Citation: WANG Qingqing, WANG Jinling, JIANG Shengxiang, LI Pingyun. Recent Progress in Sol-Gel Method for Designing and Preparing Metallic and Alloy Nanocrystals[J]. Acta Physico-Chimica Sinica, ;2019, 35(11): 1186-1206. doi: 10.3866/PKU.WHXB201902002 shu

Recent Progress in Sol-Gel Method for Designing and Preparing Metallic and Alloy Nanocrystals

  • Corresponding author: LI Pingyun, lpyljr@126.com
  • Received Date: 1 February 2019
    Revised Date: 5 March 2019
    Accepted Date: 6 March 2019
    Available Online: 20 November 2019

    Fund Project: the National Natural Science Foundation of China 51201090The project was supported by the National Natural Science Foundation of China (51201090) and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (PAPD)

  • The sol-gel method, developed for over 150 years, is a conventional route for designing and preparing various kinds of metal oxide materials. In the sol-gel method, different chemical agents are homogenously mixed together in aqueous or organic solutions. During the evaporation of the solvents, the solution transforms to sol and gel through polycondensation or polyesterification reaction, and the dried gel is obtained after the complete evaporation of the solvent. Then, the dried precursor is often heat-treated in air at high temperature to induce the formation of oxide materials, especially the multi-component oxide materials that are difficult to prepare using other methods. Recently, new developments have been achieved in the sol-gel method. The application of the sol-gel method has been extended to the preparation of metallic nanomaterials, especially the alloy nanocrystals. For instance, the sol-gel method can be used to prepare CoPt and FePt hard magnetic alloy nanocrystals; CoCrCuNiAl high-entropy alloy nanocrystals; Ni3Fe and Cu3Pt alloy nanocrystals with equilibrium-ordered crystalline phases; and Ni, Cu, Bi, Sb, Te, Ag, Pt, and Pd monometallic nanocrystals. This article reviews the recent progresses in the sol-gel method for designing and preparing metallic and alloy nanocrystals, as well as the detailed experimental procedures and the different metallic nanocrystals that can be obtained by the sol-gel method. The crystalline phase formed in the final calcined products can be determined from the thermodynamic calculations of the sol-gel method. The thermodynamic model involves the calculation of the Gibbs free energy change of the reaction between the metallic oxide and reducing gases, such as hydrogen. A negative change and a positive change in the Gibbs free energy of the reaction correspond to the formation of metallic and alloy crystalline phases, or oxide crystalline phase, respectively. Based on the thermodynamic calculations and the relationship between the Gibbs free energy and standard electrodynamic potential of the chemical reaction, a new parameter, metal oxide standard electrode potential, was proposed. This electrode potential is different from the conventional standard metal electrode potential. A metallic crystalline phase is obtained if the electrode potential of the corresponding metal oxide is positive, while a metal oxide crystalline phase is obtained if the electrode potential of the metal oxide is negative. We also discuss the possible applications, including the magnetic and electrocatalytic applications, of the metallic and alloy nanocrystals that have been obtained by the sol-gel method. Finally, the future prospects of the application of the sol-gel method in designing metallic and alloy nanocrystals are discussed.
  • 加载中
    1. [1]

      Cushing, B. L.; Kolesnichenko, V. L.; O'Connor, C. J. Chem. Rev.2004, 104, 3893. doi: 10.1021/cr030027b  doi: 10.1021/cr030027b

    2. [2]

      Chen, F. Y.; Xiao, L.; Yang, C. X.; Zhuang, L. Acta Phys. -Chim. Sin. 2015, 31, 2310.  doi: 10.3866/PKU.WHXB201510162

    3. [3]

      Gong, C.; Xiang, S. W.; Zhang, Z. Y.; Sun, L.; Ye, C. Q.; Lin, C. J. Acta Phys. -Chim. Sin. 2019, 35, 616.  doi: 10.3866/PKU.WHXB201805082

    4. [4]

      Danks, A. E.; Hall, S. R.; Schnepp, Z. Mater. Horizons 2016, 3, 91. doi: 10.1039/c5mh00260e  doi: 10.1039/c5mh00260e

    5. [5]

      Mathur, S.; Veith, M.; Rapalaviciute, R.; Shen. H.; Goya, G. F.; Filho, W. L. M.; Berquo, T. S. Chem. Mater. 2004, 16, 1906. doi: 10.1021/cm0311729  doi: 10.1021/cm0311729

    6. [6]

      Emili, M.; Incoccia, L.; Mobilio, S.; Fagherazzi, G.; Guglielmi, M. J. Non-Cryst. Solids 1985, 74, 129. doi: 10.1016/0022-3093(85)90407-7  doi: 10.1016/0022-3093(85)90407-7

    7. [7]

      Liu, J.; Qiao, S. Z.; Liu, H.; Chen, J.; Orpe, A.; Zhao, D. Y.; Lu. G. Q. Angew. Chem. Int. Ed. 2011, 50, 5947. doi: 10.1002/anie.201102011  doi: 10.1002/anie.201102011

