Recent Progress in Sol-Gel Method for Designing and Preparing Metallic and Alloy Nanocrystals
- Corresponding author: LI Pingyun, lpyljr@126.com
Citation: WANG Qingqing, WANG Jinling, JIANG Shengxiang, LI Pingyun. Recent Progress in Sol-Gel Method for Designing and Preparing Metallic and Alloy Nanocrystals[J]. Acta Physico-Chimica Sinica, ;2019, 35(11): 1186-1206. doi: 10.3866/PKU.WHXB201902002
Cushing, B. L.; Kolesnichenko, V. L.; O'Connor, C. J. Chem. Rev.2004, 104, 3893. doi: 10.1021/cr030027b
doi: 10.1021/cr030027b
Chen, F. Y.; Xiao, L.; Yang, C. X.; Zhuang, L. Acta Phys. -Chim. Sin. 2015, 31, 2310.
doi: 10.3866/PKU.WHXB201510162
Gong, C.; Xiang, S. W.; Zhang, Z. Y.; Sun, L.; Ye, C. Q.; Lin, C. J. Acta Phys. -Chim. Sin. 2019, 35, 616.
doi: 10.3866/PKU.WHXB201805082
Danks, A. E.; Hall, S. R.; Schnepp, Z. Mater. Horizons 2016, 3, 91. doi: 10.1039/c5mh00260e
doi: 10.1039/c5mh00260e
Mathur, S.; Veith, M.; Rapalaviciute, R.; Shen. H.; Goya, G. F.; Filho, W. L. M.; Berquo, T. S. Chem. Mater. 2004, 16, 1906. doi: 10.1021/cm0311729
doi: 10.1021/cm0311729
Emili, M.; Incoccia, L.; Mobilio, S.; Fagherazzi, G.; Guglielmi, M. J. Non-Cryst. Solids 1985, 74, 129. doi: 10.1016/0022-3093(85)90407-7
doi: 10.1016/0022-3093(85)90407-7
Liu, J.; Qiao, S. Z.; Liu, H.; Chen, J.; Orpe, A.; Zhao, D. Y.; Lu. G. Q. Angew. Chem. Int. Ed. 2011, 50, 5947. doi: 10.1002/anie.201102011
doi: 10.1002/anie.201102011
Su, H. L.; Tang, N. J.; Wang, R. L.; Nie, B.; Tang, S. L.; Lv, L. Y.; Du, Y. W. Chem. Lett. 2007, 36, 180. doi: 10.1246/cl.2007.180
doi: 10.1246/cl.2007.180
Su, H. L.; Tang, N. J.; Nie, B.; Tang, S. L.; Wang, R. L.; Lu, M.; Zhang, S. Y.; Lv, L. Y.; Du, Y. W. Thin Solid Films 2007, 515, 7066. doi: 10.1016/j.tsf.2007.02.094
doi: 10.1016/j.tsf.2007.02.094
Xu, L. Q.; Chen, L. Y.; Huang, H. F.; Xie, R.; Xia, W. B.; Wei, J.; Zhong, W.; Tang, S. L.; Du, Y. W. J. Alloy. Compd. 2014, 593, 93. doi: 10.1016/j.jallcom.2014.01.043
doi: 10.1016/j.jallcom.2014.01.043
Xu, L. Q.; Huang, H. F.; Tang, S. L.; Chen, L. Y.; Xie, R.; Xia, W. B.; Wei, J.; Zhong, W.; Du, Y. W. J. Sol-gel Sci. Technol. 2014, 69, 130. doi: 10.1007/s10971-013-3195-2
doi: 10.1007/s10971-013-3195-2
Zhang, X. W.; Jiang, X. H.; Xiong, F.; Wang, C. L.; Yang, S. G. Mater. Res. Bull. 2017, 95, 248. doi: 10.1016/j.materresbull.2017.07.044
doi: 10.1016/j.materresbull.2017.07.044
Jiang, Y. W.; Yang, S. G.; Hua, Z. H.; Huang, H. B. Angew. Chem. Int. Ed. 2009, 48, 8529. doi: 10.1002/anie.200903444
doi: 10.1002/anie.200903444
Hua, Z. H.; Yang, S. G.; Huang, H. B.; Lv, L. Y.; Lu, M.; Gu, B. X.; Du, Y. W. Nanotechnology 2006, 17, 5106. doi: 10.1088/0957-4484/17/20/011
doi: 10.1088/0957-4484/17/20/011
Hua, Z. H.; Deng, Y.; Li, K. N.; Yang, S. G. Nanoscale Res Lett. 2012, 7, 129. doi: 10.1186/1556-276X-129
