Influence of the Composition/Texture of Solid Acid WO3/TiO2-Supported Lithium-Manganese Catalysts on the Oxidative Coupling of Methane
- Corresponding author: YANG Jian, yjian@licp.cas.cn CHOU Lingjun, ljchou@licp.cas.cn
	            Citation:
	            
		            CHENG Fei, YANG Jian, YAN Liang, ZHAO Jun, ZHAO Huahua, SONG Huanling, CHOU Lingjun. Influence of the Composition/Texture of Solid Acid WO3/TiO2-Supported Lithium-Manganese Catalysts on the Oxidative Coupling of Methane[J]. Acta Physico-Chimica Sinica,
							;2019, 35(9): 1027-1036.
						
							doi:
								10.3866/PKU.WHXB201902004
						
					
				
					 
				
	        
 
	                
				Ji, S. F.; Xiao, T. C.; Li, S. B.; Chou, L. J.; Zhang, B.; Xu, C. Z.; Hou, R. L.; York, A. P. E.; Green, M. L. H. J. Catal. 2003,   220, 47. doi: 10.1016/S0021-9517(03)00248-3
												 doi: 10.1016/S0021-9517(03)00248-3
											
										
				Elkins, T. W.; Roberts, S. J.; Hagelin-Weaver, H. E. Appl. Catal. A Gen. 2016,   528, 175. doi: 10.1016/j.apcata.2016.09.011
												 doi: 10.1016/j.apcata.2016.09.011
											
										
				Lee, H.; Lee, D. H.; Ha, J. M.; Kim, D. H. Appl. Catal. A Gen. 2018,   557, 39. doi: 10.1016/j.apcata.2018.03.007
												 doi: 10.1016/j.apcata.2018.03.007
											
										
				Igenegbai, V. O.; Meyer, R. J.; Linic S. Appl. Catal. B Environ. 2018,   230, 29. doi: 10.1016/j.apcatb.2018.02.040
												 doi: 10.1016/j.apcatb.2018.02.040
											
										
				Keller, G. E.; Bhasin, M. M. J. Catal. 1982,   73, 9. doi: 10.1016/0021-9517(82)90075-6
												 doi: 10.1016/0021-9517(82)90075-6
											
										
				Rane, V. H.; Chaudhari, S. T.; Choudhary, V. R. J. Nat. Gas Chem. 2008,   17, 313. doi: 10.1016/S1003-9953(09)60001-3
												 doi: 10.1016/S1003-9953(09)60001-3
											
										
				Cheng, F.; Yang, J.; Yan, L.; Zhao, J.; Zhao, H. H.; Song, H. L.; Chou, L. J. React. Kinet. Mech. Cat. 2018,  125, 675. doi: 10.1007/s11144-018-1477-y
												 doi: 10.1007/s11144-018-1477-y
											
										
				Wang, P. W.; Zhang, X.; Zhao, G. F.; Liu, Y.; Lu, Y. Chin. J. Catal. 2018,   39, 1395. doi: 10.1016/S1872-2067(18)63076-1
												 doi: 10.1016/S1872-2067(18)63076-1
											
										
				Arandiyan, H.; Dai, H. X.; Deng, J. G.; Wang, Y.; Sun, H. Y.; Xie, S. H.; Bai, B. Y.; Liu, Y.; Ji, K. M.; Li, J. H. J. Phys. Chem. C 2014,  118, 14913. doi: 10.1021/jp502256t
												 doi: 10.1021/jp502256t
											
										
				Takanabe, K.; Iglesia, E. J. Phys. Chem. C 2009,   113, 10131. doi: 10.1021/jp9001302
												 doi: 10.1021/jp9001302
											
										
				Zavyalova, U.; Holena, M.; Schlögl, R.; Baerns, M. ChemCatChem 2011,   3, 1935. doi: 10.1002/cctc.201100186
												 doi: 10.1002/cctc.201100186
											
