Citation: WANG Haipeng, GUAN Zichao, WANG Xia, JIN Piao, XU Hui, CHEN Lifang, SONG Guangling, DU Ronggui. Fabrication of a ZnSe/MoO3/TiO2 Composite Film Exhibiting Photocathodic Protection Effect[J]. Acta Physico-Chimica Sinica, ;2019, 35(11): 1232-1240. doi: 10.3866/PKU.WHXB201901025 shu

Fabrication of a ZnSe/MoO3/TiO2 Composite Film Exhibiting Photocathodic Protection Effect

  • Corresponding author: SONG Guangling, guangling.song@hotmail.com DU Ronggui, rgdu@xmu.edu.cn
  • Received Date: 9 January 2019
    Revised Date: 25 February 2019
    Accepted Date: 26 February 2019
    Available Online: 14 November 2019

    Fund Project: the National Natural Science Foundation of China J1310024the National Natural Science Foundation of China 51731008The project was supported by the National Natural Science Foundation of China (21573182, 51731008, 51671163, 21621091, J1310024)the National Natural Science Foundation of China 21573182the National Natural Science Foundation of China 51671163the National Natural Science Foundation of China 21621091

  • TiO2 is a semiconductor material with excellent photoelectrochemical properties that can provide photocathodic protection for metals. However, TiO2 can only absorb ultraviolet (UV) light at wavelengths of < 380 nm because of its wide band gap. In addition, photo-induced electron-hole pairs in the TiO2 semiconductor easily recombine, which leads to a low photoelectric conversion efficiency. Another shortcoming is that pure TiO2 semiconductors cannot sustain photocathodic protection in the dark, which may limit their practical applications to provide photocathodic protection. To address these shortcomings, various modification methods have been established by preparing TiO2 composite materials to improve their photoelectrochemical properties. In this study, a ZnSe- and MoO3-modified TiO2 nanotube composite film with charge storage ability was prepared to enhance its photocathodic protection effect on stainless steel. A TiO2 nanotube array film was prepared on a Ti foil via anodic oxidation and then MoO3 and ZnSe particles were deposited onto the film by cyclic voltammetry and pulse electrodeposition, respectively, to afford a ZnSe/MoO3/TiO2 nanotube composite film having a cascade band structure. Scanning electron microscopy observations showed that the TiO2 film consisted of ordered nanotubes with an average inner diameter of approximately 100 nm and wall thickness of approximately 15 nm. This nanotube structure remained intact after MoO3 and ZnSe particle deposition on the film. Energy dispersive spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy analyses indicated that the prepared nanotube composite film was composed of ZnSe, MoO3, and TiO2. The UV-Vis absorption and photoluminescence spectra showed that the photoresponse of the composite film was extended to the visible light region and the photo-induced electron-hole pair recombination was reduced. Photoelectrochemical and electrochemical measurements indicated that the photocurrent intensity of the composite film in a 0.5 mol·L−1 KOH solution was two-fold higher than that of the pure TiO2 film. Under white light illumination, the ZnSe/MoO3/TiO2 composite film decreased the potential of the coupled 403 stainless steel (403SS) in a 0.5 mol·L−1 NaCl solution by 470 mV (relative to the corrosion potential), demonstrating an effective photocathodic protection effect. It should be noted that the composite film exhibited a charge storage capability and could continuously provide cathodic protection for 22.5 h after illumination was stopped. In addition, electrochemical impedance spectroscopy results indicated that the composite film significantly decreased the charge transfer resistance of the coupled 403SS, highlighting the photocathodic protection effect on 430SS.
  • 加载中
    1. [1]

      Chen, X. B.; Mao, S. S. Chem. Rev. 2007, 107, 2891. doi: 10.1021/cr0500535  doi: 10.1021/cr0500535

    2. [2]

      Li, H. H.; Chen, R. F.; Ma, C.; Zhang, S. L.; An, Z. F.; Huang, W. Acta Phys. -Chim. Sin. 2011, 27, 1017.  doi: 10.3866/PKU.WHXB20110514

    3. [3]

      Zhang, J. F.; Wang, Y.; Shen, T. K.; Shu, X.; Cui, J. W.; Chen, Z.; Wu, Y. C. Acta Phys. -Chim. Sin. 2014, 30, 1535.  doi: 10.3866/PKU.WHXB201405221