doi: 10.1186/1556-276X-129
Hua, Z. H.; Cao, Z. W.; Deng, Y.; Jiang, Y. W.; Yang, S. G. Mater. Chem. Phys. 2011, 126, 542. doi: 10.1016/j.matchemphys.2011.01.033
doi: 10.1016/j.matchemphys.2011.01.033
Jiang, Y. W.; Yang, S. G.; Hua, Z. H.; Gong, J. F.; Zhao, X. N. Mater. Res. Bull. 2011, 46, 2531. doi: 10.1016/j.materresbull.2011.08.013
doi: 10.1016/j.materresbull.2011.08.013
Zhang, X. W.; Hua, Z. H.; Yang, S. G. J. Sol-gel Sci. Technol. 2016, 78, 171. doi: 10.1007/s10971-015-3909-8
doi: 10.1007/s10971-015-3909-8
Zhang, X. W.; Xiong, F.; Jiang, X. H.; Hua, Z. H.; Wang, C. L.; Yang, S. G. Appl. Phys. Lett. 2016, 109, 243106. doi: 10.1063/1.4972185
doi: 10.1063/1.4972185
Li, P. Y.; Li, F. S.; Deng, G. D.; Guo, X.D.; Liu, H. Y.; Jiang, W.; Wang, T. H. Chem. Commun. 2016, 52, 2996. doi: 10.1039/c5cc08848h
doi: 10.1039/c5cc08848h
Li, P. Y.; Wang, Q. Q.; Deng, G. D.; Guo, X.D.; Jiang, W.; Liu, H. Y.; Li, F. S.; Thanh, N. T. K. Phys. Chem. Chem. Phys. 2017, 19, 24742. doi: 10.1039/c7cp04097k
doi: 10.1039/c7cp04097k
Li, P. Y.; Deng, G. D.; Guo, X.D.; Liu, H. Y.; Jiang, W.; Li, F. S. J. Alloy. Compd. 2016, 668, 159. doi: 10.1016/j.jallcom.2016.01.203
doi: 10.1016/j.jallcom.2016.01.203
Li, P. Y.; Sun, J.; Li, H.; Guo, X.D.; Deng, G. D.; Liu, H. Y.; Jiang, W.; Li, F. S.; Gu, Z. M.; Wang, Y. J. Chem. Lett. 2015, 44, 868. doi: 10.1246/cl.150118
doi: 10.1246/cl.150118
Zhang, P.; Li, P. Y.; Li, F. S.; Jiang, W.; Cao, Z. H. J. Sol-gel Sci. Technol. 2014, 72, 398. doi: 10.1007/s10971-014-3449-7
doi: 10.1007/s10971-014-3449-7
Li, P. Y.; Zhang, P.; Li, F. S.; Jiang, W.; Cao, Z. H. J. Sol-gel Sci. Technol. 2013, 68, 261. doi: 10.1007/s10971-013-3162-y
doi: 10.1007/s10971-013-3162-y
Li, P. Y.; Jiang, W.; Li, F. S. Chem. Lett. 2013, 42, 816. doi: 10.1246/cl.130213
doi: 10.1246/cl.130213
Li, P. Y.; Jiang, W.; Li, F. S. J. Sol-gel Sci. Technol. 2013, 66, 533. doi: 10.1007/s10971-013-3043-4
doi: 10.1007/s10971-013-3043-4
Li, P. Y.; Jiang, W.; Li, F. S. J. Sol-gel Sci. Technol. 2013, 65, 359. doi: 10.1007/s10971-012-2944-y
doi: 10.1007/s10971-012-2944-y
Li, P. Y.; Syed, J. A.; Meng, X. K. J. Alloy. Compd. 2012, 512, 47. doi: 10.1016/j.jallcom.2011.09.007
doi: 10.1016/j.jallcom.2011.09.007
Li, P. Y.; Cao, Z. H.; Meng, X. K. Dalton Trans. 2012, 41, 12101. doi: 10.1039/c2dt31484c
doi: 10.1039/c2dt31484c
Gong, J.; Wang, L. L.; Liu, Y.; Yang, J. H.; Zong, Z. G. J. Alloy. Compd. 2008, 457, 6. doi: 10.1016/j.jallcom.2007.02.124
doi: 10.1016/j.jallcom.2007.02.124
Yang, J. H.; Feng, B.; Liu, Y.; Zhang, Y. J.; Yang, L. L.; Wang, Y. X.; Wei, M. B.; Lang, J. H.; Wang, D. D.; Liu, X. Y. Appl. Surf. Sci. 2008, 254, 7155. doi: 10.1016/j.apsusc.2008.05.238
doi: 10.1016/j.apsusc.2008.05.238
