Gas Chem. 2008, 17, 313. doi: 10.1016/S1003-9953(09)60001-3  doi: 10.1016/S1003-9953(09)60001-3

    7. [7]

      Cheng, F.; Yang, J.; Yan, L.; Zhao, J.; Zhao, H. H.; Song, H. L.; Chou, L. J. React. Kinet. Mech. Cat. 2018, 125, 675. doi: 10.1007/s11144-018-1477-y  doi: 10.1007/s11144-018-1477-y

    8. [8]

      Wang, P. W.; Zhang, X.; Zhao, G. F.; Liu, Y.; Lu, Y. Chin. J. Catal. 2018, 39, 1395. doi: 10.1016/S1872-2067(18)63076-1  doi: 10.1016/S1872-2067(18)63076-1

    9. [9]

      Arandiyan, H.; Dai, H. X.; Deng, J. G.; Wang, Y.; Sun, H. Y.; Xie, S. H.; Bai, B. Y.; Liu, Y.; Ji, K. M.; Li, J. H. J. Phys. Chem. C 2014, 118, 14913. doi: 10.1021/jp502256t  doi: 10.1021/jp502256t

    10. [10]

      Takanabe, K.; Iglesia, E. J. Phys. Chem. C 2009, 113, 10131. doi: 10.1021/jp9001302  doi: 10.1021/jp9001302

    11. [11]

      Zavyalova, U.; Holena, M.; Schlögl, R.; Baerns, M. ChemCatChem 2011, 3, 1935. doi: 10.1002/cctc.201100186  doi: 10.1002/cctc.201100186

    12. [12]

      Dubois, J. L.; Rebours, B.; Cameron, C. J. Appl. Catal. 1990, 67, 73. doi: 10.1016/S0166-9834(00)84432-2  doi: 10.1016/S0166-9834(00)84432-2

    13. [13]

      Luo, L. F.; Jin, Y. K.; Pan, H. B.; Zheng, X. S.; Wu, L. H.; You, R.; Huang, W. X. J. Catal. 2017, 346, 57. doi: 10.1002/cctc.201700610  doi: 10.1002/cctc.201700610

    14. [14]

      Yunarti, R. T.; Lee, M.; Hwang, Y. J.; Choi, J. W.; Suh, D. J.; Lee, J.; Kim, I. W.; Ha, J. M. Catal. Commun. 2014, 50, 54. doi: 10.1016/j.catcom.2014.02.026  doi: 10.1016/j.catcom.2014.02.026

    15. [15]

      Wang, J. X.; Chou, L. J.; Zhang, B.; Song, H. L.; Zhao, J.; Yang, J.; Li, S. B. J. Mol. Catal. A Chem. 2006, 245, 272. doi: 10.1016/j.molcata.2005.09.038  doi: 10.1016/j.molcata.2005.09.038

    16. [16]

      Peng, L.; Xu, J. W.; Fang, X. Z.; Liu, W. M.; Xu, X. L.; Liu, L.; Li, Z. C.; Peng, H. G.; Zheng, R. Y.; Wang, X. Eur. J. Inorg. Chem. 2018, 2018, 1787. doi: 10.1002/ejic.201701440  doi: 10.1002/ejic.201701440

    17. [17]

      Kus, S.; Otremba, M.; Taniewski, M. Fuel 2003, 82, 1331. doi: 10.1016/S0016-2361(03)00030-9  doi: 10.1016/S0016-2361(03)00030-9

    18. [18]

      Li, Z. N.; Wang, S. L.; Hong, W.; Zou, S. H.; Xiao, L. Q.; Fan, J. ChemNanoMat 2018, 4, 487. doi: 10.1002/cnma.201800019  doi: 10.1002/cnma.201800019

    19. [19]

      Qin, H. L.; Chen, L.; Yu, X. W.; Wu, M. Y.; Yan, Z. C. J. Mater. Sci: Mater. Electron. 2018, 29, 2060. doi: 10.1007/s10854-017-8119-4  doi: 10.1007/s10854-017-8119-4

    20. [20]

      Zhao, W. Y.; Li, Z. Q.; Wang, Y.; Fan, R. R.; Zhang, C.; Wang, Y.; Guo, X.; Wang, R.; Zhang, S. L. Catalysts 2018, 8, 375. doi: 10.3390/catal8090375  doi: 10.3390/catal8090375

    21. [21]

      Shubin, A.; Zilberberg, I.; Ismagilov, I.; Matus, E.; Kerzhentsev, M.; Ismagilov, Z. Mol. Catal. 2018, 445, 307. doi: 10.1016/j.mcat.2017.11.039  doi: 10.1016/j.mcat.2017.11.039

    22. [22]

      Koirala, R.; Büchel, R.; Pratsinis, S. E.; Baiker, A. Appl. Catal. A Gen. 2014, 484, 97. doi: 10.1016/j.apcata.2014.07.013  doi: 10.1016/j.apcata.2014.07.013