    4. [4]

      Liu, C. B.; Wang, L. L.; Tang, Y. H.; Luo, S. L.; Liu, Y. T.; Zhang, S. Q.; Zeng, Y. X.; Xu, Y. Z. Appl. Catal. B- Environ. 2015, 164, 1. doi: 10.1016/j.apcatb.2014.08.046  doi: 10.1016/j.apcatb.2014.08.046

    5. [5]

      Fujishima, A.; Honda, K. Natrue 1972, 238, 37. doi: 10.1038/238037a0  doi: 10.1038/238037a0

    6. [6]

      Yuan, J. N.; Tsujikawa, S. J. Electrochem. Soc. 1995, 142, 3444. doi: 10.1149/1.2050002  doi: 10.1149/1.2050002

    7. [7]

      Ohko, Y.; Saitoh, S.; Tatsuma, T.; Fujishima, A. J. Electrochem. Soc. 2001, 148, B24. doi: 10.1149/1.1339030  doi: 10.1149/1.1339030

    8. [8]

      Park, H.; Kim, K. Y.; Choi, W. J. Phys. Chem. B 2002, 106, 4775. doi: 10.1021/jp025519r  doi: 10.1021/jp025519r

    9. [9]

      Zhu, Y. F.; Zhang, J.; Zhang, Y. Y.; Ding, M.; Qi, H. Q.; Du, R. G.; Lin, C. J. Acta Phys. -Chim. Sin. 2012, 28, 393.  doi: 10.3866/PKU.WHXB201112163

    10. [10]

      Zhou, H. L.; Qu, Y. Q.; Zeid, T.; Duan, X. F. Energy Environ Sci. 2012, 5, 6732. doi: 10.1039/c2ee03447f  doi: 10.1039/c2ee03447f

    11. [11]

      Xu, H.; Ouyang, S. X.; Liu, L. Q.; Reunchan, P.; Umezawa, N.; Ye, J. H. J. Mater. Chem. A 2014, 2, 12642. doi: 10.1039/c4ta00941j  doi: 10.1039/c4ta00941j

    12. [12]

      Bai, H. W.; Liu, Z. Y.; Sun, D. D. J. Am. Ceram. Soc. 2013, 96, 942. doi: 10.1111/jace.12071  doi: 10.1111/jace.12071

    13. [13]

      Zhang, J.; Du, R. G.; Lin, Z. Q.; Zhu, Y. F.; Guo, Y.; Qi, H. Q.; Xu, L.; Lin, C. J. Electrochim. Acta 2012, 83, 59. doi: 10.1016/j.electacta.2012.07.120  doi: 10.1016/j.electacta.2012.07.120

    14. [14]

      Zou, X. J.; Li, X. Y.; Zhao, Q. D.; Chen, G. H. Chem. J. Chinese Univ. 2012, 33, 1046.  doi: 10.3969/j.issn.0251-0790.2012.05.033

    15. [15]

      Livraghi, S.; Paganini, M. C.; Giamello, E.; Selloni, A.; Valentin, C. D.; Pacchioni, G. J. Am. Chem. Soc. 2006, 128, 15666. doi: 10.1021/ja064164c  doi: 10.1021/ja064164c

    16. [16]

      Park, Y.; Kim, W.; Park, H.; Tachikawa, T.; Majima, T.; Choi, W. Appl. Catal. B- Environ. 2009, 91, 355. doi: 10.1016/j.apcatb.2009.06.001  doi: 10.1016/j.apcatb.2009.06.001

    17. [17]

      Zaleska, A.; Sobczak, J. W.; Grabowska, E.; Hupka, J. Appl. Catal. B- Environ. 2008, 78, 92. doi: 10.1016/j.apcatb.2007.09.005  doi: 10.1016/j.apcatb.2007.09.005

    18. [18]

      Huang, F. Z.; Li, Q.; Thorogood, G. J.; Cheng, Y. B.; Caruso, R. A. J. Mater. Chem. 2012, 22, 17128. doi: 10.1039/c2jm32409a  doi: 10.1039/c2jm32409a

    19. [19]