Yang, J. H.; Feng, B.; Liu, Y.; Zhang, Y. J.; Yang, L. L.; Wang, Y. X.; Wei, M. B.; Lang, J. H.; Wang, D. D. J. Alloy. Compd. 2009, 467, L21. doi: 10.1016/j.jallcom.2007.12.068
doi: 10.1016/j.jallcom.2007.12.068
Zhang, Y. J.; Yang, Y. T.; Liu, Y.; Wang, Y. X.; Yang, L. L.; Wei, M. B.; Fan, H. G.; Zhai, H. J.; Liu, X. Y.; Liu, Y. Q.; et al. J. Phys. D: Appl. Phys. 2011, 44, 295003. doi: 10.1088/0022-3727/44/29/295003
doi: 10.1088/0022-3727/44/29/295003
Wang, Y. X.; Zhang, X. L.; Liu, Y.; Jiang, Y. H.; Zhang, Y. J.; Wang, J. S.; Liu, Y. Q.; Liu, H. L.; Sun, Y. F.; Beach, G. S. D.; et al. J. Phys. D-Appl. Phys. 2012, 45, 485001. doi: 10.1088/0022-3727/45/48/485001
doi: 10.1088/0022-3727/45/48/485001
Liu, Y.; Yang, Y. T.; Zhang, Y. J.; Wang, Y. X.; Zhang, X. L.; Jiang, Y. H.; Wei, M. B.; Liu, Y. Q.; Liu, X. Y.; Yang, J. H. Mater. Res. Bull. 2013, 48, 721. doi: 10.1016/j.materresbull.2012.11.019
doi: 10.1016/j.materresbull.2012.11.019
Wang, Y. X.; Zhang, X. L.; Liu, Y.; Lv, S. Q.; Jiang, Y. H.; Zhang, Y. J.; Liu, H. L.; Liu, Y. Q.; Yang, J. H. J. Alloy. Compd. 2014, 582, 511. doi: 10.1016/j.jallcom.2013.08.104
doi: 10.1016/j.jallcom.2013.08.104
Wang, Y. X.; Zhang, X. L.; Liu, Y.; Jiang, Y. H.; Zhang, Y. J.; Yang, J. H. J. Solid State Chem. 2014, 213, 204. doi: 10.10106/j.jssc.2014.03.001
doi: 10.10106/j.jssc.2014.03.001
Liu, Y.; Jiang, Y. H.; Zhang, X. L.; Wang, Y. X.; Zhang, Y. J.; Liu, H. L.; Zhai, H. J.; Liu, Y. Q.; Yang, J. H.; Yan, Y. S. J. Solid State Chem. 2014, 209, 69. doi: 10.10106/j.jssc.2013.10.027
doi: 10.10106/j.jssc.2013.10.027
Liu, Y.; Jiang, Y. H.; Kadasala, N.; Zhang, X. L.; Mao, C. Y.; Wang, Y. X.; Liu, H. L.; Jiang, X. N.; Yang, J. H.; Yan, Y. S. J. Sol-gel Sci. Technol. 2014, 72, 156. doi: 10.1007/s10971-014-3442-1
doi: 10.1007/s10971-014-3442-1
Yang, J. H.; Jiang, Y. H.; Liu, Y.; Zhang, X. L.; Wang, Y. X.; Zhang, Y. J.; Wang, J.; Li, W.; Cheng, X. Mater. Lett. 2013, 91, 348. doi: 10.10106/j.matlet.2012.08.125
doi: 10.10106/j.matlet.2012.08.125
Liu, Y.; Jiang, Y. H.; Zhang, X. L.; Wang, Y. X.; Zhang, Y. J.; Liu, H. L.; Zhai, H. J.; Liu, Y. Q.; Yang, J. H.; Yan, Y. S. Powder Technol. 2013, 239, 217. doi: 10.1016/j.powtec.2013.01.069
doi: 10.1016/j.powtec.2013.01.069
Erri, P.; Nader, J.; Varma, A. Adv. Mater. 2008, 20, 1243. doi: 10.1002/adma.200701365
doi: 10.1002/adma.200701365
Khort, A.; Podbolotov, K.; Serrano-García, R.; Gunko, Y. J. Solid State Chem. 2017, 253, 270. doi: 10.1016/j.jssc.2017.05.043
doi: 10.1016/j.jssc.2017.05.043
Trusov, G. V.; Tarasov, A. B.; Goodilin, E. A.; Rogachev, A.S.; Roslyakov, S. I.; Rouvimov, S.; Podbolotov, K. B.; Mukasyan, A. S. J. Phys. Chem. C 2016, 120, 7165. doi: 10.1021/acs.jpcc.6b00788
doi: 10.1021/acs.jpcc.6b00788
