Citation: WANG Ziang, GUO Hang, RONG Xin, DONG Guifang. Fabrication of Patterned Organic Semiconductor Thin Films by the Synergy of Marangoni and Coffee-Ring Effects[J]. Acta Physico-Chimica Sinica, ;2019, 35(11): 1259-1266. doi: 10.3866/PKU.WHXB201901056 shu

Fabrication of Patterned Organic Semiconductor Thin Films by the Synergy of Marangoni and Coffee-Ring Effects

  • Corresponding author: DONG Guifang, donggf@tsinghua.edu.cn
  • Received Date: 23 January 2019
    Revised Date: 11 March 2019
    Accepted Date: 12 March 2019
    Available Online: 20 November 2019

    Fund Project: The project was supported by the National Natural Science Foundation of China (61890942) and the National Key R&D Program of China (2016YFB0401103, 2017YFA0204501)the National Key R&D Program of China 2016YFB0401103the National Key R&D Program of China 2017YFA0204501the National Natural Science Foundation of China 61890942

  • Organic field effect transistors (OFETs) have great potential in flexible sensor and display driver applications. However, there are immense challenges in the development of large-area and high-quality thin-film fabrications. In this article, we introduce a method to fabricate patterned organic semiconductor films by oxygen plasma treatment and the synergy of Marangoni and coffee-ring effects. The procedure is as follows: First, we spin-coated the cyclic transparent amorphous fluoropolymers (CYTOP) on the substrate in the form of a hydrophobic layer. Then, parts of the substrate surface were treated with plasma and modified to make them hydrophilic. By comparing the water contact angle on the plasma treated surface with that on the untreated surface, we optimized the treating time to get a relatively uniform water contact angle on a different region of the substrate surface. The plasma treated substrate was dipped into 2, 7-dioctyl[1]benzothieno[3, 2-b][1]benzothiophene (C8-BTBT) solution with methylbenzene and carbon tetrachloride as a mixed solvent, and then lifted from it. So the mixed solution flowed down rapidly on the hydrophobic portion of the surface, leaving droplet on the hydrophilic portion. Subsequently, the droplet started evaporating under the synergy of Marangoni and coffee-ring effects. Based on the difference between the hydrophilic and hydrophobic portions on the substrate surface, we successfully obtained the patterned C8-BTBT thin films on the substrate. Furthermore, the solvent ratio was optimized while growing the C8-BTBT film to adjust the boiling point of the solution, which was due to a fully covered surface was obtained. From the grazing-incidence X-ray diffraction (GIXRD) measurement of the films with three different concentrations, we observed that increasing in the concentration of the solution yielded different molecular orientations. Based on the three films, OFETs with bottom gate and top contact structure were fabricated. Moreover, the mobility and the on/off current ratio became more uniform with the progressive increase in the concentration of the solution. This may be attributed to the increase in the number of different molecular orientations and charge transfer channels. Although the increase in the number of different molecular orientations might lead to the decrease in mobility, it could improve the alignment of the electric field and also increase ππ stacking direction of the molecules, which promote highly uniform device performance distribution. Since uniform distribution of device performance is significant for practical applications, we believe the transistors that are fabricated at the highest concentration are better than those generated at lower concentrations. Thus, on the 5 cm × 5 cm substrate, it is observed that the average mobility of the transistors is 7.9 cm2·V-1·s-1, and all the devices have threshold voltages less than -2 V with the on/off current ratio of 104. This work is significant for the fabrication of large-area and high-performance thin films and transistors.
  • 加载中
    1. [1]

      Li, Z. G.; Zhang, Y. T.; Xie, Q.; Li, H. L.; Sun, L. J.; Song, X. F.; Wang, L. J. Acta Phys. -Chim. Sin. 2016, 32 (4), 1005.  doi: 10.3866/PKU.WHXB201601111

    2. [2]

      Sun, Q. J.; Dong, G. F.; Zheng, H. Y.; Zhao, H. Y.; Qiao, J.; Duan, L.; Wang, L. D.; Zhang, F. S.; Qiu, Y. Acta Phys. -Chim. Sin. 2011, 27 (8), 1893.  doi: 10.3866/PKU.WHXB20110832

    3. [3]