    8. [8]

      Su, H. L.; Tang, N. J.; Wang, R. L.; Nie, B.; Tang, S. L.; Lv, L. Y.; Du, Y. W. Chem. Lett. 2007, 36, 180. doi: 10.1246/cl.2007.180  doi: 10.1246/cl.2007.180

    9. [9]

      Su, H. L.; Tang, N. J.; Nie, B.; Tang, S. L.; Wang, R. L.; Lu, M.; Zhang, S. Y.; Lv, L. Y.; Du, Y. W. Thin Solid Films 2007, 515, 7066. doi: 10.1016/j.tsf.2007.02.094  doi: 10.1016/j.tsf.2007.02.094

    10. [10]

      Xu, L. Q.; Chen, L. Y.; Huang, H. F.; Xie, R.; Xia, W. B.; Wei, J.; Zhong, W.; Tang, S. L.; Du, Y. W. J. Alloy. Compd. 2014, 593, 93. doi: 10.1016/j.jallcom.2014.01.043  doi: 10.1016/j.jallcom.2014.01.043

    11. [11]

      Xu, L. Q.; Huang, H. F.; Tang, S. L.; Chen, L. Y.; Xie, R.; Xia, W. B.; Wei, J.; Zhong, W.; Du, Y. W. J. Sol-gel Sci. Technol. 2014, 69, 130. doi: 10.1007/s10971-013-3195-2  doi: 10.1007/s10971-013-3195-2

    12. [12]

      Zhang, X. W.; Jiang, X. H.; Xiong, F.; Wang, C. L.; Yang, S. G. Mater. Res. Bull. 2017, 95, 248. doi: 10.1016/j.materresbull.2017.07.044  doi: 10.1016/j.materresbull.2017.07.044

    13. [13]

      Jiang, Y. W.; Yang, S. G.; Hua, Z. H.; Huang, H. B. Angew. Chem. Int. Ed. 2009, 48, 8529. doi: 10.1002/anie.200903444  doi: 10.1002/anie.200903444

    14. [14]

      Hua, Z. H.; Yang, S. G.; Huang, H. B.; Lv, L. Y.; Lu, M.; Gu, B. X.; Du, Y. W. Nanotechnology 2006, 17, 5106. doi: 10.1088/0957-4484/17/20/011  doi: 10.1088/0957-4484/17/20/011

    15. [15]

      Hua, Z. H.; Deng, Y.; Li, K. N.; Yang, S. G. Nanoscale Res Lett. 2012, 7, 129. doi: 10.1186/1556-276X-129  doi: 10.1186/1556-276X-129

    16. [16]

      Hua, Z. H.; Cao, Z. W.; Deng, Y.; Jiang, Y. W.; Yang, S. G. Mater. Chem. Phys. 2011, 126, 542. doi: 10.1016/j.matchemphys.2011.01.033  doi: 10.1016/j.matchemphys.2011.01.033

    17. [17]

      Jiang, Y. W.; Yang, S. G.; Hua, Z. H.; Gong, J. F.; Zhao, X. N. Mater. Res. Bull. 2011, 46, 2531. doi: 10.1016/j.materresbull.2011.08.013  doi: 10.1016/j.materresbull.2011.08.013

    18. [18]

      Zhang, X. W.; Hua, Z. H.; Yang, S. G. J. Sol-gel Sci. Technol. 2016, 78, 171. doi: 10.1007/s10971-015-3909-8  doi: 10.1007/s10971-015-3909-8

    19. [19]

      Zhang, X. W.; Xiong, F.; Jiang, X. H.; Hua, Z. H.; Wang, C. L.; Yang, S. G. Appl. Phys. Lett. 2016, 109, 243106. doi: 10.1063/1.4972185  doi: 10.1063/1.4972185

    20. [20]

      Li, P. Y.; Li, F. S.; Deng, G. D.; Guo, X.D.; Liu, H. Y.; Jiang, W.; Wang, T. H. Chem. Commun. 2016, 52, 2996. doi: 10.1039/c5cc08848h  doi: 10.1039/c5cc08848h

    21. [21]

      Li, P. Y.; Wang, Q. Q.; Deng, G. D.; Guo, X.D.; Jiang, W.; Liu, H. Y.; Li, F. S.; Thanh, N. T. K. Phys. Chem. Chem. Phys. 2017, 19, 24742. doi: 10.1039/c7cp04097k  doi: 10.1039/c7cp04097k

    22. [22]

      Li, P. Y.; Deng, G. D.; Guo, X.D.; Liu, H. Y.; Jiang, W.; Li, F. S. J. Alloy. Compd. 2016, 668, 159. doi: 10.1016/j.jallcom.2016.01.203  doi: 10.1016/j.jallcom.2016.01.203

    23. [23]

      Li, P. Y.; Sun, J.; Li, H.; Guo, X.D.; Deng, G. D.; Liu, H. Y.; Jiang, W.; Li, F. S.; Gu, Z. M.; Wang, Y. J. Chem. Lett. 2015, 44, 868. doi: 10.1246/cl.150118  doi: 10.1246/cl.150118

