Citation: ZHAI Yanliang, ZHANG Shaolong, ZHANG Luoming, SHANG Yunshan, WANG Wenxuan, SONG Yu, JIANG Caitong, GONG Yanjun. Effect of B and Al Distribution in ZSM-5 Zeolite on Methanol to Propylene Reaction Performance[J]. Acta Physico-Chimica Sinica, ;2019, 35(11): 1248-1258. doi: 10.3866/PKU.WHXB201901062 shu

Effect of B and Al Distribution in ZSM-5 Zeolite on Methanol to Propylene Reaction Performance

  • Corresponding author: GONG Yanjun, gongyj@cup.edu.cn
  • Received Date: 24 January 2019
    Revised Date: 20 February 2019
    Accepted Date: 4 March 2019
    Available Online: 8 November 2019

    Fund Project: The project was supported by the National Natural Science Foundation of China (U1662116, 21276278)the National Natural Science Foundation of China U1662116the National Natural Science Foundation of China 21276278

  • Propylene is widely used as a raw material for producing polypropylene, acrylonitrile, propylene oxide, etc. Typical manufacturing processes for propylene (steam cracking and FCC process) are over-reliant on petroleum resources and cannot meet the rapidly growing global demands. New routes for producing propylene from non-oil resources, particularly methanol-to-propylene (MTP) technology, have attracted increasingly more attention, where a fixed-bed reactor is used and ZSM-5 zeolite is the best alternative catalyst. However, structural optimization of ZSM-5 to enhance the lifetime and propylene selectivity and a deep understanding of the mechanism of the MTP reaction are still considerable challenges. For the conventional ZSM-5 zeolite, carbon deposition preferentially occurs near the outer surface of the zeolite particles because of the high acid density on the external surface, which accelerates the deactivation by blocking the outer pore openings, especially in a long-term MTP reaction. Large amounts of external strong acids also promote secondary reactions, such as hydrogen transfer reactions, resulting in a decrease in propylene selectivity. To study the effects of strong and weak acid distributions of ZSM-5 zeolite on the MTP reaction, two series of boron-modified ZSM-5 zeolites were designed: B-Al-ZSM-5 zeolites by one-step synthesis and Al-ZSM-5@B-ZSM-5 core-shell zeolites by two-step synthesis. These were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM) mapping, N2 physical adsorption-desorption, temperature-programmed desorption of ammonia (NH3-TPD) and 1, 3, 5-triisopropylbenzene (TIPB) cracking, and B1-Al-ZSM-5 and Al@B1-ZSM-5, B2-Al-ZSM-5 and Al@B2-ZSM-5, and B3-Al-ZSM-5 and Al@B3-ZSM-5 samples in the two series were found to have similar texture properties, acid amounts and acid strengths, but different B and Al elemental distributions and acid distributions. We used these two sets of samples to compare the effect of different strong and weak acid distributions—a uniform distribution and a gradient distribution of strong and weak acids on the performance of the MTP reaction. The results showed that samples with a uniform distribution of strong and weak acids have higher propylene selectivity due to lower strong and weak acid densities, whereas samples with a gradient acid distribution have a longer catalytic lifetime in the MTP reaction due to the absence of strong acid density and higher weak acid density on the outer surface. The different acid distributions lead to two different carbon deposition modes. Carbon deposition of the sample with the uniform acid distribution preferentially formed on the outer surface, resulting in rapid deactivation by blocking external micropores and leaving the internal active centers not fully utilized. However, for the sample with the gradient acid distribution, the carbon-blocking rate of the external surface considerably decreased, which increased the time that the reactant molecules had to enter the internal micropores. Thus, the utilization rate of the active centers and the catalytic lifetime of the Al-ZSM-5@B-ZSM-5 core-shell sample considerably increased.
  • 加载中
    1. [1]

      Plotkin, J. S. Catal. Today 2005, 106 (1–4), 10. doi: 10.1016/j.cattod.2005.07.174  doi: 10.1016/j.cattod.2005.07.174

    2. [2]

