Citation: XIONG Yangheng, WU Hao, GAO Jianshu, CHEN Wen, ZHANG Jingchao, YUE Yanan. Toward Improved Thermal Conductance of Graphene-Polyethylene Composites via Surface Defect Engineering: a Molecular Dynamics Study[J]. Acta Physico-Chimica Sinica, ;2019, 35(10): 1150-1156. doi: 10.3866/PKU.WHXB201901002 shu

Toward Improved Thermal Conductance of Graphene-Polyethylene Composites via Surface Defect Engineering: a Molecular Dynamics Study

  • Corresponding author: ZHANG Jingchao, zhang@unl.edu YUE Yanan, yyue@whu.edu.cn
  • Received Date: 2 January 2019
    Revised Date: 21 January 2019
    Accepted Date: 4 December 2018
    Available Online: 21 October 2019

    Fund Project: The project was supported by the National Natural Science Foundation of China (51576145)The project was supported by the National Natural Science Foundation of China 51576145

  • Polymers are widely used advanced materials composed of macromolecular chains, which can be found in materials used in our daily life. Polymer materials have been employed in many energy and electronic applications such as energy harvesting devices, energy storage devices, light emitting and sensing devices, and flexible energy and electronic devices. The microscopic morphologies and electrical properties of the polymer materials can be tuned by molecular engineering, which could improve the device performances in terms of both the energy conversion efficiency and stability. Traditional polymers are usually considered to be thermal insulators owing to their amorphous molecular chains. Graphene-based polymeric materials have garnered significant attention due to the excellent thermal conductivity of graphene. Advanced polymeric composites with high thermal conductivity exhibit great potential in many applications. Therefore, research on the thermal transport behaviors in graphene-based nanocomposites becomes critical. Vacancy defects in graphene are commonly observed during its fabrication. In this work, the effects of vacancy defects in graphene on thermal transport properties of the graphene-polyethylene nanocomposite are comprehensively investigated using molecular dynamics (MD) simulation. Based on the non-equilibrium molecular dynamics (NEMD) method, the interfacial thermal conductance and the overall thermal conductance of the nanocomposite are taken into consideration simultaneously. It is found that vacancy defects in graphene facilitate the interfacial thermal conductance between graphene and polyethylene. By removing various proportions of carbon atoms in pristine graphene, the density of vacancy defects varies from 0% to 20% and the interfacial thermal conductance increases from 75.6 MW·m−2·K−1 to 85.9 MW·m−2·K−1. The distinct enhancement in the interfacial thermal transport is attributed to the enhanced thermal coupling between graphene and polyethylene. A higher number of broken sp2 bonds in the defective graphene lead to a decrease in the structure rigidity with more low-frequency (< 15 THz) phonons. The improved overlap of vibrational density states between graphene and polyethylene at a low frequency results in better interfacial thermal conductance. Moreover, the increase in the interfacial thermal conductance induced by vacancy defects have a significant effect on the overall thermal conductance (from 40.8 MW·m−2·K−1 to 45.6 MW·m−2·K−1). In addition, when filled with the graphene layer, the local density of polyethylene increases on both sides of the graphene. The concentrated layers provide more aligned molecular arrangement, which result in better thermal conductance in polyethylene. Further, the higher local density of the polymer near the interface provides more atoms for interaction with the graphene, which leads to stronger effective interactions. The relative concentration is insensitive to the density of vacancy defects. The reported results on the thermal transport behavior of graphene-polyethylene composites provide reasonable guidance for using graphene as fillers to tune the thermal conduction of polymeric composites.
  • 加载中
    1. [1]

      Sun, Y.; Shi, G. J. Polym. Sci. B. Polym. Phys. 2013, 51 (4), 231. doi: 10.1002/polb.23226  doi: 10.1002/polb.23226

    2. [2]

      Wang, Y.; Chen, K. S.; Mishler, J.; Cho, S. C.; Adroher, X. C. Appl. Energy 2011, 88 (4), 981. doi: 10.1016/j.apenergy.2010.09.030  doi: 10.1016/j.apenergy.2010.09.030

    3. [3]

      Zarek, M.; Layani, M.; Cooperstein, I.; Sachyani, E.; Cohn, D.; Magdassi, S. Adv. Mater. 2016, 28 (22), 4449. doi: 10.1002/adma.201503132  doi: 10.1002/adma.201503132

    4. [4]

      Henry, A. Annu. Rev. Heat Transfer 2013, 17, 485. doi: 10.1615/AnnualRevHeatTransfer.2013006949  doi: 10.1615/AnnualRevHeatTransfer.2013006949