    24. [24]

      Zhang, P.; Li, P. Y.; Li, F. S.; Jiang, W.; Cao, Z. H. J. Sol-gel Sci. Technol. 2014, 72, 398. doi: 10.1007/s10971-014-3449-7  doi: 10.1007/s10971-014-3449-7

    25. [25]

      Li, P. Y.; Zhang, P.; Li, F. S.; Jiang, W.; Cao, Z. H. J. Sol-gel Sci. Technol. 2013, 68, 261. doi: 10.1007/s10971-013-3162-y  doi: 10.1007/s10971-013-3162-y

    26. [26]

      Li, P. Y.; Jiang, W.; Li, F. S. Chem. Lett. 2013, 42, 816. doi: 10.1246/cl.130213  doi: 10.1246/cl.130213

    27. [27]

      Li, P. Y.; Jiang, W.; Li, F. S. J. Sol-gel Sci. Technol. 2013, 66, 533. doi: 10.1007/s10971-013-3043-4  doi: 10.1007/s10971-013-3043-4

    28. [28]

      Li, P. Y.; Jiang, W.; Li, F. S. J. Sol-gel Sci. Technol. 2013, 65, 359. doi: 10.1007/s10971-012-2944-y  doi: 10.1007/s10971-012-2944-y

    29. [29]

      Li, P. Y.; Syed, J. A.; Meng, X. K. J. Alloy. Compd. 2012, 512, 47. doi: 10.1016/j.jallcom.2011.09.007  doi: 10.1016/j.jallcom.2011.09.007

    30. [30]

      Li, P. Y.; Cao, Z. H.; Meng, X. K. Dalton Trans. 2012, 41, 12101. doi: 10.1039/c2dt31484c  doi: 10.1039/c2dt31484c

    31. [31]

      Gong, J.; Wang, L. L.; Liu, Y.; Yang, J. H.; Zong, Z. G. J. Alloy. Compd. 2008, 457, 6. doi: 10.1016/j.jallcom.2007.02.124  doi: 10.1016/j.jallcom.2007.02.124

    32. [32]

      Yang, J. H.; Feng, B.; Liu, Y.; Zhang, Y. J.; Yang, L. L.; Wang, Y. X.; Wei, M. B.; Lang, J. H.; Wang, D. D.; Liu, X. Y. Appl. Surf. Sci. 2008, 254, 7155. doi: 10.1016/j.apsusc.2008.05.238  doi: 10.1016/j.apsusc.2008.05.238

    33. [33]

      Yang, J. H.; Feng, B.; Liu, Y.; Zhang, Y. J.; Yang, L. L.; Wang, Y. X.; Wei, M. B.; Lang, J. H.; Wang, D. D. J. Alloy. Compd. 2009, 467, L21. doi: 10.1016/j.jallcom.2007.12.068  doi: 10.1016/j.jallcom.2007.12.068

    34. [34]

      Zhang, Y. J.; Yang, Y. T.; Liu, Y.; Wang, Y. X.; Yang, L. L.; Wei, M. B.; Fan, H. G.; Zhai, H. J.; Liu, X. Y.; Liu, Y. Q.; et al. J. Phys. D: Appl. Phys. 2011, 44, 295003. doi: 10.1088/0022-3727/44/29/295003  doi: 10.1088/0022-3727/44/29/295003

    35. [35]

      Wang, Y. X.; Zhang, X. L.; Liu, Y.; Jiang, Y. H.; Zhang, Y. J.; Wang, J. S.; Liu, Y. Q.; Liu, H. L.; Sun, Y. F.; Beach, G. S. D.; et al. J. Phys. D-Appl. Phys. 2012, 45, 485001. doi: 10.1088/0022-3727/45/48/485001  doi: 10.1088/0022-3727/45/48/485001

    36. [36]

      Liu, Y.; Yang, Y. T.; Zhang, Y. J.; Wang, Y. X.; Zhang, X. L.; Jiang, Y. H.; Wei, M. B.; Liu, Y. Q.; Liu, X. Y.; Yang, J. H. Mater. Res. Bull. 2013, 48, 721. doi: 10.1016/j.materresbull.2012.11.019  doi: 10.1016/j.materresbull.2012.11.019

    37. [37]

      Wang, Y. X.; Zhang, X. L.; Liu, Y.; Lv, S. Q.; Jiang, Y. H.; Zhang, Y. J.; Liu, H. L.; Liu, Y. Q.; Yang, J. H. J. Alloy. Compd. 2014, 582, 511. doi: 10.1016/j.jallcom.2013.08.104  doi: 10.1016/j.jallcom.2013.08.104

    38. [38]

      Wang, Y. X.; Zhang, X. L.; Liu, Y.; Jiang, Y. H.; Zhang, Y. J.; Yang, J. H. J. Solid State Chem. 2014, 213, 204. doi: 10.10106/j.jssc.2014.03.001  doi: 10.10106/j.jssc.2014.03.001

