Citation: DU Chunbao, HU Xiaoling, ZHANG Gang, CHENG Yuan. 2D Materials Meet Biomacromolecules: Opportunities and Challenges[J]. Acta Physico-Chimica Sinica, ;2019, 35(10): 1078-1089. doi: 10.3866/PKU.WHXB201812057 shu

2D Materials Meet Biomacromolecules: Opportunities and Challenges

  • Corresponding author: DU Chunbao, duchunbao218@126.com CHENG Yuan, chengy@ihpc.a-star.edu.sg
  • Received Date: 31 December 2018
    Revised Date: 23 January 2019
    Accepted Date: 24 January 2019
    Available Online: 29 October 2019

    Fund Project: The project was supported by the National Natural Science Foundation of China (51433008) and the RIE2020 Advanced Manufacturing and Engineering (AME) Programmatic grant, Work Package 4(A1898b0043)the RIE2020 Advanced Manufacturing and Engineering (AME) Programmatic grant, Work Package 4 A1898b0043The project was supported by the National Natural Science Foundation of China 51433008

  • With the rapid development of science and technology, various nanomaterials have continually emerged to meet human needs. As a newly emerging class of nanomaterials, two-dimensional (2D) materials have received wide attention recently in energy storage, catalysis, sensing and biomedicine due to their unique features such as good mechanical property, high specific surface area, excellent thermal and electrical conductivity. Biomacromolecules are the special organic molecules with various biological activities which exist extensively in every aspect of human life. When 2D materials meet biomacromolecules to display their own unique advantages, more opportunities and challenges have arisen for the exploitation and fabrication of novel nanomaterials with unique electrical, mechanical, biological properties and specific functions. In recent years, extensive research has been carried out with outstanding achievement thus the combination of 2D materials and biomacromolecules becomes a new hotspot. There were generally two binding interactions between 2D materials and biomacromolecules, namely non-covalent binding (electrostatic interaction, hydrophobic effect, ππ stacking, van der Waals interaction) and covalent binding (special chemical reactions between the functional groups of 2D materials and biomacromolecules). In addition, due to the excellent photothermal conversion performance, 2D materials could exhibit a non-contact interaction to biomacromolecules through the photo-thermal effect which has greatly broadened their applications. Up to now, numerous studies have clearly revealed the binding and effect mechanism and the research will be more focused on expanding the scope and application. Currently, the combination of 2D materials and biomacromolecules has widely involved in many cutting-edge applications such as flexible device, biosensor, smart skin, drug delivery, antibacterial, disease therapy and so on. Although a lot of progress has been made, several highlight open questions still need to be urgently addressed, such as the production cost of 2D materials, biological activity of biomacromolecules, stability and biocompatibility of 2D/biomacromolecule nanomaterials. This review summarizes the interactions between some typical 2D materials (i.e. graphene, graphene oxide, nitrogen-doped graphene, molybdenum disulfide, phosphorene, silylene and germanene) and biomacromolecules (i.e. silk protein, lysozyme, bovine serum albumin, bovine hemoglobin, ovalbumin, villin, bovine fibrinogen, DNA/RNA, glucose oxidase and chitosan) and focuses on the recent progress of some typical applications (i.e. engineering application, disease therapy and antibacterial). The non-covalent and covalent bindings of 2D materials and biomacromolecules are discussed in detail, and the applications of the combination of 2D materials and biomacromolecules in engineering and bioscience have been reviewed. Finally, the challenges for the future development of 2D materials and biomacromolecules are also briefly proposed.
  • 加载中
    1. [1]

      Zhang, Z.; Chen, P.; Duan, X.; Zang, K.; Luo, J.; Duan, X. Science 2017, 357, 788. doi: 10.1126/science.aan6814  doi: 10.1126/science.aan6814

    2. [2]

      Lang, H.; Zhang, S.; Liu, Z. Phys. Rev. B 2016, 94, 235306. doi: 10.1103/PhysRevB.94.235306  doi: 10.1103/PhysRevB.94.235306

    3. [3]

      Zhang, G.; Zhang, Y. W. Chin. Phys. B 2017, 26, 034401. doi: 10.1088/1674-1056/26/3/034401  doi: 10.1088/1674-1056/26/3/034401

    4. [4]

      Zhang, G.; Zhang, Y W. J. Mater. Chem. C 2017, 5, 7684. doi: 10.1039/c7tc01088e  doi: 10.1039/c7tc01088e

    5. [5]

      Zhang, G.; Zhang, Y. W. Mech. Mater. 2015, 91, 382. doi: 10.1016/j.mechmat.2015.03.009  doi: 10.1016/j.mechmat.2015.03.009

    6. [6]

