Citation: REN Yumei, XU Qun. Construction of Advanced Two-dimensional Heterostructure Ag/WO3−x for Enhancing Photoelectrochemical Performance[J]. Acta Physico-Chimica Sinica, ;2019, 35(10): 1157-1164. doi: 10.3866/PKU.WHXB201812054 shu

Construction of Advanced Two-dimensional Heterostructure Ag/WO3−x for Enhancing Photoelectrochemical Performance

  • Corresponding author: XU Qun, qunxu@zzu.edu.cn
  • Received Date: 30 December 2018
    Revised Date: 24 January 2019
    Accepted Date: 28 January 2019
    Available Online: 20 October 2019

    Fund Project: The project was supported by the National Natural Science Foundation of China 21571157The project was supported by the National Natural Science Foundation of China (21773216, 51173170, 21571157) and the Innovation Talents Award of Henan Province, China (114200510019)Innovation Talents Award of Henan Province, China 114200510019The project was supported by the National Natural Science Foundation of China 21773216The project was supported by the National Natural Science Foundation of China 51173170

  • Solar energy, which is clean, affordable and reliable, can help alleviate the current environmental pollution and energy crisis efficiently. In the past few decades, great progress has been made in harvesting and converting solar energy into chemical energy. Among various technologies, plasmon-induced photoelectrochemistry has been proposed as a promising alternative for solar energy conversion. The hot electrons generated from plasmon excitation and transfer from metal nanostructures to semiconductors is a potential new paradigm for solar energy conversion. However, the ultrafast decay of the hot carriers is unfavorable for the improvement of photocatalytic efficiency. Therefore, finding more efficient photocatalysts, with enhanced light absorption and a longer carrier lifetime, is of paramount importance for improving the conversion efficiency of solar energy, but their fabrication is challenging. In this work, a plasmonic metal/semiconductor heterostructure based on Ag nanoparticles embedded in two-dimensional (2D) amorphous sub-stoichiometric tungsten trioxide (a-WO3−x), followed by annealing, was successfully fabricated. Firstly, the peculiar nanostructure of 2D a-WO3−x was successfully constructed from WS2 nanosheets with supercritical CO2 (SC CO2) at 200 ℃. Secondly, the Ag/a-WO3−x heterostructure was synthesized using an in situ reduction method. Finally, the obtained 2D heterostructure of Ag/WO3−x was annealed at 400 ℃ in N2 to further improve its stability and conductivity. X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) were used to characterize the structure, morphology, and composition of the material, respectively. UV-Vis spectra were also measured to evaluate light adsorption. Characterization results show that the amorphous structure can effectively anchor metal nanoparticles, and the metal nanoparticles are uniformly dispersed in the amorphous region and have a small size. The as-prepared nanocomposites showed efficient photoelectrochemical (PEC) water splitting when serving as photoelectrode materials, and efficient PEC activity towards photo-oxidation degradation currents under excitation of Ag localized surface plasmon resonance (LSPR). The photocurrent response of the Ag/WO3−x heterostructure was approximately five times greater than that of a-WO3−x. Moreover, the PEC degradation efficiency of Ag/WO3−x reached 96.7% for MO under Vis light illumination (after reaction for 120 min), while the PEC degradation efficiency of WO3−x was only 63.6%. The high PEC performance of the composite photoanode can be ascribed to the local surface plasmon resonance (LSPR) effect of the Ag nanoparticles, which can enhance the light absorption and hot electron transformation. Moreover, the construction of local crystalline-amorphous interfaces can further promote the separation efficiency of the photogenerated electron-hole pairs, and thus increase conductivity. This work provides a positive strategy for the fabrication of advanced photocatalysts, and a new perspective on understanding of the synergistic effects of structural and electronic regulations.
  • 加载中
    1. [1]

      Wang, F, F.; Li, Q., Xu, D. S. Adv. Energy Mater. 2017, 7 (23), 1700529. doi: 10.1002/aenm.201700529  doi: 10.1002/aenm.201700529

    2. [2]

      Wu, N. Q. Nanoscale 2018, 10, 2679. doi: 10.1039/C7NR08487K  doi: 10.1039/C7NR08487K

    3. [3]

      Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S. Chem. Rev. 2010, 110 (11), 6446. doi: 10.1021/cr1002326  doi: 10.1021/cr1002326

    4. [4]