      LÜ, Q. R.; Li, J.; Lian, Z. P.; Zhao, H. Y.; Dong, G. F.; Li, Q.; Wang, L. D.; Yan, Q. F. Acta Phys. -Chim. Sin. 2017, 33 (1), 249.  doi: 10.3866/PKU.WHXB201610142

    4. [4]

      Cui, N.; Ren, H.; Tang, Q.; Zhao, X.; Tong, Y.; Hu, W.; Liu, Y. Nanoscale 2018, 10 (8), 3613. doi: 10.1039/c7nr09134f  doi: 10.1039/c7nr09134f

    5. [5]

      Minemawari, H.; Yamada, T.; Matsui, H.; Tsutsumi, J.; Haas, S.; Chiba, R.; Kumai, R.; Hasegawa, T. Nature 2011, 475 (7356), 364. doi: 10.1038/nature10313  doi: 10.1038/nature10313

    6. [6]

      Zschieschang, U.; Klauk, H. Org. Electron. 2015, 25, 340. doi: 10.1016/j.orgel.2015.06.038  doi: 10.1016/j.orgel.2015.06.038

    7. [7]

      Zhang, Y.; Wei, X.; Zhang, H.; Chen, X.; Wang, J. Appl. Surf. Sci. 2018, 427, 452. doi: 10.1016/j.apsusc.2017.08.116  doi: 10.1016/j.apsusc.2017.08.116

    8. [8]

      Diao, Y.; Tee, B. C.; Giri, G.; Xu, J.; Kim, D. H.; Becerril, H. A.; Stoltenberg, R. M.; Lee, T. H.; Xue, G.; Mannsfeld, S. C.; et al. Nat. Mater. 2013, 12 (7), 665. doi: 10.1038/nmat3650  doi: 10.1038/nmat3650

    9. [9]

      Chai, Z.; Abbasi, S. A.; Busnaina, A. A. ACS Appl. Mater. Interfaces 2018, 10 (21), 18123. doi: 10.1021/acsami.8b01433  doi: 10.1021/acsami.8b01433

    10. [10]

      Zhao, H.; Wang, Z.; Dong, G.; Duan, L. Phys. Chem. Chem. Phys. 2015, 17 (9), 6274. doi: 10.1039/c4cp05378h  doi: 10.1039/c4cp05378h

    11. [11]

      Haase, K.; Teixeira da Rocha, C.; Hauenstein, C.; Zheng, Y.; Hambsch, M.; Mannsfeld, S. C. B. Adv. Electron. Mater. 2018, 4 (8), 1800076. doi: 10.1002/aelm.201800076  doi: 10.1002/aelm.201800076

    12. [12]

      Yuan, Y.; Giri, G.; Ayzner, A. L.; Zoombelt, A. P.; Mannsfeld, S. C.; Chen, J.; Nordlund, D.; Toney, M. F.; Huang, J.; Bao, Z. Nat. Commun. 2014, 5, 3005. doi: 10.1038/ncomms4005  doi: 10.1038/ncomms4005

    13. [13]

      Wang, Q.; Jiang, S.; Qian, J.; Song, L.; Zhang, L.; Zhang, Y.; Zhang, Y.; Wang, Y.; Wang, X.; Shi, Y.; et al. Sci. Rep. 2017, 7, 7830. doi: 10.1038/s41598-017-08280-8  doi: 10.1038/s41598-017-08280-8

    14. [14]

      Wang, Q.; Qian, J.; Li, Y.; Zhang, Y.; He, D.; Jiang, S.; Wang, Y.; Wang, X.; Pan, L.; Wang, J.; et al. Adv. Funct. Mater. 2016, 26, 3191. doi: 10.1002/adfm.201600304  doi: 10.1002/adfm.201600304

    15. [15]

      Guo, Z.; Yu, P.; Sun, K.; Wang, W.; Wei Y.; Li, Z. Chem. Asian J. 2017, 12, 1104. doi: 10.1002/asia.201700271  doi: 10.1002/asia.201700271

    16. [16]

      Briseno, A. L.; Mannsfeld, S. C.; Ling, M. M.; Liu, S.; Tseng, R. J.; Reese, C.; Roberts, M. E.; Yang, Y.; Wudl, F.; Bao, Z. Nature 2006, 444 (7121), 913. doi: 10.1038/nature05427  doi: 10.1038/nature05427