      Xie, G.; Ju, Z.; Zhou, K.; Wei, X.; Guo, Z.; Cai, Y.; Zhang, G. NPJ Comput. Mater. 2018, 4, 21. doi: 10.1038/s41524-018-0076-9  doi: 10.1038/s41524-018-0076-9

    7. [7]

      Liu, Q.; Wang, X.; Wang, J.; Huang, X. Acta Phys.-Chim. Sin. 2019, 35, 1099.  doi: 10.3866/PKU.WHXB201811005

    8. [8]

      Ouyang, F.; Peng, S.; Yang, Z.; Chen, Y.; Zou, H.; Xiong, X. Phys. Chem. Chem. Phys. 2014, 16, 20524. doi: 10.1039/C4CP02090A  doi: 10.1039/C4CP02090A

    9. [9]

      Zhang, S.; Wang, J.; Li, Z.; Zhao, R.; Tong, L.; Liu, Z.; Zhang, J.; Liu, Z. J. Phys. Chem. C 2016, 120, 10605. doi: 10.1021/acs.jpcc.5b12388  doi: 10.1021/acs.jpcc.5b12388

    10. [10]

      Zhou, L.; Liao, L.; Wang, J.; Yu, J.; Li, D.; Xie, Q.; Liu, Z.; Yang, Y.; Guo, X.; Liu, Z. Adv. Mater. 2016, 28, 2148. doi: 10.1002/adma.201670070  doi: 10.1002/adma.201670070

    11. [11]

      Li, Z.; Liu, Z.; Liu, Z. Nano Res. 2017, 10, 2005. doi: 10.1007/s12274-016-1388-z  doi: 10.1007/s12274-016-1388-z

    12. [12]

      Liu, N.; Zhou, S.; Zhao, J. Acta Phys.-Chim. Sin. 2019, 35, 1142.  doi: 10.3866/PKU.WHXB201810040

    13. [13]

      Wang, K.; Shi, L.; Wang, M.; Yang, H.; Liu, Z.; Peng, H. Acta Phys.-Chim. Sin. 2019, 35, 1112.  doi: 10.3866/PKU.WHXB201805032

    14. [14]

      Qin, G.; Du, A.; Sun, Q. Energy Technol.-Ger 2018, 6, 205. doi: 10.1002/ente.201700413  doi: 10.1002/ente.201700413

    15. [15]

      Zhao, R.; Li, F.; Liu, Z.; Liu, Z.; Ding, F. Phys. Chem. Chem. Phys. 2015, 17, 29327. doi: 10.1039/c5cp04833h  doi: 10.1039/c5cp04833h

    16. [16]

      Zhao, R.; Zhao, X.; Liu, Z.; Ding, F.; Liu, Z. Nanoscale 2017, 9, 3561. doi: 10.1039/c6nr09368j  doi: 10.1039/c6nr09368j

    17. [17]

      Wei, X.; Wang, Y.; Shen, Y.; Xie, G.; Xiao, H.; Zhong, J.; Zhang, G. Appl. Phys. Lett. 2014, 105, 103902. doi: 10.1063/1.4895344  doi: 10.1063/1.4895344

    18. [18]

      Li, W.; Zhang, G.; Guo, M.; Zhang, Y. W. Nano Res. 2014, 7, 518. doi: 10.1007/s12274-014-0418-y  doi: 10.1007/s12274-014-0418-y

    19. [19]

      Ouyang, F.; Yang, Z.; Ni, X.; Wu, N.; Chen, Y.; Xiong, X. Appl. Phys. Lett. 2014, 104, 071901. doi: 10.1063/1.4865902  doi: 10.1063/1.4865902

    20. [20]

      Li, W.; Guo, M.; Zhang, G.; Zhang, Y. W. Phys. Rev. B 2014, 89, 205402. doi: 10.1103/PhysRevB.89.205402  doi: 10.1103/PhysRevB.89.205402

    21. [21]

      Li, W.; Yang, Y.; Weber, J.; Zhang, G.; Zhou, R. ACS Nano 2016, 10, 1829. doi: 10.1021/acsnano.5b05250  doi: 10.1021/acsnano.5b05250

    22. [22]

      Zhu, P.; Chen, Y.; Zhou, Y.; Yang, Z.; Wu, D.; Xiong, X.; Ouyang, F. Int. J. Hydrogen. 2018, 43, 14087. doi: 10.1016/j.ijhydene.2018.05.175  doi: 10.1016/j.ijhydene.2018.05.175

    23. [23]

      Liu, X.; Wang, J.; Xu, C.; Luo, J.; Liang, D.; Cen, Y.; Lü, Y.; Li, Z. Acta Phys.-Chim. Sin. 2019, 35, 1134.  doi: 10.3866/PKU.WHXB201809013

    24. [24]