      Sun, C.; Du, J. M.; Liu, J.; Yang, Y. S.; Ren, N.; Shen, W.; Xu, H. L.; Tang, Y. Chem. Commun. 2010, 46 (15), 2671. doi: 10.1039/b925850g  doi: 10.1039/b925850g

    3. [3]

      Zhao, G. L.; Teng, J. W.; Xie, Z. K.; Jin, W. Q.; Yang, W. M.; Chen, Q. L.; Tang, Y. J. Catal. 2007, 248 (1), 29. doi: 10.1016/j.jcat.2007.02.027  doi: 10.1016/j.jcat.2007.02.027

    4. [4]

      Sardesai, A.; Lee, S. Energy Sources 2005, 27 (6), 489. doi: 10.1080/009083190518970  doi: 10.1080/009083190518970

    5. [5]

      Khanmohammadi, M.; Amani, S.; Garmarudi, A. B.; Niaei, A. Chin. J. Catal. 2016, 37 (3), 325. doi: 10.1016/S1872-2067(15)61031-2  doi: 10.1016/S1872-2067(15)61031-2

    6. [6]

      Yarulina, I.; Chowdhury, A. D.; Meirer, F.; Weckhuysen, B. M.; Gascon, J. Nat. Catal. 2018, 1 (6), 398. doi: 10.1038/s41929-018-0078-5  doi: 10.1038/s41929-018-0078-5

    7. [7]

      Hu, S.; Gong, Y. J.; Xu, Q. H.; Liu, X. L.; Zhang, Q.; Zhang, L. L.; Dou, T. Catal. Commun. 2012, 28, 95. doi: 10.1016/j.catcom.2012.08.011  doi: 10.1016/j.catcom.2012.08.011

    8. [8]

      Teketel, S.; Olsbye, U.; Lillerud, K. P.; Beato, P.; Svelle, S. Appl. Catal. A 2015, 494, 68. doi: 10.1016/j.apcata.2015.01.035  doi: 10.1016/j.apcata.2015.01.035

    9. [9]

      Meng, X. J.; Yu, Q. J.; Gao, Y. N.; Zhang, Q.; Li, C. Y.; Cui, Q. K. Catal. Commun. 2015, 61, 67. doi: 10.1016/j.catcom.2014.12.011  doi: 10.1016/j.catcom.2014.12.011

    10. [10]

      Zhang, L. L.; Song, Y.; Li, G. D.; Zhang, S. L.; Shang, Y. S.; Gong, Y. J. Acta Phys. -Chim. Sin. 2015, 31 (11), 2139.  doi: 10.3866/PKU.WHXB201509281

    11. [11]

      Zhang, S. L.; Zhang, L. L.; Wang, W. G.; Min, Y. Y.; Ma, T.; Song, Y.; Gong, Y. J.; Dou, T. Acta Phys. -Chim. Sin. 2014, 30 (03), 535.  doi: 10.3866/PKU.WHXB201401032

    12. [12]

      Wei, R. C.; Li, C. Y.; Yang, C. H.; Shan, H. H. J. Nat. Gas Chem. 2011, 20 (3), 261. doi: 10.1016/s1003-9953(10)60198-3  doi: 10.1016/s1003-9953(10)60198-3

    13. [13]

      Chang, C. D.; Chu, C. T.; Socha, R. F. J. Catal. 1984, 86 (2), 289. doi: 10.1016/0021-9517(84)90374-9  doi: 10.1016/0021-9517(84)90374-9

    14. [14]

      Gayubo, A. G.; Benito, P. L.; Aguayo, A. T.; Olazar, M.; Bilbao, J. J. Chem. Technol. Biot. 1996, 65 (2), 186. doi: 10.1002/(SICI)1097-4660(199602)65:2<186::AID-JCTB401>3.0.CO;2-J  doi: 10.1002/(SICI)1097-4660(199602)65:2<186::AID-JCTB401>3.0.CO;2-J

    15. [15]