      Momeni, M. M.; Ghayeb, Y. J. Electroanal. Chem. 2015, 751, 43. doi: 10.1016/j.jelechem.2015.05.035  doi: 10.1016/j.jelechem.2015.05.035

    20. [20]

      Tatsuma, T.; Saitoh, S.; Ohko, Y.; Fujishima, A. Chem. Mater. 2001, 13, 2838. doi: 10.1021/cm010024k  doi: 10.1021/cm010024k

    21. [21]

      Hu, J.; Guan, Z. C.; Liang, Y.; Zhou, J. Z.; Liu, Q.; Wang, H. P.; Zhang, H.; Du, R. G. Corros. Sci. 2017, 125, 59. doi: 10.1016/j.corsci.2017.06.003  doi: 10.1016/j.corsci.2017.06.003

    22. [22]

      Hou, Y.; Li, X. Y.; Zhao, Q. D.; Chen, G. H.; Raston, C. L. Environ. Sci. Technol. 2012, 46, 4042. doi: 10.1021/es204079d  doi: 10.1021/es204079d

    23. [23]

      Zhang, N.; Zhang, Y. H.; Pan, X. Y.; Yang, M. Q.; Xu, Y. J. J. Phys. Chem. C 2012, 116, 18023. doi: 10.1021/jp303503c  doi: 10.1021/jp303503c

    24. [24]

      Kim, H.; Kim, J.; Kim, W.; Choi, W. J. Phys. Chem. C 2011, 115, 9797. doi: 10.1021/jp1122823  doi: 10.1021/jp1122823

    25. [25]

      Wang, C.; Wu, L. X.; Wang, H.; Zuo, W. H.; Li, Y. Y.; Liu, J. P. Adv. Funct. Mater. 2015, 25, 3524. doi: 10.1002/adfm.201500634  doi: 10.1002/adfm.201500634

    26. [26]

      Sun, S. P.; Liao, X. M.; Sun, Y.; Yin, G. F.; Yao, Y. D.; Huang, Z. B.; Pu, X. M. RSC Adv. 2017, 7, 22983. doi: 10.1039/c7ra01164d  doi: 10.1039/c7ra01164d

    27. [27]

      Ashok, A.; Vijayaraghavan, S. N.; Nair, S. V.; Shanmugam, M. RSC Adv. 2017, 7, 48853. doi: 10.1039/c7ra08988k  doi: 10.1039/c7ra08988k

    28. [28]

      Liu, Q.; Hu, J.; Liang, Y.; Guan, Z. C.; Zhang, H.; Wang, H. P.; Du, R. G. J. Electrochem. Soc. 2016, 163, C539. doi: 10.1149/2.0481609jes  doi: 10.1149/2.0481609jes

    29. [29]

      ThanhThuy, T. T.; Feng, H.; Cai, Q. Y. Chem. Eng. J. 2013, 223, 379. doi: 10.1016/j.cej.2013.03.025  doi: 10.1016/j.cej.2013.03.025

    30. [30]

      Nguyen, V.; Li, W. L.; Pham, V.; Wang, L. J.; Sheng, P. T.; Cai, Q. Y.; Grimes, C. J. Colloid Interface Sci. 2016, 462, 389. doi: 10.1016/j.jcis.2015.10.005  doi: 10.1016/j.jcis.2015.10.005

    31. [31]

      Guan, Z. C.; Wang, H. P.; Wang, X.; Hu, J.; Du, R. G. Corros. Sci. 2018, 136, 60. doi: 10.1016/j.corsci.2018.02.048  doi: 10.1016/j.corsci.2018.02.048

    32. [32]

      Zhu, L.; Peng, M. M.; Cho, K. Y.; Ye, S.; Sarkar, S.; Ullah, K.; Meng, Z. D.; Oh, W. C. J. Korean Ceram. Soc. 2013, 50, 504. doi: 10.4191/kcers.2013.50.6.504  doi: 10.4191/kcers.2013.50.6.504

    33. [33]

      Zhai, C. Y.; Zhu, M. S.; Lu, Y. T.; Ren, F. F.; Wang, C. Q.; Du, Y. K.; Yang, P. Phys. Chem. Chem. Phys. 2014, 16, 14800. doi: 10.1039/c4cp01401d  doi: 10.1039/c4cp01401d