      Zhu, Z.; Cheng, Y.; Schwingenschögl, U. Phys. Rev. Lett. 2013, 110, 077202. doi: 10.1103/PhysRevLett.110.077202  doi: 10.1103/PhysRevLett.110.077202

    25. [25]

      Jing, Y.; Zhou, Z.; Cabrera, C. R. C.; Chen, Z. J. Phys. Chem. C 2013, 117, 25409. doi: 10.1021/jp410969u  doi: 10.1021/jp410969u

    26. [26]

      Gan, L. Y.; Zhang, L. H.; Zhang, Q.; Guo, C. S.; Schwingenschögl, U.; Zhao, Y. Phys. Chem. Chem. Phys. 2016, 18, 3080. doi: 10.1039/c5cp05695k  doi: 10.1039/c5cp05695k

    27. [27]

      Zhang, M.; Zhu, Y.; Wang, X.; Feng, Q.; Qiao, S.; Wen, W.; Chen, Y.; Cui, M.; Zhang, J.; Cai, C.; et al. J. Am. Chem. Soc. 2015, 137, 7051. doi: 10.1021/jacs.5b03807  doi: 10.1021/jacs.5b03807

    28. [28]

      Rivera, P.; Schaibley, J. R.; Jones, A. M.; Ross, J. S.; Wu, S.; Aivazian, G.; Klement, P.; Seyler, K.; Clark, G.; Ghimire, N. J.; et al. Nat. Commun. 2015, 6, 6242. doi: 10.1038/ncomms7242  doi: 10.1038/ncomms7242

    29. [29]

      Huang, C.; Wu, S.; Sanchez, A. M.; Peters, J. J. P.; Beanland, R.; Ross, J. S.; Rivera, P.; Yao, W.; Cobden, D. H.; Xu, X. Nat. Mater. 2013, 13, 1096. doi: 10.1038/nmat4064  doi: 10.1038/nmat4064

    30. [30]

      Xi, X.; Zhao, L.; Wang, Z.; Berger, H.; Forró, L.; Shan, J.; Mak, K. F. Nat. Nanotechnol. 2015, 10, 765. doi: 10.1038/nnano.2015.143  doi: 10.1038/nnano.2015.143

    31. [31]

      Checkelsky, J. G.; Hor, Y. S.; Cava, R. J.; Ong, N. P. Phys. Rev. Lett. 2011, 106, 196801. doi: 10.1103/PhysRevLett.106.196801  doi: 10.1103/PhysRevLett.106.196801

    32. [32]

      Zhou, L.; Xu, K.; Zubair, A.; Liao, A. D.; Fang, W.; Ouyang, F.; Lee, Y. H.; Ueno, K.; Saito, R.; Palacios, T.; et al. J. Am. Chem. Soc. 2015, 137, 11892. doi: 10.1021/jacs.5b07452  doi: 10.1021/jacs.5b07452

    33. [33]

      Zhou, L.; Zubair, A.; Wang, Z.; Zhang, X.; Ouyang, F.; Fang, W.; Ueno, K.; Li, J.; Palacios, T.; Kong, J.; Dresselhaus, M. S. Adv. Mater. 2016, 28, 9526. doi: 10.1002/adma.201602687  doi: 10.1002/adma.201602687

    34. [34]

      Zhou, L.; Xu, K.; Zubair, A.; Zhang, X.; Ouyang, F.; Palacios, T.; Dresselhaus, M.; Li, Y.; Kong, J. Adv. Funct. Mater. 2017, 27, 1603491. doi: 10.1002/adfm.201603491  doi: 10.1002/adfm.201603491

    35. [35]

      Ha, Y. E.; Jo, M. Y.; Park, J.; Kang, Y. C.; Yoo, S. I.; Kim, J. H.J. Phys. Chem. C 2013, 117, 2646. doi: 10.1021/jp311148d  doi: 10.1021/jp311148d

    36. [36]

      Wu, D.; Zheng, X.; Chen, X.; Xie, Q.; Shi, J.; Huang, Y.; Zhang, X.; Ouyang, F.; Y. Gao, ; Huang, H. J. Phys. Chem. C 2018, 122, 1860. doi: 10.1021/acs.jpcc.7b10666  doi: 10.1021/acs.jpcc.7b10666

    37. [37]

      Zhou, P.; Xu, Q.; Li, H.; Wang, Y.; Yan, B.; Zhou, Y.; Chen, J.; Zhang, J.; Wang, K. Angew. Chem. Int. Ed. Engl. 2015, 54, 15226. doi: 10.1002/anie.201508216  doi: 10.1002/anie.201508216

    38. [38]