      Ong, L. H.; Doemoek, M.; Olindo, R.; van Veen, A. C.; Lercher, J. A. Micropor. Mesopor. Mat. 2012, 164 (SI), 9. doi: 10.1016/j.micromeso.2012.07.033  doi: 10.1016/j.micromeso.2012.07.033

    16. [16]

      Nayak, V. S.; Choudhary, V. R. Appl. Catal. 1984, 10 (2), 137. doi: 10.1016/0166-9834(84)80098-6  doi: 10.1016/0166-9834(84)80098-6

    17. [17]

      Mao, D.; Guo, Q.; Meng, T.; Lu, G. Acta Phys. -Chim. Sin. 2010, 26 (2), 338.  doi: 10.3866/PKU.WHXB20100208

    18. [18]

      Zhang, S. L.; Gong, Y. J.; Zhang, L. L.; Liu, Y. S.; Dou, T.; Xu, J.; Deng, F. Fuel Process. Technol. 2015, 129, 130. doi: 10.1016/j.fuproc.2014.09.006  doi: 10.1016/j.fuproc.2014.09.006

    19. [19]

      Li, J. J.; Liu, M.; Guo, X. W.; Xu, S. T.; Wei, Y. X.; Liu, Z. M.; Song, C. S. ACS Appl. Mater. Inter. 2017, 9 (31), 26096. doi: 10.1021/acsami.7b07806  doi: 10.1021/acsami.7b07806

    20. [20]

      Li, J. J.; Min, L.; Guo, X. W.; Dai, C. Y.; Xu, S. T.; Wei, Y. X.; Liu, Z. M.; Song, C. S. Ind. Eng. Chem. Res. 2018, 57 (24), 8190. doi: 10.1021/acs.iecr.8b00513  doi: 10.1021/acs.iecr.8b00513

    21. [21]

      Papari, S.; Mohammadrezaei, A.; Asadi, M.; Golhosseini, R.; Naderifar, A. Catal. Commun. 2011, 16 (1), 150. doi: 10.1016/j.catcom.2011.09.024  doi: 10.1016/j.catcom.2011.09.024

    22. [22]

      Hadi, N.; Niaei, A.; Nabavi, S. R.; Navaei Shirazi, M.; Alizadeh, R. J. Ind. Eng. Chem. 2015, 29, 52. doi: 10.1016/j.jiec.2015.03.017  doi: 10.1016/j.jiec.2015.03.017

    23. [23]

      Liu, J.; Zhang, C. X.; Shen, Z. H.; Hua, W. M.; Tang, Y.; Shen, W.; Yue, Y. H.; Xu, H. L. Catal. Commun. 2009, 10 (11), 1506. doi: 10.1016/j.catcom.2009.04.004  doi: 10.1016/j.catcom.2009.04.004

    24. [24]

      Zhong, J. W.; Han, J. F.; Wei, Y. X.; Xu, S. T.; He, Y. L.; Zheng, Y. J.; Ye, M.; Guo, X. W.; Song, C. S.; Liu, Z. M. Chem. Commun. 2018, 54 (25), 3146. doi: 10.1039/C7CC09239C  doi: 10.1039/C7CC09239C

    25. [25]

      Wang, K.; Dong, M.; Niu, X. J.; Li, J. F.; Qin, Z. F.; Fan, W. B.; Wang, J. G. Catal. Sci. Technol. 2018, 8 (21), 5646. doi: 10.1039/C8CY01734D  doi: 10.1039/C8CY01734D

    26. [26]

      Kong, C. Y.; Zhu, J.; Liu, S. Y.; Wang, Y. RSC Adv. 2017, 7 (63), 39889. doi: 10.1039/C7RA06488H  doi: 10.1039/C7RA06488H

    27. [27]

      Miyamoto, M.; Kamei, T.; Nishiyama, N.; Egashira, Y.; Ueyama, K. Adv. Mater. 2005, 17 (16), 1985. doi: 10.1002/ADMA.2005.00522  doi: 10.1002/ADMA.2005.00522

    28. [28]