    39. [39]

      Liu, Y.; Jiang, Y. H.; Zhang, X. L.; Wang, Y. X.; Zhang, Y. J.; Liu, H. L.; Zhai, H. J.; Liu, Y. Q.; Yang, J. H.; Yan, Y. S. J. Solid State Chem. 2014, 209, 69. doi: 10.10106/j.jssc.2013.10.027  doi: 10.10106/j.jssc.2013.10.027

    40. [40]

      Liu, Y.; Jiang, Y. H.; Kadasala, N.; Zhang, X. L.; Mao, C. Y.; Wang, Y. X.; Liu, H. L.; Jiang, X. N.; Yang, J. H.; Yan, Y. S. J. Sol-gel Sci. Technol. 2014, 72, 156. doi: 10.1007/s10971-014-3442-1  doi: 10.1007/s10971-014-3442-1

    41. [41]

      Yang, J. H.; Jiang, Y. H.; Liu, Y.; Zhang, X. L.; Wang, Y. X.; Zhang, Y. J.; Wang, J.; Li, W.; Cheng, X. Mater. Lett. 2013, 91, 348. doi: 10.10106/j.matlet.2012.08.125  doi: 10.10106/j.matlet.2012.08.125

    42. [42]

      Liu, Y.; Jiang, Y. H.; Zhang, X. L.; Wang, Y. X.; Zhang, Y. J.; Liu, H. L.; Zhai, H. J.; Liu, Y. Q.; Yang, J. H.; Yan, Y. S. Powder Technol. 2013, 239, 217. doi: 10.1016/j.powtec.2013.01.069  doi: 10.1016/j.powtec.2013.01.069

    43. [43]

      Erri, P.; Nader, J.; Varma, A. Adv. Mater. 2008, 20, 1243. doi: 10.1002/adma.200701365  doi: 10.1002/adma.200701365

    44. [44]

      Khort, A.; Podbolotov, K.; Serrano-García, R.; Gunko, Y. J. Solid State Chem. 2017, 253, 270. doi: 10.1016/j.jssc.2017.05.043  doi: 10.1016/j.jssc.2017.05.043

    45. [45]

      Trusov, G. V.; Tarasov, A. B.; Goodilin, E. A.; Rogachev, A.S.; Roslyakov, S. I.; Rouvimov, S.; Podbolotov, K. B.; Mukasyan, A. S. J. Phys. Chem. C 2016, 120, 7165. doi: 10.1021/acs.jpcc.6b00788  doi: 10.1021/acs.jpcc.6b00788

    46. [46]

      Cross, A.; Roslyakov, S.; Manukyan, K. V.; Rouvimov, S.; Rogachev, A. S.; Kovalev, D.; Wolf, E. E.; Mukasyan, A. S. J. Phys. Chem. C 2014, 118, 26191. doi: 10.1021/jp508546n  doi: 10.1021/jp508546n

    47. [47]

      Maunkyan, K. V.; Cross, A.; Roslyakov, S.; Rouvimov, S.; Rogachev, A. S.; Wolf, E. E.; Mukasyan, A. S. J. Phys. Chem. C 2013, 117, 24417. doi: 10.1021/jp408260m  doi: 10.1021/jp408260m

    48. [48]

      Gao, D. Q.; Yang, G. J.; Zhu, Z. H.; Zhang, J.; Yang, Z. L.; Zhang, Z. P.; Xue, D. S. J. Mater. Chem. 2012, 22, 9462. doi: 10.1039/c2jm30548h  doi: 10.1039/c2jm30548h

    49. [49]

      Foo, Y. T.; Chan, J. E. M.; Ngoh, G. C.; Abdullah, A. Z.; Horri, B. A.; Salamatinia, B. Ceram. Int. 2018, 18, 16331. doi: 10.1016/j.ceramint.2017.09.006  doi: 10.1016/j.ceramint.2017.09.006

    50. [50]

      Kumar, A.; Ashok, A.; Bhosale, R. R.; Saleh, M. A. H.; Almomani, F. A.; Marri, M. A.; Khader, M. M.; Tarlochan, F. Catal. Lett. 2016, 146, 778. doi: 10.1007/s10562-0161706-9  doi: 10.1007/s10562-0161706-9

    51. [51]

      Kumar, A.; Wolf, E. E.; Mukasyan, A. S. Aiche J. 2011, 57, 2207. doi: 10.1002/aic.12416  doi: 10.1002/aic.12416

    52. [52]

      Khort, A.; Podbolotov, K.; Serrano-García, R.; Gunko, Y. Inorg. Mater. 2018, 57, 1464. doi: 10.1021/acs.ionrgchem.7b02848  doi: 10.1021/acs.ionrgchem.7b02848

    53. [53]

      Podbolotov, K. B.; Khort, A. A.; Tarasov, A. B.; Trusov, G. V.; Roslyakov, S. I.; Mukasyan, A. S. Combus. Sci. Technol. 2017, 189, 1878. doi: 10.1080/00102202.2017.1334646  doi: 10.1080/00102202.2017.1334646