Cross, A.; Roslyakov, S.; Manukyan, K. V.; Rouvimov, S.; Rogachev, A. S.; Kovalev, D.; Wolf, E. E.; Mukasyan, A. S. J. Phys. Chem. C 2014, 118, 26191. doi: 10.1021/jp508546n
doi: 10.1021/jp508546n
Maunkyan, K. V.; Cross, A.; Roslyakov, S.; Rouvimov, S.; Rogachev, A. S.; Wolf, E. E.; Mukasyan, A. S. J. Phys. Chem. C 2013, 117, 24417. doi: 10.1021/jp408260m
doi: 10.1021/jp408260m
Gao, D. Q.; Yang, G. J.; Zhu, Z. H.; Zhang, J.; Yang, Z. L.; Zhang, Z. P.; Xue, D. S. J. Mater. Chem. 2012, 22, 9462. doi: 10.1039/c2jm30548h
doi: 10.1039/c2jm30548h
Foo, Y. T.; Chan, J. E. M.; Ngoh, G. C.; Abdullah, A. Z.; Horri, B. A.; Salamatinia, B. Ceram. Int. 2018, 18, 16331. doi: 10.1016/j.ceramint.2017.09.006
doi: 10.1016/j.ceramint.2017.09.006
Kumar, A.; Ashok, A.; Bhosale, R. R.; Saleh, M. A. H.; Almomani, F. A.; Marri, M. A.; Khader, M. M.; Tarlochan, F. Catal. Lett. 2016, 146, 778. doi: 10.1007/s10562-0161706-9
doi: 10.1007/s10562-0161706-9
Kumar, A.; Wolf, E. E.; Mukasyan, A. S. Aiche J. 2011, 57, 2207. doi: 10.1002/aic.12416
doi: 10.1002/aic.12416
Khort, A.; Podbolotov, K.; Serrano-García, R.; Gunko, Y. Inorg. Mater. 2018, 57, 1464. doi: 10.1021/acs.ionrgchem.7b02848
doi: 10.1021/acs.ionrgchem.7b02848
Podbolotov, K. B.; Khort, A. A.; Tarasov, A. B.; Trusov, G. V.; Roslyakov, S. I.; Mukasyan, A. S. Combus. Sci. Technol. 2017, 189, 1878. doi: 10.1080/00102202.2017.1334646
doi: 10.1080/00102202.2017.1334646
Pál. E.; Kun, R.; Schulze, C.; Z llmer, V.; Lehmhus, D.; B umer, M.; Busse, M. Colloid Polym. Sci. 2012, 290, 941. doi: 10.1007/s00396-012-2612-3
doi: 10.1007/s00396-012-2612-3
Niu, B.; Zhang, F.; Ping, H.; Li, N.; Zhou, J. Y.; Lei, L. W.; Xie, J. J.; Zhang, J. Y.; Wang, W. M.; Fu, Z. Y. Sci. Rep. 2017, 7, 2421. doi: 10.1038/s41598-017-03644-6
doi: 10.1038/s41598-017-03644-6
Han, Y. D.; Lu, Z. Y.; Teng, Z. G.; Liang, J. L.; Guo, Z. L.; Wang, D. Y.; Han, M. Y.; Yang, W. S. Langmuir 2017, 33, 5879. doi: 10.1021/acs.langmuir.7b01140
doi: 10.1021/acs.langmuir.7b01140
Mahy, J. G.; Deschamaps, F.; Collard, V.; Jerome, C.; Bartlett, J.; Lambert, S. D.; Heinrichs, B. J. Sol-gel Sci. Technol. 2018, 87, 568. doi: 10.1007/s10971-018-4751-6
doi: 10.1007/s10971-018-4751-6
Crisan, M.; Zaharescu, M.; Kumari, V. D.; Subrahmanyam, M.; Crisan, D.; Dragan, N.; Raileanu, M.; Jitianu, M.; Rusu, A.; Sadanandam, G.; et al. Appl. Surf. Sci. 2011, 258, 448. doi: 10.1016/j.apsusc.2011.08-104
doi: 10.1016/j.apsusc.2011.08-104
Aronne, A.; Sannino, F.; Bonavolonta, S. R.; Fanelli, E.; Mingione, A.; Pernice, P.; Spaccini, R.; Pirozzi, D. Environ, Sci. Technol. 2012, 46, 1755. doi: 10.1021/es203223s
doi: 10.1021/es203223s
Mahendraprabhu, K.; Elumalai, P. J. Sol-gel Sci. Technol. 2015, 73, 428. doi: 10.1007/s10971-014-3554-7