      Li, S. L.; Yin, H.; Kan, X.; Gan, L. Y.; Schwingenschögl, U.; Zhao, Y. Phys. Chem. Chem. Phys. 2017, 19, 30069. doi: 10.1039/c7cp05195f  doi: 10.1039/c7cp05195f

    39. [39]

      Li, W.; Yang, Y.; Zhang, G.; Zhang, Y. W. Nano Lett. 2015, 15, 1691. doi: 10.1021/nl504336h  doi: 10.1021/nl504336h

    40. [40]

      Cai, Y.; Ke, Q.; Zhang, G.; Yakobson, B. I.; Zhang, Y. W. J. Am. Chem. Soc. 2016, 138, 10199. doi: 10.1021/jacs.6b04926  doi: 10.1021/jacs.6b04926

    41. [41]

      Shi, R.; Dai, X.; Li, W.; Lu, F.; Liu, Y.; Qu, H.; Li, H.; Chen, Q.; Tian, H.; Wu, E. ACS Nano 2017, 11, 9500. doi: 10.1021/acsnano.7b05328  doi: 10.1021/acsnano.7b05328

    42. [42]

      Zhang, S.; Mao, N.; Wu, J.; Tong, L.; Zhang, J.; Liu, Z. Small 2017, 13, 1700466. doi: 10.1002/smll.201700466  doi: 10.1002/smll.201700466

    43. [43]

      Cheng, Y.; Zhang, G.; Zhang, Y.; Chang, T.; Pei, Q. X.; Cai, Y.; Zhang, Y. W. Nanoscale 2018, 10, 1660. doi: 10.1039/c7nr07226k  doi: 10.1039/c7nr07226k

    44. [44]

      Hu, M.; Yang, Z.; Zhou, W.; Li, A.; Pan, J.; Ouyang, F. Phys. E 2018, 98, 60. doi: 10.1016/j.physe.2017.12.027  doi: 10.1016/j.physe.2017.12.027

    45. [45]

      Liu, Z. Acta Phys.-Chim. Sin. 2016, 32, 1053.  doi: 10.3866/PKU.WHXB201603302

    46. [46]

      Yin, H.; Xiang, G.; Yue, L.; Zhang, H. Acta Phys.-Chim. Sin. 2015, 31, 67.  doi: 10.3866/PKU.WHXB201411211

    47. [47]

      Li, L.; Lu, S. Z.; Pan, J.; Qin, Z.; Wang, Y. Q.; Wang, Y.; Cao, G. Y.; Du, S.; Gao, H. J. Adv. Mater. 2014, 26, 4820.doi: 10.1002/adma.201400909  doi: 10.1002/adma.201400909

    48. [48]

      Chen, J.; Ge, Y.; Zhou, W.; Peng, M.; Pan, J.; Ouyang, F. J. Phys.-Condens. Mat. 2018, 30, 245701. doi: 10.1088/1361-648x/aac186  doi: 10.1088/1361-648x/aac186

    49. [49]

      Chen, J.; Yang, Z.; Zhou, W.; Zou, H.; Li, M.; Ouyang, F. Phys. Status. Solidi.-R. 2018, 12, 1800038. doi: 10.1002/pssr.201800038  doi: 10.1002/pssr.201800038

    50. [50]

      Wu, H.; Yan, Z. Acta Phys.-Chim. Sin. 2019, 35, 1052.  doi: 10.3866/PKU.WHXB201801262

    51. [51]

      Xi, J.; Nakamura, Y.; Zhao, T.; Wang, D.; Shuai, Z. Acta Phys.-Chim. Sin. 2018, 34, 961.  doi: 10.3866/PKU.WHXB201802051

    52. [52]

      Shi, L.; Yao, D.; Zhang, G.; Li, B. Appl. Phys. Lett. 2010, 96, 173108. doi: 10.1063/1.3421543  doi: 10.1063/1.3421543

    53. [53]

      Chen, D.; Pei, Q. Chem. Rev. 2017, 117, 11239. doi: 10.1021/acs.chemrev.7b00019  doi: 10.1021/acs.chemrev.7b00019

    54. [54]

      Chhowalla, M.; Liu, Z.; Zhang, H. Chem. Soc. Rev. 2015, 44, 2584. doi: 10.1039/c5cs90037a  doi: 10.1039/c5cs90037a

    55. [55]

      Chen, P.; Zhang, Z.; Duan, X.; Duan, X. Chem. Soc. Rev. 2018, 47, 3129. doi: 10.1039/C7CS00887B  doi: 10.1039/C7CS00887B

    56. [56]

      Xie, G.; Ding, D.; Zhang, G. Adv. Phys. X 2018, 3, 1480417. doi: 10.1080/23746149.2018.1480417  doi: 10.1080/23746149.2018.1480417

    57. [57]