    34. [34]

      Lorenz, K.; Bauer, S.; Gutbrod, K.; Guggenbichler, J. P.; Schmuki, P.; Zollfrank, C. Biointerphases 2011, 6, 16. doi: 10.1116/1.3566544  doi: 10.1116/1.3566544

    35. [35]

      Guan, D. S.; Li, J. Y.; Gao, X. F.; Yuan, C. RSC Adv. 2014, 4, 4055. doi: 10.1039/c3ra44849e  doi: 10.1039/c3ra44849e

    36. [36]

      Antony, R. P.; Mathews, T.; Dash, S.; Tyagi, A. K.; Raj, B. Mater. Chem. Phys. 2012, 132, 957. doi: 10.1016/j.matchemphys.2011.12.041  doi: 10.1016/j.matchemphys.2011.12.041

    37. [37]

      He, L. C.; Zhang, Y. A.; Zhang, S. L.; Zhou, X. T.; Lin, Z. X.; Guo, T. L. Mater. Technol. 2018, 33, 205. doi: 10.1080/10667857.2017.1396776  doi: 10.1080/10667857.2017.1396776

    38. [38]

      Rengaraj, S.; Li, X. Z. Chemosphere 2007, 66, 930. doi: 10.1016/j.chemosphere.2006.06.007  doi: 10.1016/j.chemosphere.2006.06.007

    39. [39]

      Jing, L. Q.; Qu, Y. C.; Wang, B. Q.; Li, S. D.; Jiang, B. J.; Yang, L. B.; Fu, W.; Fu, H. G.; Sun, J. Z. Sol. Energy Mater. Sol. Cells 2006, 90, 1773. doi: 10.1016/j.solmat.2005.11.007  doi: 10.1016/j.solmat.2005.11.007

    40. [40]

      Wu, Z.; Wang, Y. Y.; Sun, L.; Mao, Y. X.; Wang, M. Y.; Lin, C. J. J. Mater. Chem. A 2014, 2, 8223. doi: 10.1039/c4ta00850b  doi: 10.1039/c4ta00850b

    41. [41]

      Cummings, C. Y.; Marken, F.; Peter, L. M.; Tahir, A. A.; Wijayantha, K. G. U. Chem. Commun. 2012, 48, 2027. doi: 10.1039/c2cc16382a  doi: 10.1039/c2cc16382a

    42. [42]

      Park, S. M.; Yoo, J. S. Anal. Chem. 2003, 75, 455A. doi: 10.1021/ac0313973  doi: 10.1021/ac0313973

    43. [43]

      Chen, W.; Du, R. G.; Ye, C. Q.; Zhu, Y. F.; Lin, C. J. Electrochim. Acta 2010, 55, 5677. doi: 10.1016/j.electacta.2010.05.003  doi: 10.1016/j.electacta.2010.05.003

    44. [44]

      Hamadou, L.; Kadri, A.; Benbrahim, N. Appl. Surf. Sci. 2005, 252, 1510. doi: 10.1016/j.apsusc.2005.02.135  doi: 10.1016/j.apsusc.2005.02.135

    45. [45]

      Takahashi, Y.; Ngaotrakanwiwat, P.; Tatsuma, T. Electrochim. Acta 2004, 49, 2025. doi: 10.1016/j.electacta.2003.12.032  doi: 10.1016/j.electacta.2003.12.032

    46. [46]

      Chitrada, K. C.; Gakhar, R.; Chidambaram, D.; Aston, E.; Raja, K. S. J. Electrochem. Soc. 2016, 163, H546. doi: 10.1149/2.0721607jes  doi: 10.1149/2.0721607jes

  • 加载中
    1. [1]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    2. [2]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    3. [3]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    4. [4]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    5. [5]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    6. [6]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    7. [7]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    8. [8]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    9. [9]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    10. [10]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    11. [11]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    12. [12]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    13. [13]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    14. [14]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    15. [15]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    16. [16]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    17. [17]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    18. [18]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    19. [19]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    20. [20]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

Metrics
  • PDF Downloads(10)
  • Abstract views(780)
  • HTML views(182)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return