doi: 10.1007/s10971-014-3554-7
Adhikari, S.; Madras, G. Phys. Chem. Chem. Phys. 2017, 19, 13895. doi: 10.1039/c7cp01332a
doi: 10.1039/c7cp01332a
Das, H. T.; Mahendraprabhu, K.; Maiyalagan, T.; Elumalai, P. Sci. Rep. 2017, 7, 15342. doi: 10.1038/s41598-017-15444-z
doi: 10.1038/s41598-017-15444-z
Jiang, X. C.; Chen, C. Y.; Chen, W. M.; Yu, A. B. Langmuir 2010, 26, 4400. doi: 10.1021/la903470f
doi: 10.1021/la903470f
Zhang, H.; Jin, M. S.; Wang, J. G.; Kim, M. J., Yang, D. R.; Xia, Y. N. J. Am. Chem. Soc. 2011, 133, 10422. doi: 10.1021/ja204447k
doi: 10.1021/ja204447k
Teaching and Research Section of Inorganic Chemistry, Dalian University of Technology. Inorganic Chemistry, 4th ed.; Higher Education Press: Beijing, 2001; pps. 659-661, 248.
Aegerter, M. A.; Leventis, N.; Koebel, M. M. Aerogels Handbook, 1st ed.; Springer: Berlin, Germany, 2011; pps. 155-168, 215-231.
Jin, H. Y.; liu, X.; Chen, S. M.; . Vasileff, A.; Li, L. Q.; Jiao, Y.; Song, L.; Zheng, Y.; Qiao, S. Z. ACS Energy Lett. 2019, 4, 805. doi: 10.1021/acsenergylett.9b00348
doi: 10.1021/acsenergylett.9b00348
He, L. J. Magn. Magn. Mater. 2010, 32, 1991. doi: 10.1016/j.jmmm.2010.01.020
doi: 10.1016/j.jmmm.2010.01.020
Schaefer, Z. L.; Weeber, K. M.; Misra, R.; Schiffer, P.; Schaak, R. E. Chem. Mater. 2011, 23, 2475. doi: 10.1021/cm200410s
doi: 10.1021/cm200410s
Ferrando, R.; Jellinek, J.; Johnston, R. L. Chem. Rev. 2008, 108, 845. doi: 10.1021/cr040090g
doi: 10.1021/cr040090g
Wang, D. S.; Li, Y. D. Adv. Mater. 2011, 23, 1044. doi: 10.1002/adma.201003695
doi: 10.1002/adma.201003695
Guo, H. Z.; Liu, X.; Bai, C. D.; Chen, Y. Z.; Wang, L. S.; Zheng, M. S.; Dong. Q. F.; Peng, D. L. ChemSusChem 2015, 8, 486. doi: 10.1002/cssc.201403037
doi: 10.1002/cssc.201403037
He, J. H.; Bian, B. R.; Zheng, Q.; Du, J.; Xia, W. X.; Zhang, J.; Yan, A.; Liu, J. P. Green Chem. 2016, 18, 417. doi: 10.1039/c5gc01253h
doi: 10.1039/c5gc01253h
Sun, S. H.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Science 2000, 287, 1989. doi: 10.1126/science.287.5460.1989
doi: 10.1126/science.287.5460.1989
Mizrahi, M. D.; Krylova, G.; Giovanetti, L. J.; Ramallo-Lopez, J. M.; Liu, Y. Z.; Schevchenko, E. V.; Requejo, F. G. Nanoscale 2018, 10, 6382. doi: 10.1039/c8nr0060c
doi: 10.1039/c8nr0060c
Miracle, D. B.; Senkov, O. N. Acta Mater. 2017, 122, 448. doi: 10.1016/j.actamat.2016.08.081
doi: 10.1016/j.actamat.2016.08.081
Wang, D. S.; Li, Y. D. Inorg. Chem. 2011, 50, 5196. doi: 10.1021/ic200485v
doi: 10.1021/ic200485v
Wang, D. S.; Peng, D.; Li, Y. D. Nano Res. 2010, 3, 574. doi: 10.1007/s12274-010-0018-4
doi: 10.1007/s12274-010-0018-4
Martienssen, W.; Warlimont, H. Springer Handbook of Condensed Matter and Materials Data 2005; Springer: Berlin, Germany, 2005, 10-114.