    23. [23]

      Simon, U.; Villaseca, S. A.; Shang, H. H.; Levchenko, S. V.; Arndt, S.; Epping, J. D.; Görke, O.; Scheffler, M.; Schomäker, R.; Tol, J. V.; et al. ChemCatChem 2017, 9, 3597. doi: 10.1002/cctc.201700610  doi: 10.1002/cctc.201700610

    24. [24]

      Chen, F. F.; Cao, F. L.; Li, H. X.; Bian, Z. F. Langmuir 2015, 31, 3494. doi: 10.1021/la5048744  doi: 10.1021/la5048744

    25. [25]

      Arillo, M. Á.; López, M. L.; Pico, C.; Veiga, M. L. Solid State Sci. 2008, 10, 1612. doi: 10.1016/j.solidstatesciences.2008.03.020  doi: 10.1016/j.solidstatesciences.2008.03.020

    26. [26]

      Vu, N. H.; Arunkumar, P.; Won, S.; Kim, H. J.; Unithrattil, S.; Oh, Y.; Leed, J. W.; Im, W. B. Electrochim. Acta 2017, 225, 458. doi: 10.1016/j.electacta.2016.12.180  doi: 10.1016/j.electacta.2016.12.180

    27. [27]

      Wang, S. H.; Yang, J.; Wu, X. B.; Li, Y. X.; Gong, Z. L.; Wen, W.; Lin, M.; Yang, J. H.; Yang, Y. J. Power Sources 2014, 245, 570. doi: 10.1016/j.jpowsour.2013.07.021  doi: 10.1016/j.jpowsour.2013.07.021

    28. [28]

      Wang, P. W.; Zhao, G. F.; Wang, Y.; Lu, Y. Sci. Adv. 2017, 3, 1. doi: 10.1126/sciadv.1603180  doi: 10.1126/sciadv.1603180

    29. [29]

      Song, J. J.; Sun, Y. N.; Ba, R. B.; Huang, S. S.; Zhao, Y. H.; Zhang, J.; Sun, Y. H.; Zhu, Y. Nanoscale 2015, 7, 2260. doi: 10.1039/c4nr06660j  doi: 10.1039/c4nr06660j

    30. [30]

      Istadi, Amin, N. A. S. J. Mol. Catal. A 2006, 259, 61. doi: 10.1016/j.molcata.2006.06.003  doi: 10.1016/j.molcata.2006.06.003

    31. [31]

      Chu, C. Q.; Zhao, Y. H.; Li, S. G.; Sun, Y. H. Phys. Chem. Chem. Phys. 2016, 18, 16509. doi: 10.1039/c6cp02459a  doi: 10.1039/c6cp02459a

    32. [32]

      Istadi, A. N. A. S. J. Nat. Gas Chem. 2004, 13, 23.

    33. [33]

      Wang, Y.; Arandiyan, H.; Tahini, H. A.; Scott, J.; Tan, X.; Dai, H.; Gale, J. D.; Rohl, A. L.; Smith, S. C.; Amal, R. Nat. Commun. 2017, 8, 15553. doi: 10.1038/ncomms15553  doi: 10.1038/ncomms15553

    34. [34]

      Chou, L. J.; Cai, Y. C.; Zhang, B.; Niu, J. Z.; Ji, S. F.; Li, S. B. Appl. Catal. A Gen. 2003, 238, 185. doi: 10.1016/S0926-860X(02)00343-5  doi: 10.1016/S0926-860X(02)00343-5

    35. [35]

      Jeon, W.; Lee, J. Y.; Lee, M.; Choi, J. W.; Ha, J. M.; Suh, D. J.; Kim, I. W. Appl. Catal. A Gen. 2013, 464–465, 68. doi: 10.1016/j.apcata.2013.05.020  doi: 10.1016/j.apcata.2013.05.020

    36. [36]

      Fleischer, V.; Steuer, R.; Parishan, S.; Schomäcker, R. J. Catal. 2016, 341, 91. doi: 10.1016/j.jcat.2016.06.014  doi: 10.1016/j.jcat.2016.06.014

    37. [37]

      Palermo, A.; Vazquez, J. P. H.; Lee, A. F.; Tikhov, M. S.; Lambert, R. M. J. Catal. 1998, 177, 259. doi: 10.1006/jcat.1998.2109  doi: 10.1006/jcat.1998.2109

    38. [38]

      Liu, W. C.; Ralston, W. T.; Melaet, G.; Somorjai, G. A. Appl. Catal. A Gen. 2017, 545, 17. doi: 10.1016/j.apcata.2017.07.017  doi: 10.1016/j.apcata.2017.07.017

    39. [39]

      Jiang, Z. C.; Gong, H.; Li, S. B. Stud. Surf. Sci. Catal. 1997, 112, 481. doi: 10.1016/S0167-2991(97)80872-5  doi: 10.1016/S0167-2991(97)80872-5