      Du, C.; Hu, X.; Guan, P.; Guo, L.; Qian, L.; Li, J.; Song, R.; Tang, Y. J. Mater. Sci. 2015, 50, 427. doi: 10.1007/s10853-014-8602-8  doi: 10.1007/s10853-014-8602-8

    58. [58]

      Du, C.; Hu, X.; Guan, P.; Guo, L.; Qian, L.; Song, R.; Li, J.; Wang, C. J. Mater. Chem. B 2015, 3, 3044. doi: 10.1039/c4tb02030h  doi: 10.1039/c4tb02030h

    59. [59]

      Du, C.; Hu, X.; Guan, P.; Gao, X.; Song, R.; Li, J.; Qian, L.; Zhang, N.; Guo, L. J. Mater. Chem. B 2016, 4, 1510. doi: 10.1039/c5tb02633d  doi: 10.1039/c5tb02633d

    60. [60]

      Du, C.; Zhang, N.; Ding, S.; Gao, X.; Guan, P.; Hu, X. Polym. Chem. 2016, 7, 4531. doi: 10.1039/c6py00747c  doi: 10.1039/c6py00747c

    61. [61]

      Du, C.; Hu, X.; Cheng, Y.; Gao, J.; Zhang, Y. W.; Su, K.; Li, Z.; Zhang, N.; Chang, N.; Zeng, K. Mat. Sci. Eng. C 2018, 83, 169. doi: 10.1016/j.msec.2017.10.002  doi: 10.1016/j.msec.2017.10.002

    62. [62]

      Zhang, N.; Hu, X.; Guan, P.; Du, C.; Li, J.; Qian, L.; Zhang, X.; Ding, S.; Li, B. Chem. Eng. J. 2017, 317, 356. doi: 10.1016/j.cej.2017.02.066  doi: 10.1016/j.cej.2017.02.066

    63. [63]

      Cheng, Y.; Koh, L. D.; Li, D.; Ji, B.; Zhang, Y.; Yeo, J.; Guan, G.; Han, M. Y.; Zhang, Y. W. ACS Appl. Mater. Interfaces 2015, 7, 21787. doi: 10.1021/acsami.5b05615  doi: 10.1021/acsami.5b05615

    64. [64]

      Cheng, Y.; Koh, L. D.; Li, D.; Ji, B.; Han, M. Y.; Zhang, Y. W. J. R. Soc. Interface 2014, 11, 20140305. doi: 10.1098/rsif.2014.0305  doi: 10.1098/rsif.2014.0305

    65. [65]

      Xu, C.; Li, D.; Cheng, Y.; ·Liu, M.; Zhang, Y. W.·Ji, B. Acta Mech. Sin. 2015, 31, 416. doi: 10.1007/s10409-015-0404-y  doi: 10.1007/s10409-015-0404-y

    66. [66]

      Wang, F.; Aravind, S. S. J.; Wu, H.; Forys, J.; Venkataraman, V.; Ramanujachary, K.; Hu, X. Mat. Sci. Eng. C 2017, 79, 728. doi: 10.1016/j.msec.2017.05.120  doi: 10.1016/j.msec.2017.05.120

    67. [67]

      Zhang, N.; Hu, X.; Guan, P.; Zeng, K.; Cheng, Y. J. Phys. Chem. C 2019, 123, 897. doi: 10.1021/acs.jpcc.8b09893  doi: 10.1021/acs.jpcc.8b09893

    68. [68]

      Zuo, G.; Zhou, X.; Huang, Q.; Fang, H.; Zhou, R. J. Phys. Chem. C 2011, 115, 23323. doi: 10.1021/jp208967t  doi: 10.1021/jp208967t

    69. [69]

      Chong, Y.; Ge, C.; Yang, Z.; Garate, J. A.; Gu, Z.; Weber, J. K.; Liu, J.; Zhou, R. ACS Nano 2015, 9, 5713. doi: 10.1021/nn5066606  doi: 10.1021/nn5066606

    70. [70]

      Tu, Y.; Lv, M.; Xiu, P.; Huynh, T.; Huang, Q.; Fan, C.; Zhang, M.; Fang, H.; Zhou, R. Nat. Nanotechnol. 2013, 8, 594. doi: 10.1038/NNANO.2013.125  doi: 10.1038/NNANO.2013.125

    71. [71]

      Wang, Q., Zhai, X., Crowe, M., Gou, L., Li, Y., Li, D., Zhang, L., Diao, J., Ji, B. Sci. China Phys. Mech. 2019, 62, 64611. doi: 10.1007/s11433-018-9317-7  doi: 10.1007/s11433-018-9317-7

    72. [72]

      Li, B.; Li, W.; Perez-Aguilar, J. M.; Zhou, R. Small 2017, 13, 1603685. doi: 10.1002/smll.201603685  doi: 10.1002/smll.201603685