      Li, J. T.; Wu, N. Q. Catal. Sci. Tech. 2015, 5, 1360. doi: 10.1039/C4CY00974F  doi: 10.1039/C4CY00974F

    5. [5]

      Xia, H. C.; Xu, Q.; Zhang, J. N. Nano Micro Lett. 2018, 10 (4), 66. doi: 10.1007/s40820-018-0219-z  doi: 10.1007/s40820-018-0219-z

    6. [6]

      Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Chem. Rev. 2010, 110 (11), 6503. doi: 10.1021/cr1001645  doi: 10.1021/cr1001645

    7. [7]

      Vuong, N. M.; Kim, D.; Kim, H. Sci. Rep. 2015, 5, 11040. doi: 10.1038/srep11040  doi: 10.1038/srep11040

    8. [8]

      Kong, Y. Q.; Sun, H. G.; Fan, W. L.; Wang, L.; Zhao, H. K.; Zhao, X.; Yuan, S. Z. RSC Adv. 2017, 7, 15201. doi: 10.1039/c7ra01426k  doi: 10.1039/c7ra01426k

    9. [9]

      Ling, C. Y.; Wang, J. L. Acta Phys.-Chim. Sin. 2017, 33 (5), 869.[  doi: 10.3866/PKU.WHXB201702088

    10. [10]

      Shang, Y.; Chen, Y.; Shi, Z. B.; Zhang, D. F.; Guo, L. Acta Phys.-Chim. Sin. 2013, 29 (8), 1819.[  doi: 10.3866/PKU.WHXB201305281

    11. [11]

      Cushing, S. K.; Wu, N. J. Phys. Chem. Lett. 2016, 7 (4), 666. doi: 10.1021/acs.jpclett.5b02393  doi: 10.1021/acs.jpclett.5b02393

    12. [12]

      Zhang, Y. C.; He, S.; Guo, W. X.; Hu, Y.; Huang, J. W.; Mulcahy, J. R.; Wei, W. D. Chem. Rev. 2018, 118 (6), 2927. doi: 10.1021/acs.chemrev.7b00430  doi: 10.1021/acs.chemrev.7b00430

    13. [13]

      Clavero, C. Nat. Photonics 2014, 8, 95. doi: 10.1038/NPHOTON.2013.238  doi: 10.1038/NPHOTON.2013.238

    14. [14]

      Tian, Y.; Tatsuma, T. J. Am. Chem. Soc. 2005, 127 (20), 7632. doi: 10.1021/ja042192u  doi: 10.1021/ja042192u

    15. [15]

      Naseri, N.; Qorbani, M.; Kim, H.; Choi, W.; Moshfegh, A. Z. J. Phys. Chem. C 2015, 119 (3), 1271. doi: 10.1021/jp507988c  doi: 10.1021/jp507988c

    16. [16]

      Du, X. H.; L. Y.; Y. H.; Xiang, Q. J. Acta Phys.-Chim. Sin. 2018, 34 (4), 414.[  doi: 10.3866/PKU.WHXB201708283

    17. [17]

      Nie, L. H.; Hu Y.; Zhang, W. X. Acta Phys.-Chim. Sin. 2012, 28 (1), 154.[  doi: 10.3866/PKU.WHXB201228154

    18. [18]

      Xia, H. C.; Zhang, J. N.; Chen, Z. M.; Xu, Q. Appl. Surf. Sci. 2018, 440, 91. doi: 10.1016/j.apsusc.2017.12.263.  doi: 10.1016/j.apsusc.2017.12.263

    19. [19]

      Xia, H. C.; Zhang, J. N.; Yang, Z.; Guo, S. Y.; Guo, S. H.; Xu, Q. Nano Micro Lett. 2017, 9 (4), 43. doi: 10.1007/s40820-017-0144-6  doi: 10.1007/s40820-017-0144-6

    20. [20]

      Tian, Y.; Tatsuma, T. Chem. Commun. 2004, 1810. doi: 10.1039/B405061D  doi: 10.1039/B405061D

    21. [21]

      Tian, Y.; Tatsuma, T. J. Am. Chem. Soc. 2005, 127 (20), 7632. doi: 10.1021/ja042192u  doi: 10.1021/ja042192u

    22. [22]