    40. [40]

      Lomonosov, V. I.; Gordienko, Y. A.; Sinev, M. Y.; Rogov, V. A.; Sadykov, V. A. Russ. J. Phys. Chem. A 2018, 92, 430. doi: 10.1134/S0036024418030147  doi: 10.1134/S0036024418030147

    41. [41]

      Shahri, S. M. K.; Alavi, S. M. J. Nat. Gas Chem. 2009, 18, 25. doi: 10.1016/S1003-9953(08)60079-1  doi: 10.1016/S1003-9953(08)60079-1

    42. [42]

      Xu, X. L.; Liu, F.; Han, X.; Wu, Y. Y.; Liu, W. M.; Zhang, R. B.; Zhang, N.; Wang, X. Catal. Sci. Technol. 2016, 6, 5280. doi: 10.1039/c5cy01870f  doi: 10.1039/c5cy01870f

    43. [43]

      Sun, G. B.; Hidajat, K.; Wu, X. S.; Kawi, S. Appl. Catal. B Environ. 2008, 81, 303. doi: 10.1016/j.apcatb.2007.12.021  doi: 10.1016/j.apcatb.2007.12.021

    44. [44]

      Brabers, V. A. M.; Setten, F. M. V.; Knapen, P. S. A. J. Solid State Chem. 1983, 49, 93. doi: 10.1016/0022-4596(83)90220-7  doi: 10.1016/0022-4596(83)90220-7

    45. [45]

      Zheng, W.; Cheng, D. G.; Zhu, N.; Chen, F. Q.; Zhan, X. L. J. Nat. Gas Chem. 2010, 19, 15. doi: 10.1016/S1003-9953(09)60029-3  doi: 10.1016/S1003-9953(09)60029-3

    46. [46]

      Arndt, S.; Otremba, T.; Simon, U.; Yildiz, M.; Schubert, H.; Schomäcker, R. Appl. Catal. A Gen. 2012, 425–426, 53. doi: 10.1002/chin.201229234  doi: 10.1002/chin.201229234

    47. [47]

      Jiang, Z. C.; Yu, C. J.; Fang, X. P.; Li, S. B.; Wang, H. L. J. Phys. Chem. 1993, 97, 12870. doi: 10.1021/j100151a038  doi: 10.1021/j100151a038

    48. [48]

      Kang, M.; Park, E. D.; Kim, J. M.; Yie, J. E. Appl. Catal. A Gen. 2007, 327, 261. doi: 10.1016/j.apcata.2007.05.024  doi: 10.1016/j.apcata.2007.05.024

    49. [49]

      Gambo, Y.; Jalila, A. A.; Triwahyono, S.; Abdulrasheed, A. A. J. Ind. Eng. Chem. 2018, 59, 218. doi: 10.1016/j.jiec.2017.10.027  doi: 10.1016/j.jiec.2017.10.027

    50. [50]

      Lee, M. R.; Park, M. J.; Jeon, W.; Choi, J. W.; Suh, Y. W.; Suh, D. J. Fuel Process. Technol. 2012, 96, 175. doi: 10.1016/j.fuproc.2011.12.038  doi: 10.1016/j.fuproc.2011.12.038

    51. [51]

      Sun, J.; Thybaut, J. W.; Marin, G. B. Catal. Today 2008, 137, 90. doi: 10.1016/j.cattod.2008.02.026  doi: 10.1016/j.cattod.2008.02.026

  • 加载中
    1. [1]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    2. [2]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    3. [3]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    4. [4]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    5. [5]

      Yuanyi ZhouKe MaJinfeng LiuZirun ZhengBo HuYu MengZhizhong LiMingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056

    6. [6]

      Chi ZhangNing DingYuwei PanLichun FuYing Zhang . The degradation pathways of contaminants by reactive oxygen species generated in the Fenton/Fenton-like systems. Chinese Chemical Letters, 2024, 35(10): 109579-. doi: 10.1016/j.cclet.2024.109579

    7. [7]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    8. [8]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    9. [9]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

    10. [10]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    11. [11]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    12. [12]

      Yaping WangPengcheng YuanZeyuan XuXiong-Xiong LiuShengfa FengMufan CaoChen CaoXiaoqiang WangLong PanZheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776

    13. [13]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    14. [14]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

    15. [15]

      Tao LongPeng ChenBin FengCaili YangKairong WangYulei WangCan ChenYaping WangRuotong LiMeng WuMinhuan LanWei Kong PangJian-Fang WuYuan-Li Ding . Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode. Chinese Chemical Letters, 2024, 35(4): 109267-. doi: 10.1016/j.cclet.2023.109267

    16. [16]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    17. [17]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    18. [18]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    19. [19]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    20. [20]

      Shunshun JiangJi ZhangJing WangShan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955

Metrics
  • PDF Downloads(10)
  • Abstract views(366)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return