    54. [54]

      Pál. E.; Kun, R.; Schulze, C.; Z llmer, V.; Lehmhus, D.; B umer, M.; Busse, M. Colloid Polym. Sci. 2012, 290, 941. doi: 10.1007/s00396-012-2612-3  doi: 10.1007/s00396-012-2612-3

    55. [55]

      Niu, B.; Zhang, F.; Ping, H.; Li, N.; Zhou, J. Y.; Lei, L. W.; Xie, J. J.; Zhang, J. Y.; Wang, W. M.; Fu, Z. Y. Sci. Rep. 2017, 7, 2421. doi: 10.1038/s41598-017-03644-6  doi: 10.1038/s41598-017-03644-6

    56. [56]

      Han, Y. D.; Lu, Z. Y.; Teng, Z. G.; Liang, J. L.; Guo, Z. L.; Wang, D. Y.; Han, M. Y.; Yang, W. S. Langmuir 2017, 33, 5879. doi: 10.1021/acs.langmuir.7b01140  doi: 10.1021/acs.langmuir.7b01140

    57. [57]

      Mahy, J. G.; Deschamaps, F.; Collard, V.; Jerome, C.; Bartlett, J.; Lambert, S. D.; Heinrichs, B. J. Sol-gel Sci. Technol. 2018, 87, 568. doi: 10.1007/s10971-018-4751-6  doi: 10.1007/s10971-018-4751-6

    58. [58]

      Crisan, M.; Zaharescu, M.; Kumari, V. D.; Subrahmanyam, M.; Crisan, D.; Dragan, N.; Raileanu, M.; Jitianu, M.; Rusu, A.; Sadanandam, G.; et al. Appl. Surf. Sci. 2011, 258, 448. doi: 10.1016/j.apsusc.2011.08-104  doi: 10.1016/j.apsusc.2011.08-104

    59. [59]

      Aronne, A.; Sannino, F.; Bonavolonta, S. R.; Fanelli, E.; Mingione, A.; Pernice, P.; Spaccini, R.; Pirozzi, D. Environ, Sci. Technol. 2012, 46, 1755. doi: 10.1021/es203223s  doi: 10.1021/es203223s

    60. [60]

      Mahendraprabhu, K.; Elumalai, P. J. Sol-gel Sci. Technol. 2015, 73, 428. doi: 10.1007/s10971-014-3554-7  doi: 10.1007/s10971-014-3554-7

    61. [61]

      Adhikari, S.; Madras, G. Phys. Chem. Chem. Phys. 2017, 19, 13895. doi: 10.1039/c7cp01332a  doi: 10.1039/c7cp01332a

    62. [62]

      Das, H. T.; Mahendraprabhu, K.; Maiyalagan, T.; Elumalai, P. Sci. Rep. 2017, 7, 15342. doi: 10.1038/s41598-017-15444-z  doi: 10.1038/s41598-017-15444-z

    63. [63]

      Jiang, X. C.; Chen, C. Y.; Chen, W. M.; Yu, A. B. Langmuir 2010, 26, 4400. doi: 10.1021/la903470f  doi: 10.1021/la903470f

    64. [64]

      Zhang, H.; Jin, M. S.; Wang, J. G.; Kim, M. J., Yang, D. R.; Xia, Y. N. J. Am. Chem. Soc. 2011, 133, 10422. doi: 10.1021/ja204447k  doi: 10.1021/ja204447k

    65. [65]

      Teaching and Research Section of Inorganic Chemistry, Dalian University of Technology. Inorganic Chemistry, 4th ed.; Higher Education Press: Beijing, 2001; pps. 659-661, 248.

    66. [66]

      Aegerter, M. A.; Leventis, N.; Koebel, M. M. Aerogels Handbook, 1st ed.; Springer: Berlin, Germany, 2011; pps. 155-168, 215-231.

    67. [67]

      Jin, H. Y.; liu, X.; Chen, S. M.; . Vasileff, A.; Li, L. Q.; Jiao, Y.; Song, L.; Zheng, Y.; Qiao, S. Z. ACS Energy Lett. 2019, 4, 805. doi: 10.1021/acsenergylett.9b00348  doi: 10.1021/acsenergylett.9b00348

    68. [68]

      He, L. J. Magn. Magn. Mater. 2010, 32, 1991. doi: 10.1016/j.jmmm.2010.01.020  doi: 10.1016/j.jmmm.2010.01.020

    69. [69]

      Schaefer, Z. L.; Weeber, K. M.; Misra, R.; Schiffer, P.; Schaak, R. E. Chem. Mater. 2011, 23, 2475. doi: 10.1021/cm200410s  doi: 10.1021/cm200410s

    70. [70]

      Ferrando, R.; Jellinek, J.; Johnston, R. L. Chem. Rev. 2008, 108, 845. doi: 10.1021/cr040090g  doi: 10.1021/cr040090g

    71. [71]