Lide, D. R. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Flordia, United States, 2003-2004.
Barin, I. I. Thermochemical Data of Pure Substances, 3rd ed.; VCH: Weinheim, Germany, 1995.
Yang, H. R.; Finefrock, S. W.; Caballero, J. D.; Wu, Y. J. Am. Chem. Soc. 2014, 136, 10242. doi: 10.1021/ja505304v
doi: 10.1021/ja505304v
He, J. R.; Chen, Y. F.; Lv, W. Q.; Wen, K. C.; Wang, Z. G.; Zhang, W. L.; Li, Y. R.; Qin, W.; He, W. D. ACS Nano 2016, 10, 8837. doi: 10.1021/acsnano.6b04622
doi: 10.1021/acsnano.6b04622
Fu, X. C.; Shen, W. X.; Yao, T. Y.; Hou, W. H. Physical Chemistry, 5th ed. (Second part); Higher Education Press: Beijing, 2006; p. 60.
Huang, J. L.; Lin, L. Q.; Sun, D. H.; Chen, H. M.; Yang, D. P.; Li, Q. B. Chem. Soc. Rev. 2015, 44, 6330. doi: 10.1039/c5cs00133a
doi: 10.1039/c5cs00133a
Chen, P.; Wang, L. K.; Wang, G.; Gao, M. R.; Ge, J.; Yuan, W. J.; Shen, Y. H.; Xie, A. J.; Yu, S. H. Energy Environ. Sci. 2014, 7, 4095. doi: 10.1039/c4ee02531h
doi: 10.1039/c4ee02531h
Jeong, U.; Teng, X. W.; Wang, Y.; Yang, H.; Xia, Y. N. Adv. Mater. 2007, 19. 33. doi: 10.1002/adma.200600674
doi: 10.1002/adma.200600674
Peng, B.; Zhang, X. L.; Aarts, D. G. A. L.; Dullens, R. P. A. Nat. Nanotechnol. 2018, 13, 478. doi: 10.1038/s41565-018-0108-0
doi: 10.1038/s41565-018-0108-0
Seo, W. S.; Lee, J. H.; Sun, X. M.; Suzuki, Y.; Mann, D.; Liu, Z.; Terashima, M.; Yang, P. C.; McConnel, M. V.; Nishimura, D. G.; et al. Nat. Mater. 2006, 5, 971. doi: 10.1038/nmat1775
doi: 10.1038/nmat1775
Margeat, O.; Ciuculescu, D..; Lecante, P.; Respaud, M.; Amiens, C.; Chaudret, B. Small 2007, 3, 451. doi: 10.1002/smll. 200600329
doi: 10.1002/smll.200600329
Cheng, N. C.; Stambula, S.; Wang, D.; Banis, M. N.; Liu, J.; Riese, A.; Xiao, B. W.; Li, R. Y.; Sham, T. K.; Liu, L. M.; et al. Nat. Commun. 2016, 7, 13638. doi: 10.1038/ncomms13638
doi: 10.1038/ncomms13638
Sasaki, K.; Marinkovic, N.; Isaacs, H. S.; Adzic, R. R. ACS Catal. 2016, 6, 69. doi: 10.1021/acscatal.5b01862
doi: 10.1021/acscatal.5b01862
Zhang, M. D.; Dai, Q. B.; Zheng, H. G.; Chen, M. D.; Dai, L. M. Adv. Mater. 2018, 30, 1705431. doi: 10.1002/adma.201705431
doi: 10.1002/adma.201705431
Liang, Z. Z.; Fan, X.; Lei, H. T.; Qi, J.; Li, Y. Y.; Gao, J. P.; Huo, M. L.; Yuan, H. T.; Zhang, W.; Lin, H. P.; et al. Angew. Chem. Int. Ed. 2018, 57, 13187. doi: 10.1002/anie.201807854
doi: 10.1002/anie.201807854
Fan, L. L.; Liu, P. F.; Yan, X. C.; Gu, L.; Yang, Z. Z.; Yang, H. G.; Qiu, S. L.; Yao, X. D. Nat. Commun. 2016, 7, 10667. doi: 10.1038/ncomms10667