    17. [17]

      Briseno, A. L.; Aizenberg, J.; Han, Y. J.; Penkala, R. A.; Moon, H.; Lovinger, A. J.; Kloc, C.; Bao, Z. J. Am. Chem. Soc. 2005, 127 (35), 12164. doi: 10.1021/ja052919u  doi: 10.1021/ja052919u

    18. [18]

      Mannsfeld, S. C. B.; Sharei, A.; Liu, S.; Roberts, M. E.; McCulloch, I.; Heeney, M.; Bao, Z. Adv. Mater. 2008, 20 (21), 4044. doi: 10.1002/adma.200703244  doi: 10.1002/adma.200703244

    19. [19]

      Wang, C.; Dong, H.; Jiang, L.; Hu, W. Chem. Soc. Rev. 2018, 47 (2), 422. doi: 10.1039/c7cs00490g  doi: 10.1039/c7cs00490g

    20. [20]

      Kumatani, A.; Liu, C.; Li, Y.; Darmawan, P.; Takimiya, K.; Minari, T.; Tsukagoshi, K. Sci. Rep. 2012, 2, 393. doi: 10.1038/srep00393  doi: 10.1038/srep00393

    21. [21]

      Yang, W.; Song, K.; Jung, Y.; Jeong, S.; Moon, J. J. Mater. Chem. C 2013, 1 (27), 4275. doi: 10.1039/c3tc30550c  doi: 10.1039/c3tc30550c

    22. [22]

      Branquinho, R.; Salgueiro, D.; Santos, L.; Barquinha, P.; Pereira, L.; Martins, R.; Fortunato, E. ACS Appl. Mater. Interfaces 2014, 6 (22), 19592. doi: 10.1021/am503872t  doi: 10.1021/am503872t

    23. [23]

      Choi, H. H.; Cho, K.; Frisbie, C. D.; Sirringhaus, H.; Podzorov, V. Nat. Mater. 2017, 17 (1), 2. doi: 10.1038/nmat5035  doi: 10.1038/nmat5035

    24. [24]

      Chae, J. B.; Kwon, J. O.; Yang, J. S.; Kim, D.; Rhee, K.; Chung, S. K. Sen. Actuators A-Phys. 2014, 215, 8. doi: 10.1016/j.sna.2013.11.001  doi: 10.1016/j.sna.2013.11.001

    25. [25]

      Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A. Nature 1997, 389 (6653), 827. doi: 10.1038/39827  doi: 10.1038/39827

    26. [26]

      Block, M. J. Nature 1956, 178 (4534), 650. doi: 10.1038/178650a0  doi: 10.1038/178650a0

    27. [27]

      de Gans, B. J.; Schubert, U. S. Langmuir 2004, 20 (18), 7789. doi: 10.1021/la049469o  doi: 10.1021/la049469o

    28. [28]

      Tang, C. B., Wu, W; Smilgies, D. M.; Matyjaszewski, K.; Kowalewski, T. J. Am. Chem. Soc. 2011, 133 (30), 11802. doi: 10.1021/ja204724h  doi: 10.1021/ja204724h

    29. [29]

      Uemura, T.; Hirose, Y.; Uno, M.; Takimiya, K.; Takeya, J. Appl. Phys. Express 2009, 2, 111501. doi: 10.1143/apex.2.111501  doi: 10.1143/apex.2.111501

    30. [30]

      He, D.; Zhang, Y.; Wu, Q.; Xu, R.; Nan, H.; Liu, J.; Yao, J.; Wang, Z.; Yuan, S.; Li, Y.; et al. Nat. Commun. 2014, 5, 5162. doi: 10.1038/ncomms6162  doi: 10.1038/ncomms6162

  • 加载中
    1. [1]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    2. [2]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    3. [3]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    4. [4]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    5. [5]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    6. [6]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    7. [7]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    8. [8]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    9. [9]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    10. [10]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    11. [11]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    12. [12]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    13. [13]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    14. [14]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    15. [15]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    16. [16]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    17. [17]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    18. [18]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    19. [19]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    20. [20]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

Metrics
  • PDF Downloads(26)
  • Abstract views(1162)
  • HTML views(272)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return