      Lee, S. H.; Lee, S. W.; Oh, T.; Petrosko, S. H.; Mirkin, C. A.; Jang, J. W. Nano Lett. 2018, 18 (1), 109. doi: 10.1021/acs.nanolett.7b03540  doi: 10.1021/acs.nanolett.7b03540

    23. [23]

      Li, J.; Cushing, S. K.; Chu, D.; Zheng, P.; Bright, J.; Castle, C.; Manivannan, A.; Wu, N. J. Mater. Res. 2016, 31 (11), 1608. doi: 10.1557/jmr.2016.102  doi: 10.1557/jmr.2016.102

    24. [24]

      Ren, Y. M.; Li, C.; Xu, Q.; Yan, J.; Li, Y. Z.; Yuan, P. F.; Xia, H. C.; Niu, C. Y.; Yang, X. A.; Jia, Y. Appl. Catal. B: Environ. 2019, 245, 648. doi: 10.1016/j.apcatb.2019.01.015  doi: 10.1016/j.apcatb.2019.01.015

    25. [25]

      Ren, Y. M.; Xu, Q. Energ. Environ. Mater. 2018, 1 (2), 46. doi: 10.1016/j.apcatb.2019.01.015  doi: 10.1016/j.apcatb.2019.01.015

    26. [26]

      Ren, Y. M.; Wang, C. Z.; Qi, Y. H.; Chen, Z. M.; Jia, Y.; Xu, Q. Appl. Surf. Sci. 2017, 419, 573. doi: 10.1016/j.apsusc.2017.05.058  doi: 10.1016/j.apsusc.2017.05.058

    27. [27]

      Wang, N.; Xu, Q.; Xu, S. S.; Qi, Y. H.; Chen, M.; Li, H. X.; Han, B. X. Sci. Rep. 2015, 5, 16764. doi: 10.1038/srep16764  doi: 10.1038/srep16764

    28. [28]

      Ren, Y. M.; Xu, Q.; Zheng, X. L.; Fu, Y. Z.; Wang, Z.; Chen, H. L.; Weng, Y. X.; Zhou, Y. C. Appl. Catal. B: Environ. 2018, 231, 381. doi: 10.1016/j.apcatb.2018.03.040  doi: 10.1016/j.apcatb.2018.03.040

    29. [29]

      Wang, Y. L.; Cui, X. B.; Yang, Q. Y.; Liu, J.; Gao, Y.; Sun, P.; Lu, G. Y. Sensor. Actuat. B 2016, 225, 544. doi: 10.1016/j.snb.2015.11.065  doi: 10.1016/j.snb.2015.11.065

    30. [30]

      Chen, F.; Yang, Q.; Li, X. M.; Zeng, G. M.; Wang, D. B.; Niu, C. G.; Zhao, J. W.; An, H. X.; Xie, T.; Deng, Y. C. Appl. Catal. B: Environ. 2017, 200, 330. doi: 10.1016/j.apcatb.2016.07.021  doi: 10.1016/j.apcatb.2016.07.021

    31. [31]

      Shi, Y.; Wang, J.; Wang, C.; Zhai, T. T.; Bao, W. J.; Xu, J. J.; Xia, X. H.; Chen, H. Y. J. Am. Chem. Soc. 2015, 137 (23), 7365. doi: 10.1021/jacs.5b01732  doi: 10.1021/jacs.5b01732

    32. [32]

      Zafra, M. C.; Lavela, P.; Rasines, G.; Macías, C.; Tirado, J. L.; Ania, C. O. Electrochim. Acta 2014, 135, 208. doi: 10.1016/j.electacta.2014.04.182.  doi: 10.1016/j.electacta.2014.04.182

    33. [33]

      Lewera, A., Timperman, L., Roguska, A.; Alonso-Vante, N. J. Phys. Chem. C 2011, 115 (41), 20153. doi: 10.1021/jp2068446  doi: 10.1021/jp2068446

    34. [34]

      Yin, L.; Chen, D. L.; Feng, M. J.; Ge, L. F.; Yang, D. W.; Song, Z. H.; Fan, B. B.; Zhang, R.; Shao, G. S. RSC Adv. 2015, 5, 328. doi: 10.1039/c4ra10500a  doi: 10.1039/c4ra10500a

    35. [35]

      Cheng, H. F.; Huang, B. B; Wang, P.; Wang, Z. Y.; Lou, Z. Z.; Wang, J. P.; Qin, X. Y.; Zhang, X. Y.; Dai, Y. Chem. Commun. 2011, 47, 7054. doi: 10.1039/c1cc11525a  doi: 10.1039/c1cc11525a