      Wang, D. S.; Li, Y. D. Adv. Mater. 2011, 23, 1044. doi: 10.1002/adma.201003695  doi: 10.1002/adma.201003695

    72. [72]

      Guo, H. Z.; Liu, X.; Bai, C. D.; Chen, Y. Z.; Wang, L. S.; Zheng, M. S.; Dong. Q. F.; Peng, D. L. ChemSusChem 2015, 8, 486. doi: 10.1002/cssc.201403037  doi: 10.1002/cssc.201403037

    73. [73]

      He, J. H.; Bian, B. R.; Zheng, Q.; Du, J.; Xia, W. X.; Zhang, J.; Yan, A.; Liu, J. P. Green Chem. 2016, 18, 417. doi: 10.1039/c5gc01253h  doi: 10.1039/c5gc01253h

    74. [74]

      Sun, S. H.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Science 2000, 287, 1989. doi: 10.1126/science.287.5460.1989  doi: 10.1126/science.287.5460.1989

    75. [75]

      Mizrahi, M. D.; Krylova, G.; Giovanetti, L. J.; Ramallo-Lopez, J. M.; Liu, Y. Z.; Schevchenko, E. V.; Requejo, F. G. Nanoscale 2018, 10, 6382. doi: 10.1039/c8nr0060c  doi: 10.1039/c8nr0060c

    76. [76]

      Miracle, D. B.; Senkov, O. N. Acta Mater. 2017, 122, 448. doi: 10.1016/j.actamat.2016.08.081  doi: 10.1016/j.actamat.2016.08.081

    77. [77]

      Wang, D. S.; Li, Y. D. Inorg. Chem. 2011, 50, 5196. doi: 10.1021/ic200485v  doi: 10.1021/ic200485v

    78. [78]

      Wang, D. S.; Peng, D.; Li, Y. D. Nano Res. 2010, 3, 574. doi: 10.1007/s12274-010-0018-4  doi: 10.1007/s12274-010-0018-4

    79. [79]

      Martienssen, W.; Warlimont, H. Springer Handbook of Condensed Matter and Materials Data 2005; Springer: Berlin, Germany, 2005, 10-114.

    80. [80]

      Lide, D. R. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Flordia, United States, 2003-2004.

    81. [81]

      Barin, I. I. Thermochemical Data of Pure Substances, 3rd ed.; VCH: Weinheim, Germany, 1995.

    82. [82]

      Yang, H. R.; Finefrock, S. W.; Caballero, J. D.; Wu, Y. J. Am. Chem. Soc. 2014, 136, 10242. doi: 10.1021/ja505304v  doi: 10.1021/ja505304v

    83. [83]

      He, J. R.; Chen, Y. F.; Lv, W. Q.; Wen, K. C.; Wang, Z. G.; Zhang, W. L.; Li, Y. R.; Qin, W.; He, W. D. ACS Nano 2016, 10, 8837. doi: 10.1021/acsnano.6b04622  doi: 10.1021/acsnano.6b04622

    84. [84]

      Fu, X. C.; Shen, W. X.; Yao, T. Y.; Hou, W. H. Physical Chemistry, 5th ed. (Second part); Higher Education Press: Beijing, 2006; p. 60.

    85. [85]

      Huang, J. L.; Lin, L. Q.; Sun, D. H.; Chen, H. M.; Yang, D. P.; Li, Q. B. Chem. Soc. Rev. 2015, 44, 6330. doi: 10.1039/c5cs00133a  doi: 10.1039/c5cs00133a

    86. [86]

      Chen, P.; Wang, L. K.; Wang, G.; Gao, M. R.; Ge, J.; Yuan, W. J.; Shen, Y. H.; Xie, A. J.; Yu, S. H. Energy Environ. Sci. 2014, 7, 4095. doi: 10.1039/c4ee02531h  doi: 10.1039/c4ee02531h

    87. [87]

      Jeong, U.; Teng, X. W.; Wang, Y.; Yang, H.; Xia, Y. N. Adv. Mater. 2007, 19. 33. doi: 10.1002/adma.200600674  doi: 10.1002/adma.200600674

    88. [88]

      Peng, B.; Zhang, X. L.; Aarts, D. G. A. L.; Dullens, R. P. A. Nat. Nanotechnol. 2018, 13, 478. doi: 10.1038/s41565-018-0108-0  doi: 10.1038/s41565-018-0108-0

    89. [89]

      Seo, W. S.; Lee, J. H.; Sun, X. M.; Suzuki, Y.; Mann, D.; Liu, Z.; Terashima, M.; Yang, P. C.; McConnel, M. V.; Nishimura, D. G.; et al. Nat. Mater. 2006, 5, 971. doi: 10.1038/nmat1775  doi: 10.1038/nmat1775

    90. [90]

      Margeat, O.; Ciuculescu, D..; Lecante, P.; Respaud, M.; Amiens, C.; Chaudret, B. Small 2007, 3, 451. doi: 10.1002/smll. 200600329  doi: 10.1002/smll.200600329