      Zhu, Z. R.; Chen, Q. L.; Xie, Z. K.; Yang, W. M.; Kong, D. J.; Li, C. J. Mol. Catal. A: Chem. 2006, 248 (1–2), 152. doi: 10.1016/j.molcata.2005.10.023  doi: 10.1016/j.molcata.2005.10.023

    29. [29]

      Nunan, J.; Cronin, J.; Cunningham, J. J. Catal. 1984, 87 (1), 77. doi: 10.1016/0021-9517(84)90169-6  doi: 10.1016/0021-9517(84)90169-6

    30. [30]

      Rostamizadeh, M.; Taeb, A. J. Ind. Eng. Chem. 2015, 27, 297. doi: 10.1016/j.jiec.2015.01.004  doi: 10.1016/j.jiec.2015.01.004

    31. [31]

      Yang, Y. S.; Sun, C.; Du, J. M.; Yue, Y. H.; Hua, W. M.; Zhang, C. L.; Shen, W.; Xu, H. L. Catal. Commun. 2012, 24, 44. doi: 10.1016/j.catcom.2012.03.013  doi: 10.1016/j.catcom.2012.03.013

    32. [32]

      Hu, Z. J.; Zhang, H. B.; Wang, L.; Zhang, H. X.; Zhang, Y. H.; Xu, H. L.; Shen, W.; Tang, Y. Catal. Sci. Technol. 2014, 4 (9), 2891. doi: 10.1039/c4cy00376d  doi: 10.1039/c4cy00376d

    33. [33]

      Li, C. G.; Vidal-Moya, A.; Miguel, P. J.; Dedecek, J.; Boronat, M.; Corma, A. ACS Catal. 2018, 8 (8), 7688. doi: 10.1021/acscatal.8b02112  doi: 10.1021/acscatal.8b02112

    34. [34]

      Schmidt, F.; Hoffmann, C.; Giordanino, F.; Bordiga, S.; Simon, P.; Carrillo-Cabrera, W.; Kaskel, S. J. Catal. 2013, 307, 238. doi: 10.1016/j.jcat.2013.07.020  doi: 10.1016/j.jcat.2013.07.020

    35. [35]

      Zhao, X. B.; Hong, Y.; Wang, L. Y.; Fan, D.; Yan, N. N.; Liu, X. N.; Tian, P.; Guo, X. W.; Liu, Z. M. Chin. J. Catal. 2018, 39 (8), 1418. doi: 10.1016/S1872-2067(18)63117-1  doi: 10.1016/S1872-2067(18)63117-1

    36. [36]

      Losch, P.; Boltz, M.; Bernardon, C.; Louis, B.; Palčić, A.; Valtchev, V. Appl. Catal. A 2016, 509, 30. doi: 10.1016/j.apcata.2015.09.037  doi: 10.1016/j.apcata.2015.09.037

    37. [37]

      Li, N.; Zhang, Y. Y.; Chen, L.; Au, C. T.; Yin, S. F. Micropor. Mesopor. Mat. 2016, 227, 76. doi: 10.1021/acs.iecr.7b05075  doi: 10.1021/acs.iecr.7b05075

    38. [38]

      Lee, K.; Lee, S.; Jun, Y.; Choi, M. J. Catal. 2017, 347, 222. doi: 10.1016/j.jcat.2017.01.018  doi: 10.1016/j.jcat.2017.01.018

    39. [39]

      Zhai, Y. L.; Zhang, S. L.; Shang, Y. S.; Song, Y.; Wang, W. X.; Ma, T.; Zhang, L. M.; Gong, Y. J.; Xu, J.; Deng, F. Catal. Sci. Technol. 2019, 9, 659. doi: 10.1039/C8CY02177E  doi: 10.1039/C8CY02177E

    40. [40]

      Ghorbanpour, A.; Gumidyala, A.; Grabow, L. C.; Crossley, S. P.; Rimer, J. D. ACS Nano 2015, 9 (4), 4006. doi: 10.1021/acsnano.5b01308  doi: 10.1021/acsnano.5b01308

    41. [41]

      Odedairo, T.; Balasamy, R. J.; Al-Khattaf, S. J. Mol. Catal. A: Chem. 2011, 345 (1), 21. doi: 10.1016/j.molcata.2011.05.015  doi: 10.1016/j.molcata.2011.05.015