    36. [36]

      Dong, P. Y.; Yang, B. R.; Liu, C.; Xu, F. H.; Xi, X. G.; Hou, G. H.; Shao, R. RSC Adv. 2017, 7, 947. doi: 10.1039/c6ra25272a  doi: 10.1039/c6ra25272a

    37. [37]

      Miyauchi, M. Phys. Chem. Chem. Phys. 2008, 10, 6258. doi: 10.1039/b807426g  doi: 10.1039/b807426g

    38. [38]

      Wang, Q.; Moser, J. E.; Gra1tzel, M. J. Phys. Chem. B 2005, 109 (31), 14945. doi: 10.1021/jp052768h  doi: 10.1021/jp052768h

    39. [39]

      Chen, X. Q.; Li, P.; Tong, H.; Kako, T.; Ye, J. H. Sci. Technol. Adv. Mater. 2011, 12, 044604. doi: 10.1088/1468-6996/12/4/044604  doi: 10.1088/1468-6996/12/4/044604

    40. [40]

      Pu, Y. C.; Wang, G. M.; Chang, K. D.; Ling, Y. C.; Lin, Y. K.; Fitzmorris, B. C.; Liu, C. M.; Lu, X. L.; Tong, Y. X.; Zhang, J. Z.; et al. Nano Lett. 2013, 13 (8), 3817. doi: 10.1021/nl4018385  doi: 10.1021/nl4018385

    41. [41]

      Robatjazi, H.; Bahauddin, S. M.; Doiron, C.; Thomann, I. Nano Lett. 2015, 15 (9), 6155. doi: 10.1021/acs.nanolett.5b02453  doi: 10.1021/acs.nanolett.5b02453

    42. [42]

      Xu, F.; Yao, Y. W.; Bai, D. D.; Xu, R. S.; Mei, J. J.; Wu, D. P.; Gao, Z. Y.; Jiang, K. RSC Adv. 2015, 5, 60339. doi: 10.1039/c5ra06241a  doi: 10.1039/c5ra06241a

    43. [43]

      Hisatomi, T.; Kubota, J.; Domen, K. Chem. Soc. Rev. 2014, 43, 7520. doi: 10.1039/c3cs60378d  doi: 10.1039/c3cs60378d

    44. [44]

      Chen, H. R.; Shen, K.; Chen, J. Y.; Chen, X. D.; Li; Y. E. J. Mater. Chem. A 2017, 5, 9937. doi: 10.1039/c7ta02184d.  doi: 10.1039/c7ta02184d

    45. [45]

      Li, D.; Xing, Z. P.; Yu, X. J.; Cheng, X. W. Electrochim. Acta 2015, 170, 182. doi: 10.1016/j.electacta.2015.04.148  doi: 10.1016/j.electacta.2015.04.148

  • 加载中
    1. [1]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    2. [2]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    3. [3]

      Tian YangYi LiuLina HuaYaoyao ChenWuqian GuoHaojie XuXi ZengChanghao GaoWenjing LiJunhua LuoZhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707

    4. [4]

      Zhuoer Cai Yinan Zhang Xiu-Ni Hua Baiwang Sun . Phase transition arising from order-disorder motion in stable layered two-dimensional perovskite. Chinese Journal of Structural Chemistry, 2024, 43(11): 100426-100426. doi: 10.1016/j.cjsc.2024.100426

    5. [5]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    6. [6]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    7. [7]

      Xuan Zhu Lin Zhou Xiao-Yun Huang Yan-Ling Luo Xin Deng Xin Yan Yan-Juan Wang Yan Qin Yuan-Yuan Tang . (Benzimidazolium)2GeI4: A layered two-dimensional perovskite with dielectric switching and broadband near-infrared photoluminescence. Chinese Journal of Structural Chemistry, 2024, 43(6): 100272-100272. doi: 10.1016/j.cjsc.2024.100272

    8. [8]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    9. [9]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    10. [10]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    11. [11]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    12. [12]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    13. [13]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    14. [14]

      Huipeng Zhao Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246

    15. [15]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    16. [16]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    17. [17]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    18. [18]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    19. [19]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    20. [20]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

Metrics
  • PDF Downloads(11)
  • Abstract views(573)
  • HTML views(43)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return