    5. [5]

      Choy, C. Polymer 1977, 18 (10), 984. doi: 10.1016/0032-3861(77)90002-7  doi: 10.1016/0032-3861(77)90002-7

    6. [6]

      Wang, X.; Zhang, J.; Chen, Y.; Chan, P. K. L. Nanoscale 2017, 9 (6), 2262. doi: 10.1039/c6nr08682a  doi: 10.1039/c6nr08682a

    7. [7]

      Poulaert, B.; Legras, R.; Chielens, J.; Vandenhende, C.; Issi, J. Polym. Commun. 1990, 31 (4), 148. doi: 10.1016/0032-3861(78)90032-0  doi: 10.1016/0032-3861(78)90032-0

    8. [8]

      Shen, S.; Henry, A.; Tong, J.; Zheng, R.; Chen, G. Nat. Nanotechnol. 2010, 5 (4), 251. doi: 10.1038/nnano.2010.27  doi: 10.1038/nnano.2010.27

    9. [9]

      Xu, Y.; Wang, X.; Zhou, J.; Song, B.; Jiang, Z.; Lee, E. M.; Huberman, S.; Gleason, K. K.; Chen, G. Sci. Adv. 2018, 4 (3), eaar3031. doi: 10.1126/sciadv.aar3031  doi: 10.1126/sciadv.aar3031

    10. [10]

      Singh, V.; Bougher, T. L.; Weathers, A.; Cai, Y.; Bi, K.; Pettes, M. T.; McMenamin, S. A.; Lv, W.; Resler, D. P.; Gattuso, T. R. Nat. Nanotechnol. 2014, 9 (5), 384. doi: 10.1038/nnano.2014.44  doi: 10.1038/nnano.2014.44

    11. [11]

      Xu, Y.; Ray, G.; Abdel-Magid, B. Compos. Part A Appl. Sci. Manuf. 2006, 37 (1), 114. doi: 10.1016/j.compositesa.2005.04.009  doi: 10.1016/j.compositesa.2005.04.009

    12. [12]

      Han, Z.; Fina, A. Prog. Polym. Sci. 2011, 36 (7), 914. doi: 10.1016/j.progpolymsci.2010.11.004  doi: 10.1016/j.progpolymsci.2010.11.004

    13. [13]

      Lee, G. W.; Park, M.; Kim, J.; Lee, J. I.; Yoon, H. G. Compos. Part A Appl. Sci. Manuf. 2006, 37 (5), 727. doi: 10.1016/j.compositesa.2005.07.006  doi: 10.1016/j.compositesa.2005.07.006

    14. [14]

      Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8 (3), 902. doi: 10.1021/nl0731872  doi: 10.1021/nl0731872

    15. [15]

      Ghosh, S.; Calizo, I.; Teweldebrhan, D.; Pokatilov, E. P.; Nika, D. L.; Balandin, A. A.; Bao, W.; Miao, F.; Lau, C. N. Appl. Phys. Lett. 2008, 92 (15), 151911. doi: 10.1063/1.2907977  doi: 10.1063/1.2907977

    16. [16]

      Hong, Y.; Ju, M. G.; Zhang, J.; Zeng, X. C. Phys. Chem. Chem. Phys. 2018, 20 (4), 2637. doi: 10.1039/c7cp06874c  doi: 10.1039/c7cp06874c

    17. [17]

      Hong, Y.; Zhang, Z.; Zhang, J.; Zeng, X. C. Nanoscale 2018, 10 (40), 19092. doi: 10.1039/c8nr05703f  doi: 10.1039/c8nr05703f

    18. [18]

      Zhang, L.; Bai, Z.; Liu, L. Adv. Mater. Interfaces 2016, 3 (13), 1600211. doi: 10.1002/admi.201600211  doi: 10.1002/admi.201600211

    19. [19]

      Wang, X.; Zhang, J.; Chen, Y.; Chan, P. K. Phys. Chem. Chem. Phys. 2017, 19 (24), 15933. doi: 10.1039/C7CP01958K  doi: 10.1039/C7CP01958K

    20. [20]

      Han, D.; Wang, X. Y.; Ding, W. Y.; Chen, Y.; Zhang, J. C.; Xin, G. M.; Cheng, L. Nanotechnology 2019, 30 (7), 075403. doi: 10.1088/1361-6528/aaf481  doi: 10.1088/1361-6528/aaf481