										
				Dubois, J. L.; Rebours, B.; Cameron, C. J. Appl. Catal. 1990,   67, 73. doi: 10.1016/S0166-9834(00)84432-2
												 doi: 10.1016/S0166-9834(00)84432-2
											
										
				Luo, L. F.; Jin, Y. K.; Pan, H. B.; Zheng, X. S.; Wu, L. H.; You, R.; Huang, W. X. J. Catal. 2017,   346, 57. doi: 10.1002/cctc.201700610
												 doi: 10.1002/cctc.201700610
											
										
				Yunarti, R. T.; Lee, M.; Hwang, Y. J.; Choi, J. W.; Suh, D. J.; Lee, J.; Kim, I. W.; Ha, J. M. Catal. Commun. 2014,   50, 54. doi: 10.1016/j.catcom.2014.02.026
												 doi: 10.1016/j.catcom.2014.02.026
											
										
				Wang, J. X.; Chou, L. J.; Zhang, B.; Song, H. L.; Zhao, J.; Yang, J.; Li, S. B. J. Mol. Catal. A Chem. 2006,   245, 272. doi: 10.1016/j.molcata.2005.09.038
												 doi: 10.1016/j.molcata.2005.09.038
											
										
				Peng, L.; Xu, J. W.; Fang, X. Z.; Liu, W. M.; Xu, X. L.; Liu, L.; Li, Z. C.; Peng, H. G.; Zheng, R. Y.; Wang, X. Eur. J. Inorg. Chem. 2018,   2018, 1787. doi: 10.1002/ejic.201701440
												 doi: 10.1002/ejic.201701440
											
										
				Kus, S.; Otremba, M.; Taniewski, M. Fuel 2003,   82, 1331. doi: 10.1016/S0016-2361(03)00030-9
												 doi: 10.1016/S0016-2361(03)00030-9
											
										
				Li, Z. N.; Wang, S. L.; Hong, W.; Zou, S. H.; Xiao, L. Q.; Fan, J. ChemNanoMat 2018,   4, 487. doi: 10.1002/cnma.201800019
												 doi: 10.1002/cnma.201800019
											
										
				Qin, H. L.; Chen, L.; Yu, X. W.; Wu, M. Y.; Yan, Z. C. J. Mater. Sci: Mater. Electron. 2018,   29, 2060. doi: 10.1007/s10854-017-8119-4
												 doi: 10.1007/s10854-017-8119-4
											
										
				Zhao, W. Y.; Li, Z. Q.; Wang, Y.; Fan, R. R.; Zhang, C.; Wang, Y.; Guo, X.; Wang, R.; Zhang, S. L. Catalysts 2018,   8, 375. doi: 10.3390/catal8090375
												 doi: 10.3390/catal8090375
											
										
				Shubin, A.; Zilberberg, I.; Ismagilov, I.; Matus, E.; Kerzhentsev, M.; Ismagilov, Z. Mol. Catal. 2018,   445, 307. doi: 10.1016/j.mcat.2017.11.039
												 doi: 10.1016/j.mcat.2017.11.039
											
										
				Koirala, R.; Büchel, R.; Pratsinis, S. E.; Baiker, A. Appl. Catal. A Gen. 2014,   484, 97. doi: 10.1016/j.apcata.2014.07.013
												 doi: 10.1016/j.apcata.2014.07.013
											
										
				Simon, U.; Villaseca, S. A.; Shang, H. H.; Levchenko, S. V.; Arndt, S.; Epping, J. D.; Görke, O.; Scheffler, M.; Schomäker, R.; Tol, J. V.; et al. ChemCatChem 2017,   9, 3597. doi: 10.1002/cctc.201700610
												 doi: 10.1002/cctc.201700610
											
										
				Chen, F. F.; Cao, F. L.; Li, H. X.; Bian, Z. F. Langmuir 2015,   31, 3494. doi: 10.1021/la5048744
												 doi: 10.1021/la5048744
											