    73. [73]

      Gu, Z.; Zhao, L.; Liu, S.; Duan, G.; Perez-Aguilar, J. M.; Luo, J.; Li, W.; Zhou, R. ACS Nano 2017, 11, 3198. doi: 10.1021/acsnano.7b00236  doi: 10.1021/acsnano.7b00236

    74. [74]

      Gu, Z.; Li, W.; Hong, L.; Zhou, R. J. Chem. Phys. 2016, 144, 175103. doi: 10.1063/1.4948459  doi: 10.1063/1.4948459

    75. [75]

      Li, W.; Guo, M.; Zhang, G.; Zhang, Y. W. Chem. Mater. 2014, 26, 5625. doi: 10.1021/cm5021756  doi: 10.1021/cm5021756

    76. [76]

      Liu, Y.; Wu, H.; Cheng, H. C.; Yang, S.; Zhu, E.; He, Q.; Ding, M.; Li, D.; Guo, J.; Weiss, N.; et al. Nano Lett. 2015, 15, 3030. doi: 10.1021/nl504957p  doi: 10.1021/nl504957p

    77. [77]

      Liu, X.; Gao, J.; Zhang, G.; Zhang, Y. W. Nano Res. 2017, 10, 2944. doi: 10.1007/s12274-017-1504-8  doi: 10.1007/s12274-017-1504-8

    78. [78]

      Yang, Z.; Pan, J.; Liu, Q.; Wu, N.; Hu, M.; Ouyang, F. Phys. Chem. Chem. Phys. 2017, 19, 1303. doi: 10.1039/c6cp07327a  doi: 10.1039/c6cp07327a

    79. [79]

      Wang, X.; Li, B.; Bell, D. R.; Li, W.; Zhou, R. J. Mater. Chem. A 2017, 5, 23020. doi: 10.1039/C7TA05995G  doi: 10.1039/C7TA05995G

    80. [80]

      Liang, J.; Zhang, J.; Li, Z.; Hong, H.; Wang, J.; Zhang, Z.; Zhou, X.; Qiao, R.; Xu, J.; Gao, P.; et al. Nano Lett. 2017, 17, 7539. doi: 10.1021/acs.nanolett.7b03476  doi: 10.1021/acs.nanolett.7b03476

    81. [81]

      Guan, G.; Liu, S.; Cheng, Y.; Zhang, Y. W.; Han, M. Y. Nanoscale 2018, 10, 10911. doi: 10.1039/c8nr02121j  doi: 10.1039/c8nr02121j

    82. [82]

      Zhang, W.; Huynh, T.; Xiu, P.; Zhou, B.; Ye, C.; Luan, B.; Zhou, R. Carbon 2015, 94, 895. doi: 10.1016/j.carbon.2015.07.075  doi: 10.1016/j.carbon.2015.07.075

    83. [83]

      Hussain, T.; Vovusha, H.; Kaewmaraya, T.; Amornkitbamrung, V.; Ahuja, R. Sens. Actuators B: Chem. 2018, 255, 2713. doi: 10.1016/j.snb.2017.09.083  doi: 10.1016/j.snb.2017.09.083

    84. [84]

      Jagvaral, Y.; He, H.; Pandey, R. 2D Mater. 2018, 5, 015012. doi: 10.1088/2053-1583/aa8c92  doi: 10.1088/2053-1583/aa8c92

    85. [85]

      Shen, J.; Shi, M.; Yan, B.; Ma, H.; Li, N.; Hu, Y.; Ye, M. Colloids Surf. B 2010, 81, 434. doi: 10.1016/j.colsurfb.2010.07.035  doi: 10.1016/j.colsurfb.2010.07.035

    86. [86]

      Li, H.; Fierens, K.; Zhang, Z.; Vanparijs, N.; Schuijs, M. J.; Steendam, K. V.; Gracia N. F.; Rycke, R. D.; Beer, T. D.; Beuckelaer, A. D.; et al. ACS Appl. Mater. Interfaces 2016, 8, 1147. doi: 10.1021/acsami.5b08963  doi: 10.1021/acsami.5b08963

    87. [87]

      Hong, S. G.; Kim, J. H.; Kim, R. E.; Kwon, S. J.; Kim, D. W.; Jung, H. T.; Dordick, J. S.; Kim, J. Biotechnol. Bioproc. E 2016, 21, 573. doi: 10.1007/s12257-016-0373-4  doi: 10.1007/s12257-016-0373-4

    88. [88]

      Wang, Z.; Ge, Z.; Zheng, X.; Chen, N.; Peng, C.; Fan, C.; Huang, Q. Nanoscale 2012, 4, 394. doi: 10.1039/c1nr11174d  doi: 10.1039/c1nr11174d