doi: 10.1038/ncomms10667
Ren, J. W.; Antonietti, M.; Fellinger, T. P. Adv. Energy. Mater. 2015, 5, 1401660. doi: 10.1002/aenm.201401160
doi: 10.1002/aenm.201401160
Zhou, M.; Wang, H. L.; Guo, S. J. Chem. Soc. Rev. 2016, 45, 1273. doi: 10.1039/c5cs00414d
doi: 10.1039/c5cs00414d
Zhu, Y. Q.; Sun, W. M.; Luo, J.; Chen, W. X.; Cao, T.; Zheng, L. R.; Dong, J. C.; Zhang, J.; Zhang, M. L.; Han, Y. H.; et al. Nat. Commun. 2018, 9, 3861. doi: 10.1038/s41467-018-06296-w
doi: 10.1038/s41467-018-06296-w
Fei, H. L.; Dong, J. C.; Feng, Y. X.; Allen, C. S.; Wan, C. Z.; Volosskiy, B.; Li, M. F.; Zhao, Z. P.; Wang, Y. L.; Sun, H. T.; et al. Nat. Catal. 2018, 1, 63. doi: 10.1038/s41929-017-0008-y
doi: 10.1038/s41929-017-0008-y
Ma, L.; Wang, R.; Li, Y. H.; Liu, X. F.; Zhang, Q, Q.; Dong, X. Y.; Zang, S. Q. J. Mater. Chem. A 2018, 6, 24071. doi: 10.1039/c8ta08668k
doi: 10.1039/c8ta08668k
Xu, Y.; Tu, W. G.; Zhang, B. W.; Yin, S. M.; Huang, Y. Z.; Kraft, M.; Xu, R. Adv. Mater. 2017, 29, 1605957. doi: 10.1002/adma.201605957
doi: 10.1002/adma.201605957
Zhong, G. Y.; Li, S. M.; Xu, S. R.; Liao, W. B.; Fu, X. B.; Peng, F. ACS Sus. Chem. Eng. 2018, 6, 15108. doi: 10.10121/acssuschemeng.8b03582
doi: 10.10121/acssuschemeng.8b03582
Lin, J.; Yu, M.; Lin, C. K.; Liu, X. M. J. Phys. Chem. C 2007, 111, 5835. doi: 10.1021/jp070062c
doi: 10.1021/jp070062c
Deng, J.; Ren, P. J.; Deng, D. H.; Bao, X. H. Angew. Chem. Int. Ed. 2015, 54, 2100. doi: 10.1002/anie.201409524
doi: 10.1002/anie.201409524
Yu, J.; Chen, G.; Sunarso, J.; Zhu, Y. L.; Ran, R.; Zhu, Z. H.; Zhou, W.; Shao, Z. P. Adv. Sci. 2016, 3, 1600060. doi: 10.1002/advs.201600060
doi: 10.1002/advs.201600060
Yang, S. L.; Zhang, T. R.; Li, G. C.; Yang, L. Q.; Lee, J. Y. Energy Storage Mater. 2017, 6, 140. doi: 10.1016/j.ensm.2016.11.001
doi: 10.1016/j.ensm.2016.11.001
Wang, M. Q.; Ye, C.; Wang, M.; Li, T. H.; Yu, Y. N.; Bao, S. J. Energy Storage Mater. 2018, 11, 112. doi: 10.1016/j.ensm.2017.10.003
doi: 10.1016/j.ensm.2017.10.003
Vecchio, C. L.; Aricò, A. S.; Monforte, G.; Baglio, V. Renew. Energy 2018, 120, 342. doi: 10.1016/j.renene. 2017.12.084
doi: 10.1016/j.renene.2017.12.084
Wei, J.; Wang, G.; Chen, F.; Bai, M.; Liang, Y.; Wang, H. T.; Zhao, D. Y.; Zhao, Y. X. Angew. Chem. Int. Ed. 2018, 57, 9838. doi: 10.1002/anie.201805781
doi: 10.1002/anie.201805781
Zhou, Y.; Zhou, Z. Z.; Shen, R. X.; Ma, R. G.; Liu, Q.; Cao, G. Z.; Wang, J. C. Energy Storage Mater. 2018, 13, 189. doi: 10.1016/j.ensm.2018.01.011
doi: 10.1016/j.ensm.2018.01.011