    21. [21]

      Shahil, K. M.; Balandin, A. A. Nano Lett. 2012, 12 (2), 861. doi: 10.1021/nl203906r  doi: 10.1021/nl203906r

    22. [22]

      Kim, S. Y.; Noh, Y. J.; Yu, J. Compos. Part A Appl. Sci. Manuf. 2015, 69, 219. doi: 10.1016/j.compositesa.2014.11.018  doi: 10.1016/j.compositesa.2014.11.018

    23. [23]

      Shtein, M.; Nadiv, R.; Buzaglo, M.; Kahil, K.; Regev, O. Chem. Mater. 2015, 27 (6), 2100. doi: 10.1021/cm504550e  doi: 10.1021/cm504550e

    24. [24]

      Wang, Y.; Zhan, H.; Xiang, Y.; Yang, C.; Wang, C. M.; Zhang, Y. J. Phys. Chem. C 2015, 119 (22), 12731. doi: 10.1021/acs.jpcc.5b02920  doi: 10.1021/acs.jpcc.5b02920

    25. [25]

      Wang, T. Y.; Tsai, J. L. Comput. Mater. Sci. 2016, 122, 272. doi: 10.1016/j.commatsci.2016.05.039  doi: 10.1016/j.commatsci.2016.05.039

    26. [26]

      Qu, W. D.; Liu, J.; Xue, Y.; Wang, X. W.; Bai, X. L. J. Appl. Polym. Sci. 2018, 135 (4), 45736. doi: 10.1002/App.45736  doi: 10.1002/App.45736

    27. [27]

      Gass, M. H.; Bangert, U.; Bleloch, A. L.; Wang, P.; Nair, R. R.; Geim, A. Nat. Nanotechnol. 2008, 3 (11), 676. doi: 10.1038/nnano.2008.280  doi: 10.1038/nnano.2008.280

    28. [28]

      Schniepp, H. C.; Li, J. L.; McAllister, M. J.; Sai, H.; Herrera-Alonso, M.; Adamson, D. H.; Prud'homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A. J. Phys. Chem. B 2006, 110 (17), 8535. doi: 10.1021/jp060936f  doi: 10.1021/jp060936f

    29. [29]

      Tang, X.; Xu, S.; Zhang, J.; Wang, X. ACS Appl. Mater. Interfaces 2014, 6 (4), 2809. doi: 10.1021/am405388a  doi: 10.1021/am405388a

    30. [30]

      Kotakoski, J.; Krasheninnikov, A.; Kaiser, U.; Meyer, J. Phys. Rev. Lett. 2011, 106 (10), 105505. doi: 10.1103/PhysRevLett.106.105505  doi: 10.1103/PhysRevLett.106.105505

    31. [31]

      Hao, F.; Fang, D.; Xu, Z. Appl. Phys. Lett. 2011, 99 (4), 041901. doi: 10.1063/1.3615290  doi: 10.1063/1.3615290

    32. [32]

      Zhang, J.; Hong, Y.; Yue, Y. J. Appl. Phys. 2015, 117 (13), 134307. doi: 10.1063/1.4916985  doi: 10.1063/1.4916985

    33. [33]

      Chen, S.; Wu, Q.; Mishra, C.; Kang, J.; Zhang, H.; Cho, K.; Cai, W.; Balandin, A. A.; Ruoff, R. S. Nat. Mater. 2012, 11 (3), 203. doi: 10.1038/nmat3207  doi: 10.1038/nmat3207

    34. [34]

      Zhang, H.; Lee, G.; Cho, K. Phys. Rev. B 2011, 84 (11), 115460. doi: 10.1103/PhysRevB.84.115460  doi: 10.1103/PhysRevB.84.115460

    35. [35]

      Yue, Y.; Zhang, J.; Xie, Y.; Chen, W.; Wang, X. Int. J. Heat Mass Transf. 2017, 110, 827. doi: 10.1016/j.ijheatmasstransfer.2017.03.082  doi: 10.1016/j.ijheatmasstransfer.2017.03.082

    36. [36]

      Jiang, J. W.; Wang, B. S.; Wang, J. S. Appl. Phys. Lett. 2011, 98 (11), 113114. doi: 10.1063/1.3567768  doi: 10.1063/1.3567768

    37. [37]

      Plimpton, S. J. Comput. Phys. 1995, 117 (1), 1. doi: 10.1006/jcph.1995.1039  doi: 10.1006/jcph.1995.1039

    38. [38]