    42. [42]

      Sang, Y.; Xing, A. H.; Wang, C. F.; Han, Z. H.; Wu, Y. L. Catalysts 2017, 7 (6), 171. doi: 10.3390/catal7060171  doi: 10.3390/catal7060171

    43. [43]

      Van Vu, D.; Miyamoto, M.; Nishiyama, N.; Egashira, Y.; Ueyama, K. J. Catal. 2006, 243 (2), 389. doi: 10.1016/j.jcat.2006.07.028  doi: 10.1016/j.jcat.2006.07.028

    44. [44]

      Arudra, P.; Bhuiyan, T. I.; Akhtar, M. N.; Aitani, A. M.; Al-Khattaf, S. S.; Hattori, H. ACS Catal. 2014, 4 (11), 4205. doi: 10.1021/cs5009255  doi: 10.1021/cs5009255

    45. [45]

      Yarulina, I.; De Wispelaere, K.; Bailleul, S.; Goetze, J.; Radersma, M.; Abou-Hamad, E.; Vollmer, I.; Goesten, M.; Mezari, B.; Hensen, E. J. M.; et al. Nat. Chem. 2018, 10 (8), 804. doi: 10.1038/s41557-018-0081-0  doi: 10.1038/s41557-018-0081-0

    46. [46]

      Gao, S. S.; Xu, S. T.; Wei, Y. X.; Qiao, Q. L.; Xu, Z. C.; Wu, X. Q.; Zhang, M. Z.; He, Y. L.; Xu, S. L.; Liu, Z. M. J. Catal. 2018, 367, 306. doi: 10.1016/j.jcat.2018.09.010  doi: 10.1016/j.jcat.2018.09.010

  • 加载中
    1. [1]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    2. [2]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    3. [3]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    4. [4]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    5. [5]

      Aimin FuChunmei ChenQin LiNanjin DingJiaxin DongYu ChenMengsha WeiWeiguang SunHucheng ZhuYonghui Zhang . Niduenes A−F, six functionalized sesterterpenoids with a pentacyclic 5/5/5/5/6 skeleton from endophytic fungus Aspergillus nidulans. Chinese Chemical Letters, 2024, 35(9): 109100-. doi: 10.1016/j.cclet.2023.109100

    6. [6]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    7. [7]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    8. [8]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    9. [9]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    10. [10]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    11. [11]

      . . University Chemistry, 2024, 39(5): 0-0.

    12. [12]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    13. [13]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    14. [14]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    15. [15]

      Ruizhi Yang Xia Li Weiping Guo Zixuan Chen Hongwei Ming Zhong-Zhen Luo Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268

    16. [16]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    17. [17]

      An LuYuhao GuoYi YanLin ZhaiXiangyu WangWeiran CaoZijie LiZhixia ZhaoYujie ShiYuanjun ZhuXiaoyan LiuHuining HeZhiyu WangJian-Cheng Wang . Nanomedicine integrating the lipidic derivative of 5-fluorouracil, miriplatin and PD-L1 siRNA for enhancing tumor therapy. Chinese Chemical Letters, 2024, 35(6): 108928-. doi: 10.1016/j.cclet.2023.108928

    18. [18]

      Haohao SunWenxuan WangYuli XiongZelang JianWen Chen . Boosting the electrochromic properties by large V2O5 nanobelts interlayer spacing tuned via PEDOT. Chinese Chemical Letters, 2024, 35(9): 109213-. doi: 10.1016/j.cclet.2023.109213

    19. [19]

      Lei ZhouYoujun ZhouLizhen FangYiqiao BaiYujia MengLiang LiJie YangYong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509

    20. [20]

      Lili WangYa YanRulin LiXujie HanJiahui LiTing RanJialu LiBaichuan XiongXiaorong SongZhaohui YinHong WangQingjun ZhuBowen ChengZhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011

Metrics
  • PDF Downloads(19)
  • Abstract views(723)
  • HTML views(62)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return