Gavrilov, N.; Momčilović, M.; Dobrota, A. S.; Stanković, D. M.; Jokić, B.; Babić, B.; Skorodumova, N. V.; Mentus, S. V.; Pašti, I. A. Surf. Coating. Technol. 2018, 349, 511. doi: 10.1016/j.surfcoat.2018.06.008
doi: 10.1016/j.surfcoat.2018.06.008
Wang, D.; Zhou, W. W.; Zhang, R.; Zeng, J. J.; Du, Y.; Qi, S.; Cong, C. X.; Ding, C. Y.; Huang, X. X.; Wen, G. W.; et al. Adv. Mater. 2018, 30, 1803569. doi: 10.1002/adma.201803569
doi: 10.1002/adma.201803569
Sanetuntikul, J.; Hyun, S.; Ganesan, P.; Shanmugam, S. J. Mater. Chem. A 2018, 6, 24078. doi: 10.1039/c8ta08476a
doi: 10.1039/c8ta08476a
Zhang, L. Z.; Jia, Y.; Gao, G. P.; Yan, X. C.; Chen, N.; Chen, J.; Soo, M. T.; Wood, B.; Yang, D. J.; Du, A. J.; et al. Chem 2018, 4, 285. doi: 10.1016/j.chempr.2017.12.005
doi: 10.1016/j.chempr.2017.12.005
Song, X. K.; Chen, S.; Guo, L. L.; Sun, Y.; Li, X. P.; Cao, X.; Wang, Z. X.; Sun, J. H.; Lin, C.; Wang, Y. Adv. Energy Mater. 2018, 8, 1801101. doi: 10.1002/aenm.201801101
doi: 10.1002/aenm.201801101
Su, H.; Gao, P.; Wang, M. Y.; Zhai, G. Y.; Zhang, J. J.; Zhao, T. J.; Su, J.; Antonietti, M.; Li, X. H.; Chen, J. S. Angew. Chem. Int. Ed. 2018, 57, 15194. doi: 10.1002/anie.201809858
doi: 10.1002/anie.201809858
Gu, D. G.; Zhou, Y.; Ma, R. G.; Wang, F. F.; Liu, Q.; Wang, J. C. Nano-Micro Lett. 2018, 10, 29. doi: 10.1007/s40820-017-0181-1
doi: 10.1007/s40820-017-0181-1
Rao, C. V.; Cabrera, C. R.; Ishikawa, Y. J. Phys. Chem. Lett. 2010, 1, 2622. doi: 10.1021/jz100971v
doi: 10.1021/jz100971v
Yang, L. J.; Shui, J. L.; Du, L.; Shao, Y. Y.; Liu, J.; . Dai, L. M.; Hu, Z. Adv. Mater. 2019, 31, 1804799. doi: 10.1002/adma.201804799
doi: 10.1002/adma.201804799
Wang, N.; Lu, B. Z.; Li, L. G.; Niu, W. H.; Tang, Z. H.; Kang, X. W.; Chen, S. W. ACS Catal. 2018, 8, 6827. doi: 10.1021/acscatal.8b00338
doi: 10.1021/acscatal.8b00338
Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
Guimin ZHANG , Wenjuan MA , Wenqiang DING , Zhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
Chunmei GUO , Weihan YIN , Jingyi SHI , Jianhang ZHAO , Ying CHEN , Quli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162
Xiaohui Li , Ze Zhang , Jingyi Cui , Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027
Ruming Yuan , Pingping Wu , Laiying Zhang , Xiaoming Xu , Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
Haiyuan Wang , Yiming Tang , Haoran Guo , Guohui Chen , Yajing Sun , Chao Zhao , Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
Min LI , Xianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065