    89. [89]

      Yang, Q.; Pan, X.; Clarke, K.; Li, K. Ind. Eng. Chem. Res. 2012, 51, 310. doi: 10.1021/ie201391e  doi: 10.1021/ie201391e

    90. [90]

      Liu, Y.; Tao, L. Q.; Wang, D. Y.; Zhang, T. Y.; Yang, Y.; Ren, T. L. Appl. Phys. Lett. 2017, 110, 123508. doi: 10.1063/1.4978374  doi: 10.1063/1.4978374

    91. [91]

      Zeng, Q.; Cheng, J.; Tang, L.; Liu, X.; Liu, Y.; Li, J.; Jiang, J. Adv. Funct. Mater. 2010, 20, 3366. doi: 10.1002/adfm.201000540  doi: 10.1002/adfm.201000540

    92. [92]

      Guo, C. X.; Zheng, X. T.; Lu, Z. S.; Lou, X. W.; Li, C. M. Adv. Mater. 2010, 22, 5164. doi: 10.1002/adma.201001699  doi: 10.1002/adma.201001699

    93. [93]

      Al-Dirini, F.; Mohammed, M. A.; Hossain, M. S.; Hossain, F. M.; Nirmalathas, A.; Skafidas, E. Nanoscale 2016, 8, 10066. doi: 10.1039/c5nr05274b  doi: 10.1039/c5nr05274b

    94. [94]

      Zhang, X.; Wang, L.; Lu, Q.; Kaplan, D. L. ACS Appl. Mater. Interfaces 2018, 10, 22924. doi: 10.1021/acsami.8b04777  doi: 10.1021/acsami.8b04777

    95. [95]

      Yang, Z.; Ge, C.; Liu, J.; Chong, Y.; Gu, Z.; Jimenez-Cruz, C. A.; Chai, Z.; Zhou, R. Nanoscale 2015, 7, 18725. doi: 10.1039/c5nr01172h  doi: 10.1039/c5nr01172h

    96. [96]

      Cheng, Y.; Koh, L. D.; Wang, F.; Li, D.; Ji, B.; Yeo, J.; Guan, G.; Han, M. Y.; Zhang, Y. W. Nanoscale 2017, 9, 9181. doi: 10.1039/c7nr01428g  doi: 10.1039/c7nr01428g

    97. [97]

      Weng, Q.; Wang, B.; Wang, X.; Hanagata, N.; Li, X.; Liu, D.; Wang, X.; Jiang, X.; Bando, Y.; Golberg, D. ACS Nano 2014, 8, 6123. doi: 10.1021/nn5014808  doi: 10.1021/nn5014808

    98. [98]

      Chu, J.; Shi, P.; Yan, W.; Fu, J.; Yang, Z.; He, C.; Deng, X.; Liu, H. Nanoscale 2018, 10, 9547. doi: 10.1039/c8nr02538j  doi: 10.1039/c8nr02538j

    99. [99]

      Yin, W.; Yan, L.; Yu, J.; Tian, G.; Zhou, L.; Zheng, X.; Zhang, X.; Yong, Y.; Li, J.; Gu, Z.; et al. ACS Nano 2014, 8, 6922. doi: 10.1021/nn501647j  doi: 10.1021/nn501647j

    100. [100]

      Yong, Y.; Zhou, L.; Gu, Z.; Yan, L.; Tian, G.; Zheng, X.; Liu, X.; Zhang, X.; Shi, J.; Cong, W.; et al. Nanoscale 2014, 6, 10394. doi: 10.1039/c4nr02453b  doi: 10.1039/c4nr02453b

    101. [101]

      Shao, J.; Xie, H.; Wang, H.; Zhou, W.; Luo, Q.; Yu, X. F.; Chu, P. K. ACS Appl. Mater. Interfaces 2018, 10, 1155. doi: 10.1021/acsami.7b17117  doi: 10.1021/acsami.7b17117

    102. [102]

      Yang, X.; Wang, D.; Shi, Y.; Zou, J.; Zhao, Q.; Zhang, Q.; Huang, W.; Shao, J.; Xie, X.; Dong, X. ACS Appl. Mater. Interfaces 2018, 10, 12431. doi: 10.1021/acsami.8b00276  doi: 10.1021/acsami.8b00276

    103. [103]

      Tao, W.; Ji, X.; Xu, X.; Islam, M. A.; Li, Z.; Chen, S.; Saw, P. E.; Zhang, H.; Bharwani, Z.; Guo, Z.; et al. Angew. Chem. Int. Ed. 2017, 56, 11896. doi: 10.1002/anie.201703657  doi: 10.1002/anie.201703657

    104. [104]