										
				Arillo, M. Á.; López, M. L.; Pico, C.; Veiga, M. L. Solid State Sci. 2008,   10, 1612. doi: 10.1016/j.solidstatesciences.2008.03.020
												 doi: 10.1016/j.solidstatesciences.2008.03.020
											
										
				Vu, N. H.; Arunkumar, P.; Won, S.; Kim, H. J.; Unithrattil, S.; Oh, Y.; Leed, J. W.; Im, W. B. Electrochim. Acta 2017,   225, 458. doi: 10.1016/j.electacta.2016.12.180
												 doi: 10.1016/j.electacta.2016.12.180
											
										
				Wang, S. H.; Yang, J.; Wu, X. B.; Li, Y. X.; Gong, Z. L.; Wen, W.; Lin, M.; Yang, J. H.; Yang, Y. J. Power Sources 2014,  245, 570. doi: 10.1016/j.jpowsour.2013.07.021
												 doi: 10.1016/j.jpowsour.2013.07.021
											
										
				Wang, P. W.; Zhao, G. F.; Wang, Y.; Lu, Y. Sci. Adv. 2017,   3, 1. doi: 10.1126/sciadv.1603180
												 doi: 10.1126/sciadv.1603180
											
										
				Song, J. J.; Sun, Y. N.; Ba, R. B.; Huang, S. S.; Zhao, Y. H.; Zhang, J.; Sun,  Y. H.; Zhu, Y. Nanoscale 2015,   7, 2260. doi: 10.1039/c4nr06660j
												 doi: 10.1039/c4nr06660j
											
										
				Istadi, Amin, N. A. S. J. Mol. Catal. A 2006,   259, 61. doi: 10.1016/j.molcata.2006.06.003
												 doi: 10.1016/j.molcata.2006.06.003
											
										
				Chu, C. Q.; Zhao, Y. H.; Li, S. G.; Sun, Y. H. Phys. Chem. Chem. Phys. 2016,   18, 16509. doi: 10.1039/c6cp02459a
												 doi: 10.1039/c6cp02459a
											
										
				Istadi, A. N. A. S. J. Nat. Gas Chem. 2004,   13, 23.
										
				Wang, Y.; Arandiyan, H.; Tahini, H. A.; Scott, J.; Tan, X.; Dai, H.; Gale, J. D.; Rohl, A. L.; Smith, S. C.; Amal, R. Nat. Commun. 2017,  8, 15553. doi: 10.1038/ncomms15553
												 doi: 10.1038/ncomms15553
											
										
				Chou, L. J.; Cai, Y. C.; Zhang, B.; Niu, J. Z.; Ji, S. F.; Li, S. B. Appl. Catal. A Gen. 2003,   238, 185. doi: 10.1016/S0926-860X(02)00343-5
												 doi: 10.1016/S0926-860X(02)00343-5
											
										
				Jeon, W.; Lee, J. Y.; Lee, M.; Choi, J. W.; Ha, J. M.; Suh, D. J.; Kim, I. W. Appl. Catal. A Gen. 2013,   464–465, 68. doi: 10.1016/j.apcata.2013.05.020
												 doi: 10.1016/j.apcata.2013.05.020
											
										
				Fleischer, V.; Steuer, R.; Parishan, S.; Schomäcker, R. J. Catal. 2016,   341, 91. doi: 10.1016/j.jcat.2016.06.014
												 doi: 10.1016/j.jcat.2016.06.014
											
										
				Palermo, A.; Vazquez, J. P. H.; Lee, A. F.; Tikhov, M. S.; Lambert, R. M. J. Catal. 1998,   177, 259. doi: 10.1006/jcat.1998.2109
												 doi: 10.1006/jcat.1998.2109
											
										
				Liu, W. C.; Ralston, W. T.; Melaet, G.; Somorjai, G. A. Appl. Catal. A Gen. 2017,   545, 17. doi: 10.1016/j.apcata.2017.07.017
												 doi: 10.1016/j.apcata.2017.07.017
											