      Brenner, D. W.; Shenderova, O. A.; Harrison, J. A.; Stuart, S. J.; Ni, B.; Sinnott, S. B. J. Phys. Condens. Matt. 2002, 14 (4), 783. doi: 10.1088/0953-8984/14/4/312  doi: 10.1088/0953-8984/14/4/312

    39. [39]

      Hu, J.; Ruan, X.; Chen, Y. P. Nano Lett. 2009, 9 (7), 2730. doi: 10.1021/nl901231s  doi: 10.1021/nl901231s

    40. [40]

      Sun, H. J. Phys. Chem. B 1998, 102 (38), 7338. doi: 10.1021/jp980939v  doi: 10.1021/jp980939v

    41. [41]

      Liu, J.; Yang, R. Phys. Rev. B 2010, 81 (17), 174122. doi: 10.1103/PhysRevB.81.174122  doi: 10.1103/PhysRevB.81.174122

    42. [42]

      Wang, Y.; Yang, C.; Cheng, Y.; Zhang, Y. RSC Adv. 2015, 5 (101), 82638. doi: 10.1039/C5RA12028D  doi: 10.1039/C5RA12028D

    43. [43]

      Hoover, W. G. Annu. Rev. Phys. Chem. 1983, 34 (1), 103. doi: 10.1146/annurev.pc.34.100183.000535  doi: 10.1146/annurev.pc.34.100183.000535

    44. [44]

      Shen, X.; Wang, Z.; Wu, Y.; Liu, X.; He, Y. B.; Kim, J. K. Nano Lett. 2016, 16 (6), 3585. doi: 10.1021/acs.nanolett.6b00722  doi: 10.1021/acs.nanolett.6b00722

    45. [45]

      Luo, T.; Lloyd, J. R. Adv. Funct. Mater. 2012, 22 (12), 2495. doi: 10.1002/adfm.201103048  doi: 10.1002/adfm.201103048

    46. [46]

      Liu, Y.; Huang, J.; Yang, B.; Sumpter, B. G.; Qiao, R. Carbon 2014, 75, 169. doi: 10.1016/j.carbon.2014.03.050  doi: 10.1016/j.carbon.2014.03.050

    47. [47]

      Hu, L.; Desai, T.; Keblinski, P. J. Appl. Phys. 2011, 110 (3), 033517. doi: 10.1063/1.3610386  doi: 10.1063/1.3610386

    48. [48]

      Liu, Y.; Hu, C.; Huang, J.; Sumpter, B. G.; Qiao, R. J. Chem. Phys. 2015, 142 (24), 244703. doi: 10.1063/1.4922775  doi: 10.1063/1.4922775

    49. [49]

      Girifalco, L.; Hodak, M.; Lee, R. S. Phys. Rev. B 2000, 62 (19), 13104. doi: 10.1103/PhysRevB.62.13104  doi: 10.1103/PhysRevB.62.13104

    50. [50]

      Chen, S.; Lv, Q.; Guo, J.; Wang, Z.; Sun, S.; Hu, S. Acta Polym. Sin. 2017, (4), 716. doi: 10.11777/j.issn1000-3304.2017.16201  doi: 10.11777/j.issn1000-3304.2017.16201

  • 加载中
    1. [1]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    2. [2]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    3. [3]

      Yu PengYue WangTian-Jiao ChenJing-Jing ChenJin-Ling YangTing GongPing Zhu . A fungal CYP from Beauveria bassiana with promiscuous steroid hydroxylation capabilities. Chinese Chemical Letters, 2024, 35(5): 108818-. doi: 10.1016/j.cclet.2023.108818

    4. [4]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    5. [5]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    6. [6]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    7. [7]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    8. [8]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    9. [9]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    10. [10]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    11. [11]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    12. [12]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    13. [13]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    14. [14]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    15. [15]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    16. [16]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    17. [17]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    18. [18]

      Jieqiong QinZhi YangJiaxin MaLiangzhu ZhangFeifei XingHongtao ZhangShuxia TianShuanghao ZhengZhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845

    19. [19]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    20. [20]

      Yiran TaoChunlei DaiZhaoxiang XieXinru YouKaiwen LiJun WuHai Huang . Redox responsive polymeric nanoparticles enhance the efficacy of cyclin dependent kinase 7 inhibitor for enhanced treatment of prostate cancer. Chinese Chemical Letters, 2024, 35(8): 109170-. doi: 10.1016/j.cclet.2023.109170

Metrics
  • PDF Downloads(10)
  • Abstract views(413)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return