      Wang, K.; Chen, Q.; Xue, W.; Li, S.; Liu, Z. ACS Biomater. Sci. Eng. 2017, 3, 2325. doi: 10.1021/acsbiomaterials.7b00499  doi: 10.1021/acsbiomaterials.7b00499

    105. [105]

      Zhang, A.; Li, A.; Tian, W.; Li, Z.; Wei, C.; Sun, Y.; Zhao, W.; Liu, M.; Liu, J. Chem. Eur. J. 2017, 23, 11346. doi: 10.1002/chem.201701916  doi: 10.1002/chem.201701916

    106. [106]

      Lin, L. S.; Yang, X.; Niu, G.; Song, J.; Yang, H. H.; Chen, X. Nanoscale 2016, 8, 2116. doi: 10.1039/c5nr07552a  doi: 10.1039/c5nr07552a

    107. [107]

      Feng, W.; Chen, L.; Qin, M.; Zhou, X.; Zhang, Q.; Miao, Y.; Qiu, K.; Zhang, Y.; Hea, C. Sci. Rep. 2015, 5, 17422. doi: 10.1038/srep17422  doi: 10.1038/srep17422

    108. [108]

      Sun, Z.; Xie, H.; Tang, S.; Yu, X. F.; Guo, Z.; Shao, J.; Zhang, H.; Huang, H.; Wang, H.; Chu, P. K. Angew. Chem. Int. Ed. 2015, 54, 11526. doi: 10.1002/anie.201506154  doi: 10.1002/anie.201506154

    109. [109]

      Cheng, L.; Liu, J.; Gu, X.; Gong, H.; Shi, X.; Liu, T.; Wang, C.; Wang, X.; Liu, G.; Xing, H.; et al. Adv. Mater. 2014, 26, 1886. doi: 10.1002/adma.201304497  doi: 10.1002/adma.201304497

    110. [110]

      Yong, Y.; Cheng, X.; Bao, T.; Zu, M.; Yan, L.; Yin, W.; Ge, C.; Wang, D.; Gu, Z.; Zhao, Y. ACS Nano 2015, 9, 12451. doi: 10.1021/acsnano.5b05825  doi: 10.1021/acsnano.5b05825

    111. [111]

      Li, J.; Jiang, F.; Yang, B.; Song, X. R.; Liu, Y.; Yang, H. H.; Cao, D. R.; Shi, W. R.; Chen, G. N. Sci. Rep. 2013, 3, 1998. doi: 10.1038/srep01998  doi: 10.1038/srep01998

    112. [112]

      Pham, V. T.; Truong, V. K.; Quinn, M. D.; Notley, S. M.; Guo, Y.; Baulin, V. A.; Al Kobaisi, M.; Crawford, R. J.; Ivanova, E. P. ACS Nano 2015, 9, 8458. doi: 10.1021/acsnano.5b03368  doi: 10.1021/acsnano.5b03368

    113. [113]

      Xiong, Z.; Zhang, X.; Zhang, S.; Lei, L.; Ma, W.; Li, D.; Wang, W.; Zhao, Q.; Xing, B. Ecotox. Environ. Safe. 2018, 161, 507. doi: 10.1016/j.ecoenv.2018.06.008  doi: 10.1016/j.ecoenv.2018.06.008

    114. [114]

      Hui, L.; Auletta, J. T.; Huang, Z.; Chen, X.; Xia, F.; Yang, S.; Liu, H.; Yang, L. ACS Appl. Mater. Interfaces 2015, 7, 10511. doi: 10.1021/acsami.5b02008  doi: 10.1021/acsami.5b02008

    115. [115]

      Yin, W.; Yu, J.; Lv, F.; Yan, L.; Zheng, L. R.; Gu, Z.; Zhao, Y. ACS Nano 2016, 10, 11000. doi: 10.1021/acsnano.6b05810  doi: 10.1021/acsnano.6b05810

    116. [116]

      Bang, G. S.; Cho, S.; Son, N.; Shim, G. W.; Cho, B. K.; Choi, S. Y. ACS Appl. Mater. Interfaces 2016, 8, 1943. doi: 10.1021/acsami.5b10136  doi: 10.1021/acsami.5b10136

  • 加载中
    1. [1]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    2. [2]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    3. [3]

      Tiantian Zheng Huiyi Wang Huimin Li Xuanhe Liu Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032

    4. [4]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    5. [5]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    6. [6]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    7. [7]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    8. [8]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    9. [9]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    10. [10]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    11. [11]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    12. [12]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    13. [13]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    14. [14]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    15. [15]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    16. [16]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    17. [17]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    18. [18]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    19. [19]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    20. [20]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

Metrics
  • PDF Downloads(16)
  • Abstract views(908)
  • HTML views(229)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return