										
				Jiang, Z. C.; Gong, H.; Li, S. B. Stud. Surf. Sci. Catal. 1997,   112, 481. doi: 10.1016/S0167-2991(97)80872-5
												 doi: 10.1016/S0167-2991(97)80872-5
											
										
				Lomonosov, V. I.; Gordienko, Y. A.; Sinev, M. Y.; Rogov, V. A.; Sadykov, V. A. Russ. J. Phys. Chem. A 2018,   92, 430. doi: 10.1134/S0036024418030147
												 doi: 10.1134/S0036024418030147
											
										
				Shahri, S. M. K.; Alavi, S. M. J. Nat. Gas Chem. 2009,   18, 25. doi: 10.1016/S1003-9953(08)60079-1
												 doi: 10.1016/S1003-9953(08)60079-1
											
										
				Xu, X. L.; Liu, F.; Han, X.; Wu, Y. Y.; Liu, W. M.; Zhang, R. B.; Zhang, N.; Wang, X. Catal. Sci. Technol. 2016,   6, 5280. doi: 10.1039/c5cy01870f
												 doi: 10.1039/c5cy01870f
											
										
				Sun, G. B.; Hidajat, K.; Wu, X. S.; Kawi, S. Appl. Catal. B Environ. 2008,   81, 303. doi: 10.1016/j.apcatb.2007.12.021
												 doi: 10.1016/j.apcatb.2007.12.021
											
										
				Brabers, V. A. M.; Setten, F. M. V.; Knapen, P. S. A. J. Solid State Chem. 1983,   49, 93. doi: 10.1016/0022-4596(83)90220-7
												 doi: 10.1016/0022-4596(83)90220-7
											
										
				Zheng, W.; Cheng, D. G.; Zhu, N.; Chen, F. Q.; Zhan, X. L. J. Nat. Gas Chem. 2010,   19, 15. doi: 10.1016/S1003-9953(09)60029-3
												 doi: 10.1016/S1003-9953(09)60029-3
											
										
				Arndt, S.; Otremba, T.; Simon, U.; Yildiz, M.; Schubert, H.; Schomäcker, R. Appl. Catal. A Gen. 2012,   425–426, 53. doi: 10.1002/chin.201229234
												 doi: 10.1002/chin.201229234
											
										
				Jiang, Z. C.; Yu, C. J.; Fang, X. P.; Li, S. B.; Wang, H. L. J. Phys. Chem. 1993,   97, 12870. doi: 10.1021/j100151a038
												 doi: 10.1021/j100151a038
											
										
				Kang, M.; Park, E. D.; Kim, J. M.; Yie, J. E. Appl. Catal. A Gen. 2007,   327, 261. doi: 10.1016/j.apcata.2007.05.024
												 doi: 10.1016/j.apcata.2007.05.024
											
										
				Gambo, Y.; Jalila, A. A.; Triwahyono, S.; Abdulrasheed, A. A. J. Ind. Eng. Chem. 2018,   59, 218. doi: 10.1016/j.jiec.2017.10.027
												 doi: 10.1016/j.jiec.2017.10.027
											
										
				Lee, M. R.; Park, M. J.; Jeon, W.; Choi, J. W.; Suh, Y. W.; Suh, D. J. Fuel Process. Technol. 2012,   96, 175. doi: 10.1016/j.fuproc.2011.12.038
												 doi: 10.1016/j.fuproc.2011.12.038
											
										
				Sun, J.; Thybaut, J. W.; Marin, G. B. Catal. Today 2008,   137, 90. doi: 10.1016/j.cattod.2008.02.026
												 doi: 10.1016/j.cattod.2008.02.026
											
										
 
						
						