    91. [91]

      Cheng, N. C.; Stambula, S.; Wang, D.; Banis, M. N.; Liu, J.; Riese, A.; Xiao, B. W.; Li, R. Y.; Sham, T. K.; Liu, L. M.; et al. Nat. Commun. 2016, 7, 13638. doi: 10.1038/ncomms13638  doi: 10.1038/ncomms13638

    92. [92]

      Sasaki, K.; Marinkovic, N.; Isaacs, H. S.; Adzic, R. R. ACS Catal. 2016, 6, 69. doi: 10.1021/acscatal.5b01862  doi: 10.1021/acscatal.5b01862

    93. [93]

      Zhang, M. D.; Dai, Q. B.; Zheng, H. G.; Chen, M. D.; Dai, L. M. Adv. Mater. 2018, 30, 1705431. doi: 10.1002/adma.201705431  doi: 10.1002/adma.201705431

    94. [94]

      Liang, Z. Z.; Fan, X.; Lei, H. T.; Qi, J.; Li, Y. Y.; Gao, J. P.; Huo, M. L.; Yuan, H. T.; Zhang, W.; Lin, H. P.; et al. Angew. Chem. Int. Ed. 2018, 57, 13187. doi: 10.1002/anie.201807854  doi: 10.1002/anie.201807854

    95. [95]

      Fan, L. L.; Liu, P. F.; Yan, X. C.; Gu, L.; Yang, Z. Z.; Yang, H. G.; Qiu, S. L.; Yao, X. D. Nat. Commun. 2016, 7, 10667. doi: 10.1038/ncomms10667  doi: 10.1038/ncomms10667

    96. [96]

      Ren, J. W.; Antonietti, M.; Fellinger, T. P. Adv. Energy. Mater. 2015, 5, 1401660. doi: 10.1002/aenm.201401160  doi: 10.1002/aenm.201401160

    97. [97]

      Zhou, M.; Wang, H. L.; Guo, S. J. Chem. Soc. Rev. 2016, 45, 1273. doi: 10.1039/c5cs00414d  doi: 10.1039/c5cs00414d

    98. [98]

      Zhu, Y. Q.; Sun, W. M.; Luo, J.; Chen, W. X.; Cao, T.; Zheng, L. R.; Dong, J. C.; Zhang, J.; Zhang, M. L.; Han, Y. H.; et al. Nat. Commun. 2018, 9, 3861. doi: 10.1038/s41467-018-06296-w  doi: 10.1038/s41467-018-06296-w

    99. [99]

      Fei, H. L.; Dong, J. C.; Feng, Y. X.; Allen, C. S.; Wan, C. Z.; Volosskiy, B.; Li, M. F.; Zhao, Z. P.; Wang, Y. L.; Sun, H. T.; et al. Nat. Catal. 2018, 1, 63. doi: 10.1038/s41929-017-0008-y  doi: 10.1038/s41929-017-0008-y

    100. [100]

      Ma, L.; Wang, R.; Li, Y. H.; Liu, X. F.; Zhang, Q, Q.; Dong, X. Y.; Zang, S. Q. J. Mater. Chem. A 2018, 6, 24071. doi: 10.1039/c8ta08668k  doi: 10.1039/c8ta08668k

    101. [101]

      Xu, Y.; Tu, W. G.; Zhang, B. W.; Yin, S. M.; Huang, Y. Z.; Kraft, M.; Xu, R. Adv. Mater. 2017, 29, 1605957. doi: 10.1002/adma.201605957  doi: 10.1002/adma.201605957

    102. [102]

      Zhong, G. Y.; Li, S. M.; Xu, S. R.; Liao, W. B.; Fu, X. B.; Peng, F. ACS Sus. Chem. Eng. 2018, 6, 15108. doi: 10.10121/acssuschemeng.8b03582  doi: 10.10121/acssuschemeng.8b03582

    103. [103]

      Lin, J.; Yu, M.; Lin, C. K.; Liu, X. M. J. Phys. Chem. C 2007, 111, 5835. doi: 10.1021/jp070062c  doi: 10.1021/jp070062c

    104. [104]

      Deng, J.; Ren, P. J.; Deng, D. H.; Bao, X. H. Angew. Chem. Int. Ed. 2015, 54, 2100. doi: 10.1002/anie.201409524  doi: 10.1002/anie.201409524

    105. [105]

      Yu, J.; Chen, G.; Sunarso, J.; Zhu, Y. L.; Ran, R.; Zhu, Z. H.; Zhou, W.; Shao, Z. P. Adv. Sci. 2016, 3, 1600060. doi: 10.1002/advs.201600060  doi: 10.1002/advs.201600060

    106. [106]

      Yang, S. L.; Zhang, T. R.; Li, G. C.; Yang, L. Q.; Lee, J. Y. Energy Storage Mater. 2017, 6, 140. doi: 10.1016/j.ensm.2016.11.001  doi: 10.1016/j.ensm.2016.11.001

    107. [107]