						
	                Lin Zhang , Jianlong Li , Maoyuan Hu , Yao Xu , Xiaoli Xiong , Zhaoyu Jin . MOF-derived beaded stream-like nitrogen and phosphorus-codoped carbon-coated Fe3O4 nanocomposites via lattice-oxygen-mediated mechanism for efficient water oxidation. Chinese Chemical Letters, 2025, 36(8): 111123-. doi: 10.1016/j.cclet.2025.111123
Renshu Huang , Jinli Chen , Xingfa Chen , Tianqi Yu , Huyi Yu , Kaien Li , Bin Li , Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171
Wenjie Jiang , Zhixiang Zhai , Xiaoyan Zhuo , Jia Wu , Boyao Feng , Tianqi Yu , Huan Wen , Shibin Yin . Revealing the reactant adsorption role of high-valence WO3 for boosting urea-assisted water splitting. Chinese Journal of Structural Chemistry, 2025, 44(3): 100519-100519. doi: 10.1016/j.cjsc.2025.100519
Fei ZHOU , Xiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236
Zhangyong LIU , Lihui XU , Yue YANG , Liming WANG , Hong PAN , Xinzhe HUANG , Xueqiang FU , Yingxiu ZHANG , Meiran DOU , Meng WANG , Yi TENG . Preparation and photocatalytic performance of CsxWO3/TiO2 based on full spectral response. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1445-1464. doi: 10.11862/CJIC.20240345
Zhiqiang Wang , Yajie Gao , Tianjun Wang , Wei Chen , Zefeng Ren , Xueming Yang , Chuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602
Xinlin Zhang , Cheng Tang , Haitao Li , Jie Sun , Aijun Du , Minghong Wu , Haijiao Zhang . Robust assembly of TiO2 quantum dots onto Ti3C2Tx for excellent lithium storage capability. Chinese Chemical Letters, 2025, 36(6): 110088-. doi: 10.1016/j.cclet.2024.110088
Cailiang Yue , Nan Sun , Yixing Qiu , Linlin Zhu , Zhiling Du , Fuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698
Fei Yin , Erli Yang , Xue Ge , Qian Sun , Fan Mo , Guoqiu Wu , Yanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753
Shuang Cao , Bo Zhong , Chuanbiao Bie , Bei Cheng , Feiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016
Siqi Sun , Cheng Zhao , Zhaohuan Zhang , Ding Wang , Xinru Yin , Jingting Han , Jinlei Wei , Yong Zhao , Yongheng Zhu . Highly selective QCM sensor based on functionalized hierarchical hollow TiO2 nanospheres for detecting ppb-level 3-hydroxy-2-butanone biomarker at room temperature. Chinese Chemical Letters, 2025, 36(5): 109939-. doi: 10.1016/j.cclet.2024.109939
Zhongyu Wang , Lijun Wang , Huaixin Zhao . DNA-based nanosystems to generate reactive oxygen species for nanomedicine. Chinese Chemical Letters, 2024, 35(11): 109637-. doi: 10.1016/j.cclet.2024.109637
Qing Liu , Tangxin Xiao , Zhouyu Wang , Leyong Wang . Reactive oxygen species generation by organic materials for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(10): 111504-. doi: 10.1016/j.cclet.2025.111504
Tieping CAO , Yuejun LI , Dawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Le Ye , Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257
Le Li , Shaofeng Jia , Shi Yue , Yuanyuan Yang , Chao Tan , Conghui Wang , Hengwei Qiu , Yongqiang Ji , Minghui Cao , Zige Tai , Dan Zhang . Vanadium doping inhibit the Jahn−Teller effect of Mn3+ for high-performance aqueous zinc ion battery. Chinese Chemical Letters, 2025, 36(10): 111009-. doi: 10.1016/j.cclet.2025.111009
Yuanyi Zhou , Ke Ma , Jinfeng Liu , Zirun Zheng , Bo Hu , Yu Meng , Zhizhong Li , Mingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056
Chi Zhang , Ning Ding , Yuwei Pan , Lichun Fu , Ying Zhang . The degradation pathways of contaminants by reactive oxygen species generated in the Fenton/Fenton-like systems. Chinese Chemical Letters, 2024, 35(10): 109579-. doi: 10.1016/j.cclet.2024.109579