      Wang, M. Q.; Ye, C.; Wang, M.; Li, T. H.; Yu, Y. N.; Bao, S. J. Energy Storage Mater. 2018, 11, 112. doi: 10.1016/j.ensm.2017.10.003  doi: 10.1016/j.ensm.2017.10.003

    108. [108]

      Vecchio, C. L.; Aricò, A. S.; Monforte, G.; Baglio, V. Renew. Energy 2018, 120, 342. doi: 10.1016/j.renene. 2017.12.084  doi: 10.1016/j.renene.2017.12.084

    109. [109]

      Wei, J.; Wang, G.; Chen, F.; Bai, M.; Liang, Y.; Wang, H. T.; Zhao, D. Y.; Zhao, Y. X. Angew. Chem. Int. Ed. 2018, 57, 9838. doi: 10.1002/anie.201805781  doi: 10.1002/anie.201805781

    110. [110]

      Zhou, Y.; Zhou, Z. Z.; Shen, R. X.; Ma, R. G.; Liu, Q.; Cao, G. Z.; Wang, J. C. Energy Storage Mater. 2018, 13, 189. doi: 10.1016/j.ensm.2018.01.011  doi: 10.1016/j.ensm.2018.01.011

    111. [111]

      Gavrilov, N.; Momčilović, M.; Dobrota, A. S.; Stanković, D. M.; Jokić, B.; Babić, B.; Skorodumova, N. V.; Mentus, S. V.; Pašti, I. A. Surf. Coating. Technol. 2018, 349, 511. doi: 10.1016/j.surfcoat.2018.06.008  doi: 10.1016/j.surfcoat.2018.06.008

    112. [112]

      Wang, D.; Zhou, W. W.; Zhang, R.; Zeng, J. J.; Du, Y.; Qi, S.; Cong, C. X.; Ding, C. Y.; Huang, X. X.; Wen, G. W.; et al. Adv. Mater. 2018, 30, 1803569. doi: 10.1002/adma.201803569  doi: 10.1002/adma.201803569

    113. [113]

      Sanetuntikul, J.; Hyun, S.; Ganesan, P.; Shanmugam, S. J. Mater. Chem. A 2018, 6, 24078. doi: 10.1039/c8ta08476a  doi: 10.1039/c8ta08476a

    114. [114]

      Zhang, L. Z.; Jia, Y.; Gao, G. P.; Yan, X. C.; Chen, N.; Chen, J.; Soo, M. T.; Wood, B.; Yang, D. J.; Du, A. J.; et al. Chem 2018, 4, 285. doi: 10.1016/j.chempr.2017.12.005  doi: 10.1016/j.chempr.2017.12.005

    115. [115]

      Song, X. K.; Chen, S.; Guo, L. L.; Sun, Y.; Li, X. P.; Cao, X.; Wang, Z. X.; Sun, J. H.; Lin, C.; Wang, Y. Adv. Energy Mater. 2018, 8, 1801101. doi: 10.1002/aenm.201801101  doi: 10.1002/aenm.201801101

    116. [116]

      Su, H.; Gao, P.; Wang, M. Y.; Zhai, G. Y.; Zhang, J. J.; Zhao, T. J.; Su, J.; Antonietti, M.; Li, X. H.; Chen, J. S. Angew. Chem. Int. Ed. 2018, 57, 15194. doi: 10.1002/anie.201809858  doi: 10.1002/anie.201809858

    117. [117]

      Gu, D. G.; Zhou, Y.; Ma, R. G.; Wang, F. F.; Liu, Q.; Wang, J. C. Nano-Micro Lett. 2018, 10, 29. doi: 10.1007/s40820-017-0181-1  doi: 10.1007/s40820-017-0181-1

    118. [118]

      Rao, C. V.; Cabrera, C. R.; Ishikawa, Y. J. Phys. Chem. Lett. 2010, 1, 2622. doi: 10.1021/jz100971v  doi: 10.1021/jz100971v

    119. [119]

      Yang, L. J.; Shui, J. L.; Du, L.; Shao, Y. Y.; Liu, J.; . Dai, L. M.; Hu, Z. Adv. Mater. 2019, 31, 1804799. doi: 10.1002/adma.201804799  doi: 10.1002/adma.201804799

    120. [120]

      Wang, N.; Lu, B. Z.; Li, L. G.; Niu, W. H.; Tang, Z. H.; Kang, X. W.; Chen, S. W. ACS Catal. 2018, 8, 6827. doi: 10.1021/acscatal.8b00338  doi: 10.1021/acscatal.8b00338

  • 加载中
    1. [1]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    2. [2]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    3. [3]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    4. [4]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    5. [5]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    6. [6]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    7. [7]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    8. [8]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    9. [9]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    10. [10]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    11. [11]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    12. [12]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    13. [13]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    14. [14]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    15. [15]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    16. [16]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    17. [17]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    18. [18]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    19. [19]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    20. [20]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

Metrics
  • PDF Downloads(37)
  • Abstract views(1086)
  • HTML views(399)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return